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An important issue in many multivariate regression problems is to eliminate candidate predictors
with null predictor vectors. In large-dimensional (LD) setting where the numbers of responses and
predictors are large, model selection encounters the scalability challenge. Knock-one-out (KOO)
statistics hold promise to meet this challenge. In this paper, the almost sure limits and the cen-
tral limit theorem of the KOO statistics are derived under the LD setting and mild distributional
assumptions (finite fourth moments) of the errors. These theoretical results guarantee the strong
consistency of a subset selection rule based on the KOO statistics with a general threshold. For
enhancing the robustness of the selection rule, we also propose a bootstrap threshold for the KOO
approach. Simulation results support our conclusions and demonstrate the selection probabilities
by the KOO approach with the bootstrap threshold outperform the methods using Akaike infor-
mation threshold, Bayesian information threshold and Mallow’s Cp threshold. We compare the
proposed KOO approach with those based on information threshold to a chemometrics dataset
and a yeast cell-cycle dataset, which suggests our proposed method identifies useful models.

1. INTRODUCTION

In multivariate statistical analysis, linear regression is a basic and commonly used type of ap-
proach. The overall idea of regression is to examine which variables in particular are significant
predictors of the outcome variables, and in what way do they indicated by the magnitude and sign
of the outcome variables. Specifically,

(1) Y = XΘ+EΣ1/2,

where the n×p response matrix Y = (yij) = (y1, . . . ,yn)
′, the n×k predictor matrix X = (x̃1, . . . , x̃n)

′ =
(x1, . . . ,xk), the k × p regression coefficient matrix Θ = (θ1, . . . ,θk)

′, the n× p random errors matrix
E = (e1, . . . , ep) = (eij) and the p×p covariance matrix Σ with full rank. A main goal in multivariate
linear regression (MLR) is to estimate the regression coefficients Θ. The estimates should be such
that the estimated regression plane explains the variation in the values of the responses with great
accuracy.

Model (1) (referred to hereinafter as the full model), however, is not always satisfactory because
some of the predictors may be uncorrelated with the responses. We take a simple example to illustrate
this fact. Let j be a subset of [k] = {1, 2, . . . , k}, Xj = (xj , j ∈ j) and Θj = (θj , j ∈ j)′. Denote model j
by

Mj : Y = XjΘj +EΣ1/2.(2)
1
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The classical linear least-squares solution is to estimate the matrix of regression coefficients 󰁥Θ of the
full model (1) by

󰁥Θ = (X′X)−1X′Y,

which minimizes the sum of the squares of errors, i.e.,

󰁥Θ = argmin
Θ

tr(Y −XΘ)(Y −XΘ)′.

If there exists a predictor vector θj = 0, then the least-squares estimator of the regression coefficients
of model M[k]\j is

󰁥Θ[k]\j = (X′
[k]\jX[k]\j)

−1X′
[k]\jY,

It is known that in this case the mean squared error (MSE) of the predictions from 󰁥Θ[k]\j is smaller
than that from 󰁥Θ under some mild conditions. Moreover, even though the elements of θj are not
equal to zero but small enough, the MSE of the predictions from 󰁥Θ[k]\j is also smaller than that from
󰁥Θ (e.g., Fujikoshi et al. (2010)). Therefore, removing these “non-significant” predictors from the full
model improves the model. How to determine the significance of each predictor for the response and
to select the true model from the full model are important problems in multiple regression model.
Here, the true model is the data-generating model and is denoted by

Mj∗ : Y = Xj∗Θj∗ +EΣ1/2,(3)

where for all j ∈ [k]\j∗, θj = 0.
To measure the significance of the predictors for the response, one can make use of the regression

coefficients, the partial correlation or the multiple correlation coefficient between each predictor and
the responses. However, these direct measures are unstable under high-dimensional regression be-
cause they all highly depend on the values of each predictor. Instead, we consider removing one
predictor vector from the full model and measuring how much “information” we lose. Hence, we re-
fer to this kind of statistics KOO (knock-one-out or kick-one-out) statistics in the technical report (Bai
et al., 2018a). This KOO idea can be traced back to Nishii et al. (1988), who investigated the discrimi-
nant analysis and canonical correlation analysis under fixed dimensions. In this paper, we study the
KOO statistics in high-dimensional responses and predictors.The KOO method was motivated to ad-
dress the issue of computational complexity in traditional AIC and BIC methods. Moreover, we find
that the KOO method exhibits excellent stability, particularly in high-dimensional response settings.

There has been a lot of recent interest in variable selection problems for high-dimensional linear
regression models because of the increasingly frequent and important in diverse fields of economics,
finance and machine learning. For univariate (or single) response case (i.e., p = 1), a variety of
methods have been developed. This includes the penalty-based methods such as the least angle
and shrinkage selection operator (LASSO, Tibshirani (1996)), the adaptive LASSO (Zou, 2006), the
smoothly clipped absolute deviation (SCAD Fan & Li (2001)), the minimax convex penalty (MCP,
Zhang (2010)); the screening-based methods such as the sure independence screening (SIS, Fan & Lv
(2008)), the covariate assisted screening estimates (CASE, Ke et al. (2014)); the testing based methods
such as the multiple testing approach by the false discovery rate (FDR) (Liu & Luo, 2014; Xia et al.,
2018) and many other related methods. We refer to some recent review papers (Shao, 1997; Fan & Lv,
2010; Huang et al., 2012; Anzanello & Fogliatto, 2014; Heinze et al., 2018; Desboulets, 2018; Lee et al.,
2019; Cai et al., 2023) for more details. However, there is comparatively less literature available for
multiple responses (i.e. p > 1). Xia (2017) proposed a row-wise multiple testing procedure when p is
fixed; Kong et al. (2017) suggested a screening method via the distance correlations of the responses
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and each covariate for high-dimensional multi-response interaction models. For p → ∞, following
Bai et al. (2014), Bai et al. (2022) investigated the asymptotic properties of the classical AIC, BIC and
Cp criteria; and Sakurai & Fujikoshi (2020); Oda & Yanagihara (2020) established the consistencies of
the KOO methods with AIC, BIC and Cp thresholds under normality errors.

Main contributions of this paper are: (1) We obtain the asymptotic distributions of the KOO sta-
tistics Kj for any j = 1, . . . , k under some mild moment conditions and 3L asymptotic framework:
large-response (p → ∞), large-model (k → ∞) and large-sample (n → ∞). These theoretical results
are applicable to many other model selection rules, such as growth curve model, multiple discrim-
inant analysis, principal component analysis, canonical correlation analysis, and graphical model
(e.g., Fujikoshi & Sakurai (2019); Oda et al. (2020); Fujikoshi et al. (2023)). (2) A scalable model se-
lection method based on the KOO statistics is proposed. In practice, we use a multiplier bootstrap
procedure to estimate the asymptotic thresholds. Simulation studies and real data analyses suggest
the proposed model selection method performs favorably against the existing KOO methods with
AIC, BIC and Cp thresholds.

The remainder of this paper is organized as follows. In Section 2, we state the main results of this
paper, which include the almost sure limit and central limit theorem (CLT) of the KOO statistics. In
Section 3, we propose a model selection method for the high-dimensional linear regression model
based on the KOO statistics and information criteria. In Sections 4 and 5, we conduct some simu-
lation studies and real data analysis, respectively. Proofs of the main theorems under normality are
given in Section 6 since they are less technical and of independent interests. Proofs for general error
distributions using random matrix theory are provided in the Appendix for interested readers.

2. KOO STATISTICS

2.1. Notation and preliminary. We begin this section with some basic notation and definitions. In
this paper, matrices and vectors are denoted by boldface uppercase and lowercase letters, respec-
tively. Let In denote the identity matrix of order n,

(4) 󰁥Σj =
1

n
Y′QjY, Qj = In −Pj, Pj = Xj(X

′
jXj)

−1X′
j,

|j| the cardinality of subset j, and |󰁥Σj| the determinant 󰁥Σj. Note that Pj is an orthogonal projection of
rank |j| onto the subspace spanned by Xj, and Qj is the orthogonal projection of rank n− |j| onto the
orthogonal complement subspace spanned by Xj. For brevity, we suppress the subscript [k] for full
model, and denote the true model subscript by ∗ and the subscript of model [k]\j by j (e.g., Q := Q[k],
Qj∗ := Q∗ and Qj := Q[k]\j). The identity matrix, all-zero matrix, all-one vector and all-zero vector,
whose orders are often clear from the context and thus will not be indicated, are denoted by I, O,
1, and 0, respectively. We call j (or variable xj) true if j ∈ j∗, and j (or variable xj) is spurious
if j /∈ j∗. For a matrix A, its spectral norm and maximum norm are denoted by 󰀂A󰀂 and 󰀂A󰀂∞,
respectively. The largest and smallest eigenvalues of A are denoted by λA

max and λA
min, respectively.

For two matrices A and B of the same dimension, A ◦B stands for the Hadamard product of A and
B. We denote the probability by P, the expectation by E, and the trace by tr. Define cn := p/n and
αn := k/n. Throughout this paper, we use o(1) (respectively, op(1), oa.s.(1)) to denote (respectively,
in probability, almost surely) scalar negligible entries. And the notations O(1), Op(1) and Oa.s.(1) are
used in a similar way.

We now introduce the KOO statistics

Kj = tr(󰁥Σ
−1 󰁥Σj)− p.
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It is known that for testing θj = 0 under normality, the Lawley-Hotelling trace statistic can be ex-
pressed as (n − k)(Kj + p). Next we will investigate the statistical properties of Kj under the 3L
asymptotic framework: large-model (k), large-sample (n) and large-dimensional response (p). Before
presenting our main theoretical results, we briefly analyze the statistic Kj . Let

aj = Qjxj/ 󰀂Qjxj󰀂 .

By Sylvester’s determinant theorem, we have that

n󰁥Σj = n󰁥Σ+Y′aja
′
jY(5)

which implies

Kj = n−1a′jY 󰁥Σ
−1

Y′aj .(6)

If we plug the model (1) into the jth KOO statistic, we have

Kj = (a′jX∗Θ∗Σ
−1/2 + a′jE)(E′QE)−1(E′aj +Σ−1/2Θ′

∗X
′
∗aj).

When j is spurious (i.e., j /∈ j∗), aj and X∗ are orthogonal. Thus, in this case,

Kj = a′jE(E′QE)−1E′aj .

On the other hand, when j is true (i.e., j ∈ j∗), then

Kj ≍ a′jE(E′QE)−1E′aj + x′
jQjxjθ

′
jΣ

−1/2(E′QE)−1Σ−1/2θj .

We emphasize that, for spurious j, the KOO statistics Kj are independent of the population covari-
ance matrix Σ. This property is highly desirable as it eliminates the involvement of unknown pa-
rameters. Furthermore, the term x′

jQjxjθ
′
jΣ

−1/2(E′QE)−1Σ−1/2θj > 0 becomes a key indicator to
distinguish between spurious and true variables, with its value serving as a crucial factor in the de-
termination process. The detailed discussion is stated in the next subsection.

2.2. Asymptotical properties of the KOO statistics. In this subsection, we state the asymptotics of
the KOO statistics and illustrate how the KOO statistics of true variables behave differently from that
of the KOO statistics of spurious variables under some mild conditions. Before stating these results,
we collect the needed conditions below.

(C1) As min{k, p, n} → ∞, cn → c ∈ (0, 1) and αn → α ∈ [0, 1) satisfying α+ c < 1.
(C2) The true model j∗ ⊂ [k], and |j∗| is allowed to diverge as k → ∞.
(C3) The entries eij of E are independent and identically distributed (i.i.d.) with zero means, unit

variances, and finite fourth moments, i.e., τ = Ee4ij − 3 ∈ (−∞,∞).
(C4) Matrix X′X is positive definite for all n > k + p.

Our main results of this paper are stated below. The proofs, under normality of errors, will be given in
Section 6; and the general proofs without assuming normality of errors will be given in the Appendix.

Let

(7) δj := δnj = p−1x′
jQjxjθ

′
jΣ

−1θj .

The following theorem identifies the strong limits of the KOO statistics Kj for all j ∈ [k].

Theorem 2.1. Under conditions (C1) – (C4), we have uniformly in j ∈ [k],

Kj =

󰀫
cn

1−cn−αn
+ oa.s.(1), if j /∈ j∗,

(1 + δj)
󰁫

cn
1−cn−αn

+ oa.s.(1)
󰁬
, if j ∈ j∗.
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As θj and Σ are typically unknown in practice, the limits of Kj ’s for j ∈ j∗ are unknown. How-
ever, the fluctuations of the Kj ’s for spurious variables are pretty simple, which is described in the
following theorem.

Theorem 2.2. Under conditions (C1) – (C4), for any fixed integer q > 0 and {j1, . . . , jq} ⊂ j\j∗, the random
vector

√
pG−1/2

q

󰀗
(Kj1 , . . . ,Kjq)

′ − cn
1− cn − αn

1q

󰀘

converges weakly to the standard q-dimensional Gaussian random vector, where

Gq =
c2n

(1− αn − cn)2

󰀗
2(1− αn)

(1− αn − cn)
(A′

qAq)
2 + τ(Aq ◦Aq)

′(Aq ◦Aq)

󰀘
,

and Aq = (aj1 , . . . ,ajq) is an n× q non-random matrix.

Theorem 2.2 is of independent interest: As Kj ’s are the basic statistics for testing the hypothesis
that θj = 0, this theorem can be used to obtain the CLTs of these statistics under the null hypothesis.
Moreover, if τ = 0 (e.g., {eij} come from a standard normal distribution), then the second term in Gq

vanishes; or if maxj∈j\j∗ 󰀂aj󰀂∞ = o(1), then the second term in the covariance matrix Gq tends to 0
as n → ∞.

When τ ∕= 0, we propose an estimator of τ ,

τ̂ =
󰀋
p−1tr[(Y′QY − (n− k)I) ◦ (Y′QY − (n− k)I)]− 2(n− k)

󰀌
/tr(Q ◦Q),

which is shown to be unbiased and weakly consistent in Theorem 2.3 below.

Theorem 2.3. Under the conditions (C1) – (C4), τ̂ is an unbiased and weakly consistent estimator of τ .

Combining Theorems 2.2 and 2.3, the rejection region of the KOO statistics for testing whether
some variables are spurious can be constructed. However, in order to know the power, we also need
to know the fluctuations for the statistics of the true variables. The following theorem states that
under some additional assumptions, the KOO statistic of the true variable is comparable to that of
the spurious variables.

Theorem 2.4. In addition to the conditions (C1) – (C4), for j ∈ j∗, we assume that
(C5): Ee311 = 0.
(C6): As min{p, n, k} → ∞, 󰀂aj󰀂∞ = o(1), x′

jQjxj󰀂θj ′Σ−1/2󰀂2∞ = o(p).
(C7): As min{p, n, k} → ∞, δj tends to a constant.

Then,

√
p

󰀕
Kj −

cn(1 + δj)

1− cn − αn

󰀖
/σnj

D→ N(0, 1),

where σ2
nj = 2c2n[(1− αn)(1 + 2δj) + cnδ

2
j ]/(1− αn − cn)

3.

2.3. Some remarks on the theorems.

Remark 2.5. The condition, c > 0, in (C1) is due to technical reasons: our main tools are from random
matrix theory (RMT) and RMT generally assumes the limit p/n exists and is positive. Note further
that we make no explicit use of the unknown limits α and c in all the theorems below. Rather, we
used αn and cn, which are always positive, in our results.
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Remark 2.6. If the model size k is greater than the sample size n but the true model size k∗ is fixed, one can
first apply screening methods (such as the sure independence screening method based on the distance correlation
(Li et al., 2012), and interaction pursuit via distance correlation (Kong et al., 2017)) to ensure condition (C1)
holds. For further details on the screening methods, see (Fan & Lv, 2008, 2010).

Remark 2.7. If the entries eij of E are independent but not necessarily identically distributed, our results in
this paper continue to hold provided an additional Lindeberg-type condition:

1

η4n2

󰁛

i,j

E
󰁫
|eij |4

󰀋
|eij | ≥ η

√
n
󰀌󰁬

= o(1),

for any η > 0. Here, {·} stands for the indicator function. The proofs are analogous but slightly more tedious,
and we do not pursue this extension in this paper.

Remark 2.8. From Theorems 2.2 and 2.4, we can theoretically investigate the asymptotic power of whether
a variable is spurious. However, for testing whether a variable is true, the asymptotic distribution of the true
KOO statistic (i.e., Theorem 2.4) cannot be applied directly since δj is unknown when j is a true variable.
Variable selection problem will be discussed in the next section in detail.

3. SELECTION CRITERIA BASED ON THE KOO STATISTICS

Theorem 2.1 highlights the crucial role of δj in differentiating the true variables from the spurious
ones. For spurious variables, Kj ’s should be close to the point cn/(1− cn − αn) when n, p, k are large.
Since δj is always positive for j ∈ j∗, the true variables would be separated from cn/(1− cn − αn) and
thus can be identified by the largest Kj ’s. Moreover, we can deduce a strongly consistent estimator
for the true variables from this theorem. Let

ĵϑ =

󰀝
j ∈ [k]|Kj >

cn(1 + ϑ)

1− αn − cn

󰀞
, ϑ > 0.

Then, we have the following corollary of Theorem 2.1.

Corollary 3.1. Assume that conditions (C1) – (C4) hold and lim δj > 0 for all j ∈ j∗. Then, for any fixed
value ϑ ∈ (0,minj∈j∗{lim δj}),

lim
n,p→∞

ĵϑ
a.s.→ j∗.

Remark 3.2. This corollary implies the strong consistency for the KOO methods with AIC, BIC and Cp

thresholds if δj satisfies the conditions.

In practice, however, choosing a suitable ϑ is important but very challenging because (1) the largest
spurious KOO statistic may converge to its limit slowly; (2) the spurious KOO statistics are correlated;
and (3) the limits of the true KOO statistics are unknown. Hence, we propose a high-dimensional
multiplier bootstrap procedure to approximate the distribution of the largest spurious KOO statistic
Kj , from which a selection criterion for the linear regression model (1) under the 3L framework is
formulated.

Denote the estimator of the true model be

ĵ∗ = {j ∈ [k] : Kj > Kν},
where Kν is the critical value with at significance level ν, which is estimated by Algorithm 1.

From Theorem 2.2, the critical value Kν may depend on 󰀂ai󰀂∞ or the excess kurtosis but not on
the exact distribution of the errors. The boxplots of the spurious KOO statistics Kj ’s for different
distributions presented in Fig. 1 support this claim. In this simulation, we set Θ = O, Σ = I and
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Algorithm 1: Estimation of Kν

Input: ν, Y, X and estimator τ̂ based on {Y,X}
Output: Estimator K̂ν

1 Compute Ak = (a1, . . . ,ak).
2 Generate a random matrix Ẽ with n× p i.i.d. zero mean, unit variance and τ̂ excess kurtosis

elements.
3 Compute K = A′

kẼ(Ẽ′QẼ)−1Ẽ′Ak.
4 Compute the largest value of the diagonal elements of K and denote it by K̃(1).
5 Repeat N times of the above procedures 2–4, and obtain {K̃(1), . . . , K̃(N)}.
6 Compute the 100(1− ν)th quantile of {K̃(1), . . . , K̃(N)} and denote it by K̂ν .

generate two predictor matrices: the first one is a 2000 × 600 matrix with i.i.d. entries from U(1, 5);
and the second one is a 2000 × 600 diagonal matrix. As the values of the diagonal elements do not
affect the result, the diagonal entries were chosen to be 1 in our simulation. We examine six different
distributions of the errors: standard normal distribution N(0, 1), standardized uniform distribution
U(0, 1), standardized Bernoulli distribution B(1, ρ) with parameter ρ = (6 −

√
6)/12, standardized

chi-square distribution with 12 degrees of freedom χ2(12), standardized t-distribution with 10 de-
grees of freedom t10, standardized Poisson distribution with parameter 1 Pois(1), standardized ex-
ponential distribution with rate parameter 1 Exp(1) and standardized chi-square distribution with
2 degrees of freedom χ2(2). Note that 󰀂ai󰀂∞ → 0 for the random predictor matrix, 󰀂ai󰀂∞ = 1 for
the rectangular diagonal predictor matrix, the excess kurtosis of N(0, 1) is 0, the excess kurtoses of
Exp(1) and χ2(2) are 2, the excess kurtoses of χ2(12), t10 and Pois(1) are 1, and the excess kurtoses of
U(0, 1) and B(1, (6−

√
6)/12) are −6/5. Hence, in practice for convenience, we can use standardized

χ2 distribution with 12/τ̂ degrees of freedom if τ̂ > 0 and standardized Bernoulli distribution B(1, ρ)
with parameter ρ satisfying ρ(1 − ρ) = 1/(6 − τ̂) if τ̂ < 0. Of course, if maxi 󰀂ai󰀂∞ → 0, we can use
the standard normal distribution directly.

(a) Random predictor matrix (b) Rectangular diagonal predictor matrix

FIGURE 1. Boxplots of the spurious KOO statistics {K(j), j = 1, . . . , 1000} with six
different normalized distributions and two predictor matrices. The y-axis represents
the values of K(j)’s.
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4. SIMULATION STUDIES

In this section, we numerically examine the properties of the proposed KOO method in a 3L frame-
work with different settings. For comparison, we also report the results of KOO methods with AIC,
BIC and Cp thresholds as proposed by Nishii et al. (1988) and implemented by Fujikoshi & Sakurai
(2019); Oda et al. (2020); Nakagawa et al. (2021); Fujikoshi (2022). Specifically, the KOO methods with
AIC, BIC and Cp thresholds, respectively, choose the model

ĵA∗ = {j ∈ [k] : log(1 +Kj) > 2cn},
ĵB∗ = {j ∈ [k] : log(1 +Kj) > log(n)cn},
ĵC∗ = {j ∈ [k] : (1− αn)Kj > 2cn}.

For simplicity, we abbreviate the KOO method with our bootstrapping threshold to KBT, the KOO
method with AIC threshold as KAIC. Similar abbreviations KBIC and KCp are used. We consider the
following two settings.

Setting I: Fix k∗ = 5, p/n = {0.2, 0.4} and k/n = {0.2, 0.4} with n = 100, 500, 1000, 2000.
The results for n = 2000 are given in the Appendix. Set Σ = I, X = (xij)n×k, Θj∗ = 15θ∗
and Θ = (Θj∗ ,0), where {xij} are i.i.d. generated from the continuous uniform distributions
U(1, 5), 15 is a five-dimensional vector of ones and θ∗ = ((−0.5)0, . . . , (−0.5)p−1).
Setting II: Same as Setting I, except X = (Ik,Ok×(n−k))

′ and Θj∗ =
√
n15θ∗.

For Setting I, we consider three cases for the distribution of E:
(i) Standard normal distribution, eij ∼ N(0, 1);

(ii) Standardized t distribution with three degrees of freedom, i.e., eij ∼ t3/
󰁳

5/3;
(iii) Standardized chi-square distribution with two degrees of freedom, i.e., eij ∼ (χ2(3)− 3)/

√
6.

Since 󰀂aj󰀂∞ → 0 in Setting I, we use Ẽ with the standard normal distribution to estimate K̂ν . We
emphasize that the excess kurtosis of distribution t3 is infinite.

For Setting II, we consider three cases for the distribution of E:
(iv) Standardized exponential distribution with rate parameter 1, i.e., eij ∼ Exp(1)− 1;
(v) Standardized Poisson distribution with parameter 1, i.e., eij ∼ Pois(1)− 1;

(vi) Standardized uniformly distribution, i.e., eij ∼ U(−
√
3,
√
3).

Since 󰀂aj󰀂∞ = 1 in Setting II, we use Ẽ with standardized χ2 distribution and standardized Bernoulli
distribution, respectively, to estimate K̂ν with some suitably chosen parameter values.

In all the simulation studies, we choose two critical points in the KOO methods:.

ĵ
(0)
∗ = {j ∈ [k] : Kj > K̂0} and ĵ

(5)
∗ = {j ∈ [k] : Kj > K̂0.05},

where K̂0 and K̂0.05 are the largest and the 95th percentile of 1,000 bootstrap values, respectively.
We first explain our choices of the settings and the distributions. Since the KOO criteria depend

on the values δj = p−1x′
jQjxjθ

′
jΣ

−1θj , it suffices to set Σ = I and vary Θ∗ and X in conducting our
simulation studies. Settings I and II both ensure δj are bounded above. For the case δj → ∞, the
KOO statistics for the true variables and spurious variables are well separated, and all the compared
selection methods will not show significant differences. The selection of distributions comprises five
continuous distributions and one discrete distribution. The distribution described in (ii) only has
finite second moment. This selection was made to investigate the implications of not satisfying the
condition of finite fourth moment. To measure in greater detail the performance of these selection
rules, the numbers of times, in 1000 repetitions, a selection rule under-specifies the true model, ex-
actly identifies it and over-specifies it were tabulated. When the selection rule over-specifies the true
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model, we also report the average number of spurious variables selected in the last row of each sub-
table. Due to space consideration, we present selected results, but typical, of Setting I (i) and Setting
II (iv) in Tables 1 and 2, respectively. Full set of results, including those for n = 2000, can be found in
the Appendix.

α = 0.2, c = 0.4
n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 938 0 640 19 0 1000 0 0 0 0 1000 0 0 0
T-S 35 62 0 360 940 2 0 0 1000 953 23 0 0 998 957
O-S 965 0 1000 0 41 998 0 1000 0 47 977 0 1000 2 43
A-S 3.69 – 7.06 – 1.05 6.86 – 46.30 – 1.04 3.92 – 95.28 1 1.05

α = 0.4, c = 0.2
n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 42 0 828 41 0 129 0 0 0 0 729 0 0 0
T-S 0 923 3 172 919 0 871 0 998 965 0 271 41 1000 954
O-S 1000 35 997 0 40 1000 0 1000 2 35 1000 0 959 0 46
A-S 16.50 1.09 6.67 – 1.12 100.87 – 8 1 1 213.52 – 3.28 – 1.02

TABLE 1. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (I) and (i) based on 1,000 replications. Here U-S, T-S, O-S
and A-S stand for number of times a selection method under-specified the true model,
number of times a selection method identified the true model exactly, number of times
a selection method over-specified the true model, and the average number of spurious
variables a selection method identified when it over-specified the model, respectively.

Based on our simulation results, the following observations are made: (1) The proposed KBT are
the most robust among the compared methods, especially when the sample size n is large. (2) If
the sample size n is small, we recommend choosing a bigger ν in order to avoid missing the true
variables. After all, admitting a small number of spurious variables is a better tradeoff than missing
some true variables. (3) Choosing a bigger ν may select more spurious variables, but unlike the KAIC
and KCp , the number of spurious variables selected is still under control. (4) The simulation results
are very similar across different distributions of errors, which suggests these selection rules are rather
robust against the distributions of errors. (5) When maxi 󰀂ai󰀂∞ → 0, our proposed methods also work
well even the finite fourth moment condition does not hold, suggesting that our theorems continue to
hold even under weaker conditions. Our guess is that finite second moment of the underlying error
distributions is enough. (6) The performances of KAIC, KBIC and KCp are not acceptable under
our settings: KAIC and KCp frequently over-specify the true models quite substantially, and KBIC
frequently under-specifies the true models. Under some special cases, KBIC has good selection times,
however, KBT in general outperforms KBIC.

5. REAL DATA ANALYSIS

We apply the proposed methods to two real examples. The first example is a chemometrics data
taken from Skagerberg et al. (1992) (we replaced the value 19203 with 1.9203 in the 37th observation).
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α = 0.2, c = 0.4
n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 925 0 991 622 0 1000 0 2 0 0 1000 0 0 0
T-S 2 74 0 9 361 0 0 0 997 934 0 0 0 1000 938
O-S 998 1 1000 0 17 1000 0 1000 1 66 1000 0 1000 0 62
A-S 4.74 1 7 – 1.06 16.40 – 45.88 1 1 18.74 – 95.36 – 1.03

α = 0.4, c = 0.2
n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 4 0 999 597 0 7 0 7 0 0 27 0 0 0
T-S 0 348 0 1 386 0 993 0 993 961 0 973 0 1000 939
O-S 1000 648 1000 0 17 1000 0 1000 0 39 1000 0 1000 0 61
A-S 15.31 1.67 9.23 – 1 94.64 – 28.61 – 1 198.92 – 31.12 – 1.03

TABLE 2. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (II) and (iv) based on 1,000 replications. Here U-S, T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.

The data are taken from a simulation of a low-density tubular polyethylene reactor studying the rela-
tionship between polymer properties and the process. The predictor variables consist of 20 tempera-
tures measured at equal distances along the low-density polyethylene reactor section, together with
the wall temperature of the reactor and the solvent feed rate. The responses are the output character-
istics of the polymers, including two molecular weights, two branching frequencies and the contents
of two groups. This data set has been studied by Breiman & Friedman (1997) and Similä & Tikka
(2007). Similar to Breiman & Friedman (1997), we log-transformed the response values because they
are highly skewed to the right. In total, there are n = 56 observations with k = 22 predictor variables
and p = 6 responses.

We present the scatterplot of {Kj} in descending order in Figure 2. We also indicate the critical
values of KAIC, KBIC and KCp, and K̂0, K̂0.05 estimated by Algorithm 1 with standard normal
distribution and N = 1, 000. Since the dimension is relatively small, we recommend using a larger
significance level ν to prevent under-specifying. It seems that the variables {22, 3, 4} are significant
and variables {21, 11} are potentially significant too. KAIC and KCp, however, select many more
variables, which are likely to be spurious. The second example is a multivariate yeast cell-cycle
dataset from Spellman et al. (1998), which can be found in the R package “spls”. This data set contains
542 cell-cycle-related genes (i.e., n = 542). Each gene contains 106 binding levels of transcription
factors (i.e., k = 106) and 18 time points covering two cell cycles (i.e., p = 18). The binding levels
of the transcription factors play a role in determining which genes are expressed and help delineate
the process behind eukaryotic cell cycles. Further explanations of the dataset can be found in (Wang
et al., 2007; Chun & Keleş, 2010; Chen & Huang, 2012; Kong et al., 2017). Our results are presented in
Figure 3. The transcription factors {SWI5, STE12, ACE2, NDD1}, corresponding to the four largest
Kj-values, have been confirmed to be related to the cell cycle regulation by experiment Wang et al.
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FIGURE 2. Scatterplots for the chemometrics dataset.

(2007). And the other two transcription factors {RME1, HIR2} could possibly be related to the cell
cycle regulation. KBIC, however, will have missed identifying the TFs {STE12, ACE2, NDD1} in the
yeast cell-cycle. On the other hand, KAIC and KCp will have identified more TFs, many of which
may not be related to the yeast cell-cycle.

FIGURE 3. Scatterplots for the yeast cell-cycle dataset.
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6. PROOFS OF THEOREMS 2.1, 2.2 AND 2.4 UNDER NORMALITY

If the errors follow the standard normal distribution, the KOO statistic can be written as the quo-
tient of two independent chi-squared random variables. As a result, the proofs of Theorems 2.1, 2.2
and 2.4 are easier to present. The proofs may also be of independent interest. Hence, we prove these
results under normality in this section. The proofs of these theorems for general error distributions
via random matrix theory are postponed in the Appendix for interested readers. Note that there is
no need to prove Theorem 2.3 when the errors follow the standard normal distribution.

Recall the KOO statistic
Kj = v′

jW
−1vj ,

where
vj = Σ−1/2Y′aj and W = E′QE.

When E has the standard normal distribution, it follows that

W ∼ Wp(n− k, Ip), vj ∼ Np(Σ
−1/2Θ∗X

′
∗aj , Ip), j = 1, . . . , k,

and W and {v1, . . . ,vk} are independent. Note that v1, . . . ,vk are not necessarily independent. If
j ∕∈ j∗, Σ−1/2Θ∗X

′
∗aj = 0, on the other hand if j ∈ j∗, Σ−1/2Θ∗X

′
∗aj ∕= 0. Moreover, under the

assumption of normality, τ = 0 in assumption (C3). Next, we state a preliminary lemma.

Lemma 6.1. Let V = (v1, . . . ,vq) be a p× q random matrix with q ≤ p, and let W be a p×p random matrix
which is distributed as Wishart distribution Wp(m, Ip). Assume that V and W are independent. Let H be a
p×p random orthogonal matrix such that the first q columns are V(V′V)−1/2, that is, H = (V(V′V)−1/2, ·).
Let

(8) Z = H′WH =

󰀕
Z11 Z12

Z21 Z22

󰀖
, Z11·2 = Z11 − Z12Z

−1
22 Z21,

and Z21 is a (p− q)× q matrix. Then,

Z ∼ Wp(m, Ip),(9)

V′W−1V = (V′V)1/2Z−1
11·2(V

′V)1/2,(10)

Z11·2 ∼ Wq(m− (p− q), Iq).(11)

When q = 1,

v′
1W

−1v1 =
v′
1v1

Z11·2
,

where Z11·2 ∼ χ2(m − (p − 1)) is a chi-square variate with m − (p − 1) degrees of freedom, and v′
1v1 and

Z11·2 are independent. Further, if v1 ∼ Np(µ, Ip),

v′
1W

−1v1 =
v′
1v1

Z11·2
∼ χ2(p;µ′µ)

χ2(m− (p− 1))
.

Here, χ2(p; δ2) denotes a noncentral chi-square variate with p degrees of freedom and noncetrality parameter
µ′µ, and χ2(m − (p − 1)) denotes a chi-square variate with m − (p − 1) degrees of freedom, and they are
independent.

Proof. The result (9) is straightforward by considering the conditional distribution of Z given H, and
noting that the obtained result does not depend on H. Next we consider the result (10). Noting that
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H is orthogonal, we have

V′W−1V = V′H(H′WH)−1H′V

=
󰁫
(V′V)1/2, O

󰁬′
Z−1

󰁫
(V′V)1/2, O

󰁬
,

which implies (10). (11) is a well known result on Wishart distribution (e.g., Theorem 2.2.3 in (Fu-
jikoshi et al., 2010)).

Next we consider the case of q = 1. Note that the (1, 1) element of Z−1 is Z−1
11·2. Then

v′
1W

−1v1 =v1H
′(H′WH)−1H′v1

=((v′
1v1)

1/2, 0, . . . , 0)Z−1((v′
1v1)

1/2, 0, . . . , 0)′

=v′
1v1Z

−1
11·2.

The required result follows from the fact that v′
1v1 ∼ χ2(p; δ2) and Z11·2 ∼ χ2(m− (p− 1)). Then we

complete the proof of this lemma. □

6.1. Proof of Theorem 2.1. By Lemma 6.1, we can express Kj as a ratio of two independent chi-
square variates as

Kj =

󰀻
󰀿

󰀽

χ2(p)
χ2(󰁨m)

if j /∈ j∗
χ2(p;pδj)
χ2(m̃)

if j ∈ j∗
,

where δj = p−1x′
jQjxjθ

′
jΣ

−1θj and m̃ = n− k − p+ 1. For j /∈ j∗, let

Z1 =
χ2(p)− p√

2p
and Z2 =

χ2(󰁨m)− 󰁨m√
2󰁨m

.

Then, it is clear that

Kj =
p+

√
2pZ1

󰁨m+
√
󰁨mZ2

=
p/n+

√
2pZ1/n

󰁨m/n+
√
󰁨mZ2/n

=
cn

1− cn − αn
+ oa.s.(1).

For j ∈ j∗, let

󰁨Z1 =
χ2(p; pδj)− p(1 + δj)󰁳

2p(1 + 2δj)
.

Note that 󰁨Z1
D→ N(0, 1) as p → ∞ or pδ2j → ∞. Thus we can find that

Kj =

󰀝
p(1 + δj) +

󰁴
2p(1 + 2δj) 󰁨Z1

󰀞󰁱
󰁨m+

√
2󰁨mZ2

󰁲−1

=
p

󰁨m

󰀝
1 + δj +

󰁴
2(1 + 2δj)p−1 󰁨Z1

󰀞󰁱
1−

√
2󰁨m−1Z2

󰁲−1
,

which implies

Kj −
cn(1 + δj)

1− cn − αn
= oa.s.(1 + δj).

Then we complete the proof of Theorem 2.1.
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6.2. Proof of Theorem 2.2. For simplicity, we consider the case q = 2, and assume that {1, 2} ⊂
[k]\j∗. To prove Theorem 2.2, it is sufficient to show that for any non-null vector h = (h1, h2)

′,√
p[h1K1 + h2Kq − cn

1−cn−αn
(h1 + h2)] converges weakly to a normal distribution with mean zero and

variance 2c2(1−α)
(1−α−c)3

h′(A′
2A2)

2h.

Under the normality assumption, we can express K1 and K2 as follows:

(12) K1 = v′
1W

−1v1, K2 = v′
2W

−1v2.

Here, vi ∼ Np(0, Ip), i = 1, 2, W ∼ Wp(m, Ip), m = n − k, {v1,v2} and W are independent, but v1

and v2 are not independent. Let K0 = v′
1W

−1v2 and

K =

󰀕
K1 K0

K′
0 K2

󰀖
.

Note that
h1K1 + h2K2 = trDhK,

where Dh =

󰀕
h1 0
0 h2

󰀖
.

Let V = (v1,v2). Using Lemma 6.1, we can write K as

K = V′W−1V

=

󰀕
1

p
V′V

󰀖1/2󰀕 1

󰁨mZ11·2

󰀖−1󰀕1

p
V′V

󰀖1/2 p

󰁨m,(13)

where Z11·2 ∼ W2(m̃, Ip) is defined in (8) and 󰁨m = m− (p− 2). Note that

V′V ∼ W2(p,Λ), Λ =

󰀕
1 λ
λ 1

󰀖
,

where λ = a′1a2. Let

F =

󰀕
f1 f3
f3 f2

󰀖
=

√
p

󰀕
1

p
V′V −Λ

󰀖
,(14)

G =

󰀕
g1 g3
g3 g2

󰀖
=

√
󰁨m
󰀕

1

󰁨mZ11·2 − I2

󰀖
.(15)

It follows from the asymptotic distribution of a Wishart matrix (e.g., Theorem 2.5.1 in (Fujikoshi
et al., 2010)) that the limiting distribution of (f1, f2, f3)′ (respectively, (g1, g2, g3)′) is a 3-variate normal
distribution with mean zero and covariance matrix󰀳

󰁃
2 2λ2 2λ

2λ2 2 2λ
2λ 2λ 1 + λ2

󰀴

󰁄 ,

󰀳

󰁃respectively,

󰀳

󰁃
2 0 0
0 2 0
0 0 1

󰀴

󰁄

󰀴

󰁄 .

Consequently, it is straightforward to show that

trDhF
D→ N2(0, 2tr(DhΛ)

2)(16)

and

trΛ1/2DhΛ
1/2G

D→ N2(0, 2tr(DhΛ)2).(17)

Then, by substituting
1

p
V′V = Λ+

1
√
p
F
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and 󰀕
1

󰁨mZ11·2

󰀖−1

=

󰀕
I2 +

1√
󰁨m
G

󰀖−1

= I2 −
1√
󰁨m
G+

1

󰁨m

󰀕
I2 +

1√
󰁨m
G

󰀖−1

G2

into (13), we can expand K as

(18) K =

󰀝
Λ+

1
√
p
F− 1√

󰁨m
(Λ+

1
√
p
F)1/2G(Λ+

1
√
p
F)1/2 +Ø

󰀞
cn

1− cn − αn
,

where Ø denotes the terms of order Op(n
−1). Using (18), we have

√
p

󰀝
h1K1 + h2K2 −

cn
1− cn − αn

(h1 + h2)

󰀞

=
cn

1− cn − αn

󰀫
trDhF−

󰀕
cn

1− cn − αn

󰀖1/2

trΛ1/2DhΛ
1/2G

󰀬
+Op(n

−1/2).(19)

By (16) and (17), we can see that the limiting distribution of (19) is normal with mean zero and
variance

2c2

(1− c− α)2

󰀕
1 +

c

1− c− α

󰀖
tr(DhΛ)2 =

2c2(1− α)

(1− α− c)3
h′(A′

2A2)
2h.

This completes the proof of Theorem 2.2 .

6.3. Proof of Theorem 2.4. In the proof of Theorem 2.1, recall that for j ∈ j∗, Kj can be expressed as
a ratio of two independent chi-square variates:

Kj =
χ2(p; pδ2j )

χ2(m̃)
,

where χ2(p; pδ2j ) denotes a noncentral chi-square variate with p degrees of freedom and noncentrality
parameter pδ2j , and χ2(m̃) denotes a chi-square variate with m̃ = n − k − p + 1 degrees of freedom,
and they are independent. Let

󰁨Z1 =
χ2(p; pδ2j )− p− pδ2j󰁴

2(p+ 2pδ2j )
, 󰁨Z2 =

χ2(󰁨m)− 󰁨m√
2󰁨m

.

Then, it is checked that 󰁨Z1 and 󰁨Z2 converge to the standard normal distribution. Note that

Kj =
󰁱
(p+ pδ2j ) +

󰁴
2(p+ 2pδ2j )

󰁨Z1

󰁲󰁱
󰁨m+

√
2󰁨m 󰁨Z2

󰁲−1

=
p

󰁨m

󰁱
1 + δ2j +

󰁴
2p−1(1 + 2δ2j )

󰁨Z1

󰁲󰁱
1 +

√
2󰁨m−1 󰁨Z2

󰁲−1
.

This implies that
√
p
󰁱
Kj −

p

󰁨m(1 + δ2j )
󰁲

=
p

󰁨m

󰀫󰁴
2(1 + 2δ2j )

󰁨Z1 − (1 + δ2j )

󰀕
2p

󰁨m

󰀖1/2
󰁨Z2

󰀬
+Op(n

−1/2).

Theorem 2.4 follows from noting that 󰁨Z1 and 󰁨Z2 independently converge to the standard normal
distribution.
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APPENDIX A. SIMULATION RESULTS

The simulation results for Settings I and II, and six cases of distribution of E are tabulated in Tables
3–8.

APPENDIX B. PROOFS OF THEOREMS 2.1–2.4

In this appendix, we present the proofs of Theorems 2.1–2.4 under general distributions by random
matrix theory. Before that, we first give some notation and preliminary results which will be used in
the sequel frequently. For simplicity, we denote M = p−1E′QE and Ml =

1
pE

′
lQEl, where El is the

n × (p − 1) submatrix of E with the l-th column removed. Denote by El the conditional expectation
given {e1, . . . , el} and by E0 = E the unconditional expectation, where ei is the n-vector of the i-th
column of E. Let b = Σ−1/2Θ∗X

′
∗a1 and bl be the p−1 sub-vector of b with the l-th entry bl removed.

Then we have

a′1YΣ−1/2(E′QE)−1Σ−1/2Y′a1 = p−1(b′ + a′1E)M−1(E′a1 + b).

Modifying the truncation argument of Bai et al. (2018b), we can assume that the variables {eij , i =
1 . . . n, j = 1 . . . p} satisfy the following additional condition:

|eij | < ηn
√
n, for all i, j,(20)

where ηn → 0 slowly enough. By the theorem in the appendix of Bai & Silverstein (2004), we know

for any positive constant d < (1−
√
c)2 and any given t > 0, λ

1
n
E′E

min
a.s.→ (1−

√
c)2 and

P(λ
1
n
E′E

min < d) = o(n−t).

Moreover, by Theorem 1.2 in Bai & Silverstein (1999), we conclude that for any positive constant

d < (1−
󰁳

c/(1− α))2 and any given t > 0, λ
1
n
E′QE

min
a.s.→ (1−

󰁳
c/(1− α))2 and

P(λ
1
n
E′QE

min < d) = o(n−t).

Denote

βl =
1

p
e′lQel −

1

p2
e′lQElM

−1
l E′

lQel

and
βtr
1 = tr[

1

p
Q− 1

p2
QElM

−1
l E′

lQ] =
n− k − p+ 1

p
.

It follows that
1

βl
=

1

βtr
1

− ξl
βlβ

tr
1

,(21)

where ξl = βl − βtr
1 . By Lemma 7.2 in Bai & Yao (2005) (see Lemma B.4), we have that for any

2 ≤ ℓ ≤ log(n),

E|ξl|ℓ = O(p−1η2ℓ−4
n ),(22)
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 79 0 15 0 0 589 0 0 0
T-S 198 921 228 983 966 570 411 655 999 954
O-S 802 0 772 2 34 430 0 345 1 46
A-S 2.052.052.05 – 1.97 1 1 1.37 – 1.27 1 1.04

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 993 0 0 0 0 1000 0 0 0
T-S 956 7 972 1000 958 1000 0 1000 999 951
O-S 44 0 28 0 42 0 0 0 1 49
A-S 1.02 – 1 – 1.02 – – – 1 1.04

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 938 0 640 19 0 1000 0 0 0
T-S 35 62 0 360 940 2 0 0 1000 953
O-S 965 0 1000 0 41 998 0 1000 0 47
A-S 3.69 – 7.06 – 1.05 6.86 – 46.30 – 1.04

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 23 0 0 998 957 505 0 0 1000 961
O-S 977 0 1000 2 43 495 0 1000 0 39
A-S 3.92 – 95.28 1 1.05 1.47 – 194.82 – 1

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 42 0 828 41 0 129 0 0 0
T-S 0 923 3 172 919 0 871 0 998 965
O-S 1000 35 997 0 40 1000 0 1000 2 35
A-S 16.50 1.09 6.67 – 1.12 100.87 – 8 1 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 729 0 0 0 0 999 0 0 0
T-S 0 271 41 1000 954 0 1 748 995 940
O-S 1000 0 959 0 46 1000 0 252 5 60
A-S 213.52 – 3.28 – 1.02 450.55 – 1.16 1 1

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 623 0 999 889 0 1000 0 10 0
T-S 0 294 0 1 103 0 0 0 990 963
O-S 1000 83 1000 0 8 1000 0 1000 0 37
A-S 31.05 1.51 29.35 – 1.25 194.59 – 193.17 – 1.05

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 998 952 0 0 0 996 930
O-S 1000 0 1000 2 48 1000 0 1000 4 70
A-S 394.99 – 394.85 1 1.06 795 – 795 1 1.01

TABLE 3. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (I) and (i) based on 1,000 replications. Here U-S , T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 1 109 1 45 10 0 307 0 0 0
T-S 198 891 219 955 958 563 693 646 1000 961
O-S 801 0 780 0 32 437 0 354 0 39
A-S 2.09 – 1.96 – 1.03 1.35 – 1.25 – 1.05

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 780 0 0 0 0 1000 0 0 0
T-S 963 220 978 999 946 1000 0 1000 999 953
O-S 37 0 22 1 54 0 0 0 1 47
A-S 1.03 – 1 1 1.02 – – – 1 1.04

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 2 734 0 487 41 0 1000 0 0 0
T-S 40 266 0 513 937 1 0 0 1000 945
O-S 958 0 1000 0 22 999 0 1000 0 55
A-S 3.63 – 6.99 – 1.05 6.59 – 45.85 – 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 26 0 0 1000 962 490 0 0 999 943
O-S 974 0 1000 0 38 510 0 1000 1 57
A-S 3.95 – 95.28 – 1 1.46 – 194.80 1 1.02

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 56 2 245 53 0 113 0 0 0
T-S 0 917 2 755 913 0 887 0 999 958
O-S 1000 27 996 0 34 1000 0 1000 1 42
A-S 16.56 1.04 6.79 – 1.03 102.01 – 8.19 1 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 465 0 0 0 0 902 0 0 0
T-S 0 535 54 1000 940 0 98 780 999 959
O-S 1000 0 946 0 60 1000 0 220 1 41
A-S 213.34 – 3.27 – 1.02 449.91 – 1.11 1 1.05

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 465 1 984 744 0 996 0 17 3
T-S 0 420 0 16 240 0 4 0 983 937
O-S 1000 115 999 0 16 1000 0 1000 0 60
A-S 30.98 1.39 29.18 – 1.06 194.59 – 193.12 – 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 3 1 0 1000 0 0 0
T-S 0 0 0 996 949 0 0 0 999 950
O-S 1000 0 1000 1 50 1000 0 1000 1 50
A-S 394.99 – 394.86 1 1 795 – 795 1 1

TABLE 4. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (I) and (ii) based on 1,000 replications. Here U-S , T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 120 0 25 0 0 543 0 0 0
T-S 182 880 204 974 969 572 457 663 999 955
O-S 818 0 796 1 31 428 0 337 1 45
A-S 2.10 – 2.02 1 1.10 1.35 – 1.23 1 1.04

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 975 0 0 0 0 1000 0 0 0
T-S 963 25 981 1000 963 999 0 1000 999 953
O-S 37 0 19 0 37 1 0 0 1 47
A-S 1 – 1 – 1 1 – – 1 1.02

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 895 0 219 24 0 1000 0 0 0
T-S 37 105 1 778 932 4 0 0 999 941
O-S 963 0 999 3 44 996 0 1000 1 59
A-S 3.68 – 7.11 1 1.07 6.60 – 46.14 1 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 35 0 0 1000 937 454 0 0 1000 941
O-S 965 0 1000 0 63 546 0 1000 0 59
A-S 3.90 – 95.25 – 1.05 1.46 – 194.82 – 1

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 61 0 331 43 0 153 0 0 0
T-S 0 894 5 666 897 0 847 0 999 969
O-S 1000 45 995 3 60 1000 0 1000 1 31
A-S 16.59 1.02 6.91 1 1.08 101.70 – 8.23 1 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 715 0 0 0 0 1000 0 0 0
T-S 0 285 44 1000 947 0 0 788 999 963
O-S 1000 0 956 0 53 1000 0 212 1 37
A-S 213.18 – 3.22 – 1.04 449.63 – 1.13 1 1

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 589 0 994 837 0 1000 0 2 0
T-S 0 319 0 6 150 0 0 0 995 950
O-S 1000 92 1000 0 13 1000 0 1000 3 50
A-S 30.97 1.34 29.24 – 1.38 194.60 – 193.15 1 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 1000 950 0 0 0 994 945
O-S 1000 0 1000 0 50 1000 0 1000 6 55
A-S 394.99 – 394.83 – 1.06 795 – 795 1 1.05

TABLE 5. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (I) and (iii) based on 1,000 replications. Here U-S , T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 77 0 971 215 0 648 0 0 0
T-S 41 847 46 29 753 0 352 1 1000 967
O-S 959 76 954 0 32 1000 0 999 0 33
A-S 3.11 1.04 3.01 – 1 7.40 – 6.68 – 1.03

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 993 0 0 0 0 1000 0 0 0
T-S 4 7 6 1000 944 177 0 267 997 942
O-S 996 0 994 0 56 823 0 733 3 58
A-S 5.51 – 4.65 – 1.04 2.11 – 1.77 1 1.02

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 925 0 991 622 0 1000 0 2 0
T-S 2 74 0 9 361 0 0 0 997 934
O-S 998 1 1000 0 17 1000 0 1000 1 66
A-S 4.74 1 7 – 1.06 16.40 – 45.88 1 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 1000 938 0 0 0 999 924
O-S 1000 0 1000 0 62 1000 0 1000 1 76
A-S 18.74 – 95.36 – 1.03 13.77 – 194.65 1 1.01

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 4 0 999 597 0 7 0 7 0
T-S 0 348 0 1 386 0 993 0 993 961
O-S 1000 648 1000 0 17 1000 0 1000 0 39
A-S 15.31 1.67 9.23 – 1 94.64 – 28.61 – 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 27 0 0 0 0 354 0 0 0
T-S 0 973 0 1000 939 0 646 0 1000 956
O-S 1000 0 1000 0 61 1000 0 1000 0 44
A-S 198.92 – 31.12 – 1.03 417.94 – 21.32 – 1.02

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 243 0 1000 898 0 988 0 188 2
T-S 0 233 0 0 97 0 12 0 812 965
O-S 1000 524 1000 0 5 1000 0 1000 0 33
A-S 28.58 1.99 26.89 – 1.20 191.27 – 186.32 – 1.03

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 1000 942 0 0 0 1000 928
O-S 1000 0 1000 0 58 1000 0 1000 0 72
A-S 394.33 – 391.74 – 1.05 794.99 – 794.74 – 1.04

TABLE 6. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (II) and (iv) based on 1,000 replications. Here U-S, T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 63 0 66 0 0 732 0 0 0
T-S 127 936 144 933 963 169 268 245 998 969
O-S 873 1 856 1 37 831 0 755 2 31
A-S 2.38 1 2.27 1 1 2.16 – 1.92 1 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 688 0 779 994 949 994 0 998 1000 937
O-S 312 0 221 6 51 6 0 2 0 63
A-S 1.16 – 1.11 1 1.02 1 – 1 – 1.05

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 973 0 615 100 0 1000 0 0 0
T-S 21 27 2 385 863 3 0 0 999 948
O-S 979 0 998 0 37 997 0 1000 1 52
A-S 3.86 – 6.98 – 1.05 8.99 – 46.12 1 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 2 0 0 999 952 132 0 0 998 947
O-S 998 0 1000 1 48 868 0 1000 2 53
A-S 6.64 – 95.24 1 1.02 2.30 – 193.88 1 1.06

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1 0 384 17 0 1 0 0 0
T-S 0 841 1 615 939 0 999 0 1000 944
O-S 1000 158 999 1 44 1000 0 1000 0 56
A-S 15.86 1.09 7.40 1 1.07 98.76 – 13.10 – 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 6 0 0 0 0 374 0 0 0
T-S 0 994 0 1000 954 0 626 197 999 954
O-S 1000 0 1000 0 46 1000 0 803 1 46
A-S 208.66 – 7.73 – 1.02 438.75 – 2.01 1 1.02

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 263 0 969 684 0 994 0 1 0
T-S 0 540 0 31 302 0 6 0 999 948
O-S 1000 197 1000 0 14 1000 0 1000 0 52
A-S 30.52 1.38 28.73 – 1.07 194.24 – 192.21 – 1.04

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 999 953 0 0 0 999 950
O-S 1000 0 1000 1 47 1000 0 1000 1 50
A-S 394.98 – 394.64 1 1.02 795 – 795 1 1.02

TABLE 7. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (II) and (v) based on 1,000 replications. Here U-S, T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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α = 0.2, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 61 0 0 0 0 788 0 0 0
T-S 483 939 534 999 974 960 212 977 1000 956
O-S 517 0 466 1 26 40 0 23 0 44
A-S 1.49 – 1.44 1 1.08 1 – 1 – 1

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 1000 0 1000 1000 937 1000 0 1000 999 951
O-S 0 0 0 0 63 0 0 0 1 49
A-S – – – – 1.10 – – – 1 1.02

α = 0.2, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 987 0 161 13 0 1000 0 0 0
T-S 60 13 0 838 951 28 0 0 1000 958
O-S 940 0 1000 1 36 972 0 1000 0 42
A-S 3.01 – 6.83 1 1.06 3.94 – 45.52 – 1.05

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 237 0 0 999 949 870 0 0 999 954
O-S 763 0 1000 1 51 130 0 1000 1 46
A-S 1.92 – 94.99 1 1 1.05 – 193.56 1 1

α = 0.4, c = 0.2
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 0 0 3 0 0 0 0 0 0
T-S 0 995 17 996 941 0 1000 82 998 943
O-S 1000 5 983 1 59 1000 0 918 2 57
A-S 16.54 1 4.84 1 1.07 102.68 – 2.96 1 1.05

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 3 0 0 0 0 345 0 0 0
T-S 0 997 655 1000 946 0 655 992 1000 951
O-S 1000 0 345 0 54 1000 0 8 0 49
A-S 217.91 – 1.17 – 1.07 465.89 – 1 – 1.06

α = 0.4, c = 0.4
n = 100 n = 500

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 237 0 961 464 0 997 0 0 0
T-S 0 658 0 39 505 0 3 0 1000 952
O-S 1000 105 1000 0 31 1000 0 1000 0 48
A-S 32.02 1.32 30.24 – 1.13 194.90 – 194.26 – 1.02

n = 1000 n = 2000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 1000 0 0 0 0 1000 0 0 0
T-S 0 0 0 999 937 0 0 0 999 939
O-S 1000 0 1000 1 63 1000 0 1000 1 61
A-S 395 – 394.98 1 1.02 795 – 795 1 1.05

TABLE 8. Selection times of the KOO methods with AIC, BIC, Cp thresholds and boot-
strap methods under Settings (II) and (vi) based on 1,000 replications. Here U-S , T-S,
O-S and A-S stand for number of times a selection method under-specified the true
model, number of times a selection method identified the true model exactly, number
of times a selection method over-specified the true model, and the average number
of spurious variables a selection method identified when it over-specified the model,
respectively.
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which indicate that ξl tends to 0 in probability with order of o(n−t) for any t > 0. Analogously, for
application later, together with the condition that p−1/2b is bounded in Euclidean norm, we conclude
that for 2 ≤ ℓ ≤ log(n),

max{E|p−1b′
lM

−1
l E′

lQel|ℓ,E|p−1alE
′
lM

−1
l E′

lQel|ℓ} = O(pℓ/2−1ηℓ−2
n )(23)

and

max{E|p−2b′
lΨlbl|ℓ,E|p−2a1E

′
lΨlbl|ℓ,E|p−2a1E

′
lΨlEla1|ℓ} = O(pℓ−2η2ℓ−4

n )(24)

where

Ψl = M−1
l E′

lQele
′
lQElM

−1
l −M−1

l E′
lQElM

−1
l .

As we only need to prove the weak convergence conclusion and βtr
1 → (1 − α − c)/c > 0, thus

throughout the proofs, we can safely assume 󰀂M−1󰀂, 󰀂M−1
l 󰀂 and |1/βl| are all bounded for large n.

B.1. Proof of Theorem 2.1. Theorem 2.1 can be obtained from Proposition 3.1 in Bai et al. (2022) with
letting z ↓ 0 directly. That is, for any non-random vectors r1, r2 r3 and r4 with suitable dimensions
and bounded in Euclidean norm, under conditions in Theorem 2.1, we have that for any t > 0 and
ε > 0,

P
󰀕󰀏󰀏󰀏󰀏r

′
1M

−1r2 −
cnr

′
1r2

1− cn − αn

󰀏󰀏󰀏󰀏 ≥ ε

󰀖
= o(n−t),(25)

P
󰀕󰀏󰀏󰀏󰀏

1
√
p
r′1M

−1E′r3

󰀏󰀏󰀏󰀏 ≥ ε

󰀖
= o(n−t),(26)

and

P
󰀕󰀏󰀏󰀏󰀏

1

p
r′3EM−1E′r4 −

cnr
′
3r4

1− cn − αn
+

c2nr
′
3Qr4

(1− cn − αn)(1− αn)

󰀏󰀏󰀏󰀏 ≥ ε

󰀖
= o(n−t).(27)

Then the proof of Theorem 2.1 is complete.

B.2. Proof of Theorem 2.2. For simple presentation, in the following we assume {1, . . . , q} ⊂ [k]\j∗
and ji = i. To prove Theorem 2.2, it is sufficient to show that for any non-null vector h = (h1, . . . , hq)

′,√
p[(K1, . . . ,Kq)h− cn

1−cn−αn
1′qh] converges weakly to a normal distribution with mean zero and vari-

ance c2

(1−αn−cn)2
[ 2(1−αn)
(1−αn−cn)

h′(A′
qAq)

2h+ τh′(Aq ◦Aq)
′(Aq ◦Aq)h], where Aq = (a1, . . . ,aq).

We split the proof of this theorem into two parts. First, we show the asymptotic normality of the
sequence of random variables

M(n)
1 :=

√
p[(K1, . . . ,Kq)h− E(K1, . . . ,Kq)h].

Second, we prove the non-random sequence

M(n)
2 =

√
p[E(K1, . . . ,Kq)h−

cn1
′
qh

1− cn − αn
]

tends to zero. Note that for notational simplicity the superscript (n) in M(n)
1 and M(n)

2 are suppressed
in the sequel.
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We start to consider M1. Let H = Diag(h1, . . . , hq). It follows that

M1 =p−1/2
p󰁛

l=1

(El − El−1)tr(EM−1E′AqHA′
q)

=p−1/2
p󰁛

l=1

(El − El−1)tr[(EM−1E′ −ElM
−1
l E′

l)AqHA′
q].

By the inversion formula of block matrix, we obtain

EM−1E′ −ElM
−1
l E′

l =
1

βlp2
ElM

−1
l E′

lQele
′
lQElM

−1
l E′

l

− 1

βlp
ElM

−1
l E′

lQele
′
l −

1

βlp
ele

′
lQElM

−1
l E′

l +
ele

′
l

βl
.(28)

Then, by the equation (21), we can rewrite M1 as

M1 =
1

p1/2βtr
1

p󰁛

l=1

El(e
′
lΓlel − trΓl)−

1

p1/2(βtr
1 )2

p󰁛

l=1

El(ξltrΓl) +M10,

where

Γl =p−2QElM
−1
l E′

lAqHA′
qElM

−1
l E′

lQ− p−1AqHA′
qElM

−1
l E′

lQ

− p−1QElM
−1
l ElAqHA′

q +AqHA′
q

and

M10 =−
p󰁛

l=1

(El − El−1)
ξl(e

′
lΓlel − trΓl)

p1/2(βtr
1 )2

+

p󰁛

l=1

(El − El−1)
ξ2l e

′
lΓlel

p1/2βl(β
tr
1 )2

.

It follows from (22) that

E| 1

p1/2

p󰁛

l=1

El(ξltrΓl)|2 =
1

p

p󰁛

l=1

E|El(ξltrΓl)|2 = O(p−1).

By (23), (24) and the BurkHölder’s inequality (see Lemma B.2) we have that M10 = op(1). Applying
Lemma 2.7 in Bai & Silverstein (1998) (see Lemma B.3), we have that

E|El(e
′
lΓlel − trΓl)|4 ≤ E|e′lΓlel − trΓl|4 = O(pη4n)

which verifies the condition (ii) in Lemma B.1. Thus, what we need is to obtain the limit of

1

p(βtr
1 )2

p󰁛

l=1

El−1{El[e
′
lΓlel − trΓl]}2.

By Lemma B.5, we have that

El−1{El[e
′
lΓlel − trΓl]}2 = 2El−1tr(ElΓlElΓl) + τEl−1tr(ElΓl ◦ ElΓl),

where ◦ stands for the Hadamard product. Notice that

tr(ElΓlElΓl) =p−4tr(ElQElM
−1
l E′

lAqHA′
qElM

−1
l E′

lQ)2(29)

+ p−22tr[El(AqHA′
qElM

−1
l E′

lQ)El(QElM
−1
l ElAqHA′

q)](30)

+ tr(AqHA′
q)

2.
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Let 󰁨El be El by replacing {el+1, . . . , ep} with {ẽl+1, . . . , ẽp}, where {ẽi} are i.i.d. copies of e1. We
define 󰁩Ml =

1
p
󰁨E′
lQ

󰁨El, correspondingly. As H is a diagonal matrix, thus we have that

El−1tr(ElQElM
−1
l E′

lAqHA′
qElM

−1
l E′

lQ)2

=Eltr[HA′
qElM

−1
l E′

l
󰁨ΞlElM

−1
l E′

lAq]

=El

q󰁛

i=1

hia
′
iElM

−1
l E′

l
󰁨ΞlElM

−1
l E′

lai,

where 󰁨Ξl = Q󰁨El
󰁩M−1

l
󰁨E′
lAqHA′

q
󰁨El
󰁩M−1

l
󰁨E′
lQ. By applying the inversion formula of block matrix to

Ml, similar to (28), we have that

ElM
−1
l E′

l −ElpM
−1
lp E′

lp =
1

βlpp2
ElpM

−1
lp E′

lpQepe
′
pQElpM

−1
lp E′

lp

− 1

βlpp
ElpM

−1
lp E′

lpQepe
′
p −

1

βlpp
epe

′
pQElpM

−1
lp E′

lp +
epe

′
p

βlp
,(31)

where Eli is the n× (i−2) submatrix of E with the columns {el, ei, . . . , ep} removed, Mli =
1
pE

′
liQEli

and

βli =
1

p
e′iQei −

1

p2
e′iQEliM

−1
li E′

liQei.(32)

Denote

βtr
i = tr[

1

p
Q− 1

p2
QEliM

−1
li E′

liQ] =
n− k − p+ i

p

and

ξli = βli − βtr
i .

We can easily check that the orders of (22)–(24) hold for replacing the subscripts l by li. Thus, analo-
gous to the above discussion, we have that

Ela
′
iElM

−1
l E′

l
󰁨ΞlElM

−1
l E′

lai

=El[a
′
iElpM

−1
lp E′

lp
󰁨ΞlElpM

−1
lp E′

lpai] + op(p
3)

=El[a
′
iElpM

−1
lp E′

lp
󰁨ΞlpElpM

−1
lp E′

lpai] + op(p
3),

where 󰁨Ξlp is defined by removing bp and ẽp from 󰁨Ξl. We then repeat the procedure that remove bi, ei
and ẽi, i = l+1, . . . , p− 1 from Ξlp and 󰁨Ξlp, respectively. Then applying Proposition 3.1 in (Bai et al.,
2022), we finally obtain that

(37) =
q󰁛

i,j

hihjp
−2[a′iEl(l−1)M

−1
l(l−1)E

′
l(l−1)aj)]

2 + op(1)

=
(l − 1)2

(n− k − l + 1)2
h′(A′

qAq)
2h+ op(1).(33)
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Analogously, we have that

(30) =p−2
q󰁛

i=1

hihjEl(a
′
iElM

−1
l E′

lQ)El(QElM
−1
l Elai)

=
(l − 1)h′(A′

qAq)
2h

n− k − l + 1
+ op(1),

which together with (33) and the fact that tr(AqHA′
q)

2 = h′(A′
qAq)

2h implies

1

p

p󰁛

l=1

El−1tr(ElΓlElΓl) =
h′(A′

qAq)
2h

p

p󰁛

l=1

󰀕
l − 1

n− k − l + 1
+ 1

󰀖2

+ op(1)

=h′(A′
qAq)

2h
1− αn

1− αn − cn
+ op(1).

We now turn to prove the term El−1tr(ElΓl ◦ ElΓl) = op(1). Let uj be an n-dimensional column
vector with the j-th element being 1 and 0 otherwise. Then we have that

E(El−1tr(ElΓl ◦ ElΓl)) =

n󰁛

j=1

E(u′
jElΓluj)

2

=

n󰁛

j=1

(Eu′
jΓluj)

2 +

n󰁛

j=1

E(Elu
′
jΓluj − Eu′

jΓluj)
2.

By BurkHölder’s inequality, we have that

E(Elu
′
jΓluj − Eu′

jΓluj)
2 ≤

p󰁛

s ∕=l

E(u′
jΓluj − u′

jΓl·suj)
2,

where Γl·s is the submatrix of Γl with es removed. Applying the inversion formula of block matrix
(31) again, we have that

QElM
−1
l E′

l =QEl·sM
−1
l·s E

′
l·s +

Qese
′
s

βl·s
(34)

+
1

βl·sp2
QEl·sM

−1
l·s E

′
l·sQese

′
sQEl·sM

−1
l·s E

′
l·s

− 1

βl·sp
QEl·sM

−1
l·s E

′
l·sQese

′
s −

1

βl·sp
Qese

′
sQEl·sM

−1
l·s E

′
l·s

:=U ls0 + U ls1 + U ls2 − U ls3 − U ls4

and

E(u′
jΓluj − u′

jΓlsuj)
2

=E{p−4
q󰁛

i=1

hi[u
′
j(U ls1 + U ls2 − U ls3 − U ls4)ai]

2

+ 2p−2
q󰁛

i=1

hiu
′
jU ls0aiu

′
j(U ls1 + U ls2 − U ls3 − U ls4)ai

− 2p−1
q󰁛

i=1

hiu
′
jaiu

′
j(U ls1 + U ls2 − U ls3 − U ls4)ai}2.



27

We first consider E(u′
jU ls1aia

′
iU ′

ls1uj)
2. Notice that

E(e′sQuju
′
jQese

′
saia

′
ies)

2

=E[(e′sQuju
′
jQes − u′

jQuj + u′
jQuj)(e

′
saia

′
ies − 1 + 1)]2

=E[(e′sQuju
′
jQes − u′

jQuj)(e
′
saia

′
ies − 1) + u′

jQuj(e
′
saia

′
ies − 1)

+ (e′sQuju
′
jQes − u′

jQuj) + u′
jQuj ]

2.

From Lemma B.4 we have that for ℓ ≥ 2,

E(e′sQuju
′
jQes − u′

jQuj)
ℓ = O(nℓ−1η2ℓ−4

n )

and

E(e′saia′ies − 1)ℓ = O(nℓ−1η2ℓ−4
n ).

Then, together with the fact that 1
βl·s

and u′
jQuj are both bounded, and the cr-inequality, we obtain

E(u′
jU ls1aia

′
iU ′

ls1uj)
2 = O(n3η−4

n ).

Next, we consider the term E(u′
jU ls0aia

′
iU ′

ls1uj)
2. It follows a′iQ = 0 that

E(u′
jQEl·sM

−1
l·s E

′
l·saia

′
iese

′
sQuj)

2

=E(e′sQuju
′
jQEl·sM

−1
l·s E

′
l·saia

′
ies − a′iQuju

′
jQEl·sM

−1
l·s E

′
l·sai)

2 = O(1).

As other terms are analogous, thus by combining the above argument, we conclude that
󰁓n

j=1 E(Elu
′
jΓluj−

Eu′
jΓluj)

2 = o(1).
For

󰁓n
j=1(Eu′

jΓluj)
2, it follows from the assumption that {eij} are i.i.d.,

n󰁛

j=1

(Eu′
jΓluj)

2 =

n󰁛

j=1

(n−1p−1EtrHA′
qElM

−1
l E′

lAq + u′
jAqHA′

quj)
2

=

n󰁛

j=1

(u′
jAqHA′

quj)
2 +O(n−1)

=h′(Aq ◦Aq)
′(Aq ◦Aq)h+O(n−1).

Here we use a result similar to (27), that is

E
1

p
r′3EM−1E′r4 −

cnr
′
3r4

1− cn − αn
+

c2nr
′
3Qr4

(1− cn − αn)(1− αn)
→ 0,

and the proof can be found in the proof of Proposition 3.1 in Bai et al. (2022). Then we conclude that

p󰁛

l=1

El−1tr(ElΓl ◦ ElΓl) = h′(Aq ◦Aq)
′(Aq ◦Aq)h+ op(1).

Next, we will prove that the non-random sequence

M2 = M(n)
2 = o(1).
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Write M−1 = (M ij). Without loss of generality, we only need to prove p−1Ea′1EM−1E′a1− cn
1−cn−αn

=

o(p−1/2). Because the entries of E are i.i.d., we have

p−1Ea′1EM−1E′a1 = p−1
p󰁛

i,j=1

Ea′1eiM ije′ja1

=Ee′1a1a′1e1M11 + (p− 1)Ea′1e1M12e′2a1.(35)

From the inverse matrix formula, we know that

M11 =
1

β1
=

1

βtr
1

− ξ1
(βtr

1 )2
+

ξ21
β1(βtr

1 )2
.

and

M12 =
e′1QE1M

−1
1 u1

pβtr
1

− ξ1e
′
1QE1M

−1
1 u1

p(βtr
1 )2

+
ξ21e

′
1QE1M

−1
1 u1

pβ1(βtr
1 )2

.(36)

Then it follows from (21), (22) and the Hölder’s inequality that

Ee′1a1a′1e1M11 − cn
1− cn − αn

= E
e′1a1a

′
1e1ξ

2
1

β1(βtr
1 )2

= o(p−1/2).

Moreover, substituting (36) into the second term of (35), we have three terms. The first one is

E
e′2a1a

′
1e1e

′
1QE1M

−1
1 u1

pβtr
1

= E
e′2a1a

′
1QE1M

−1
1 u1

pβtr
1

= 0,

because of a′1Q = 0. Applying the inversion formula to M−1
1 again, we obtain that

E
ξ1e

′
1QE1M

−1
1 u1a

′
1e1e

′
2a1

p

=E
ξ1e

′
1Qe2a

′
1e1e

′
2a1

β1·2p
− E

ξ1e
′
1QE1·2M

−1
1·2E

′
1·2Qe2a

′
1e1e

′
2a1

β1·2p2

=E
ξ1e

′
1Qe2a

′
1e1e

′
2a1

β1·2p
.

Rewrite 1/β1·2 as

1

β1·2
=

1

βtr
2

− ξ1·2
β1·2βtr

2

and by the the fact that Qa1 = 0, we have that

E
ξ1e

′
1Qe2a

′
1e1e

′
2a1

β1·2
= −E

ξ1·2ξ1e
′
1Qe2a

′
1e1e

′
2a1

βtr
2 β1·2

= o(p−1/2).

Therefore, by combining the above results, we conclude that

M2 = o(1),

and we complete the proof of the theorem.
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B.3. Proof of Theorem 2.3. Note that

tr[(Y′QY − (n− k)I) ◦ (Y′QY − (n− k)I)] =

p󰁛

i=1

(e′iQei − (n− k))2

and
E(e′iQei − (n− k))2 = 2(n− k) + τtr(Q ◦Q).

Thus by the definition of τ̂ and {ei} are i.i.d., we have Eτ̂ = τ . Next we will show that

E(τ̂ − τ)2 → 0.

It follows from (20) and Lemma B.3 that

E(τ̂ − τ)2 = E(τ̂ − Eτ̂)2

=p−1E[(e′1Qe1 − (n− k))2 − E(e′1Qe1 − (n− k))]2/tr2(Q ◦Q)

={p−1E(e′1Qe1 − (n− k))4 − p−1[E(e′1Qe1 − (n− k))]2}/tr2(Q ◦Q)

≤Kp−1[((n− k)2 + n2(n− k)η4n + (n− k)2 + τ2tr2(Q ◦Q)]/tr2(Q ◦Q),

where K is a positive constant. By cr-inequality, we have that tr(Q◦Q) ≥ n−1(n−k)2, which together
with condition (C1) implies E(τ̂ − τ)2 → 0. Then we complete the proof of this theorem.

B.4. Proof of Theorem 2.4. For simple presentation, in the following we assume {1} ⊂ j∗ and let
j = 1. Then by the notation b = Σ−1/2Θ∗X

′
∗a1, K1 = p−1(b′ + a′1E)M−1(E′a1 + b). Note that the

proof procedure of Theorem 2.4 is the same as that of Theorem 2.2. And the difference is that The-
orem 2.4 requires the consideration of linear combinations of three different forms of random vari-
ables, namely a′1EM−1E′a1, a′1EM−1b and b′M−1b. As the asymptotic normality of a′1EM−1E′a1 is
proved in last subsection, in the sequel we only focus on the other two terms and their correlations.

Analogously, we split the proof of this theorem into two parts. It is worthy noting that next we
may use the same notation as in the proof of Theorem 2.2, but they represent a little different content.
First, we show the asymptotic normality of the sequence of random variables

M3 :=
√
p[p−1(b′ + a′1E)M−1(E′a1 + b)− Ep−1(b′ + a′1E)M−1(E′a1 + b)].

Second, we prove the non-random sequence

M4 =
√
p[Ep−1(b′ + a′1E)M−1(E′a1 + b)− cn(1 + δ1)

1− cn − αn
]

tends to zero. It follows that

M1 =p−1/2
p󰁛

l=1

(El − El−1)(b
′ + a′1E)M−1(E′a1 + b)

=p−1/2
p󰁛

l=1

(El − El−1)[(b
′ + a′1E)M−1(E′a1 + b)− (b′

l + a′1El)M
−1
l (E′

la1 + bl)].

By the inversion formula of block matrix, we obtain

(b′ + a′1E)M−1(E′a1 + b)− (b′
l + a′1El)M

−1
l (E′

la1 + bl)

=
1

βlp2
(b′

l + a′1El)M
−1
l E′

lQele
′
lQElM

−1
l (E′

la1 + bl)

− 2

βlp
(b′

l + a′1El)M
−1
l E′

lQel(e
′
la1 + bl) +

(e′la1 + bl)
2

βl
.
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Then, by the equation (21), we can rewrite M3 as

M3 =
1

p1/2βtr
1

p󰁛

l=1

El[e
′
lΓlel − trΓl + 2e′lγl] +M30,

where

Γl =p−2QElM
−1
l (bl +E′

la1)(bl +E′
la1)

′M−1
l E′

lQ

− p−1a1(bl +E′
la1)

′M−1
l E′

lQ− p−1QElM
−1
l (bl +E′

la1)a
′
1 + a1a

′
1,

γl = −p−1blQElM
−1
l (bl +E′

la1) + a1bl

and

M30 =−
p󰁛

l=1

(El − El−1)
ξl(b

′
l + a′1El)M

−1
l E′

lQele
′
lQElM

−1
l (E′

la1 + bl)

p5/2βlβ
tr
1

+ 2

p󰁛

l=1

(El − El−1)
ξl(b

′
l + a′1El)M

−1
l E′

lQel(e
′
la1 + bl)

p3/2βlβ
tr
1

−
p󰁛

l=1

(El − El−1)
ξl(e

′
la1 + bl)

2

p1/2βlβ
tr
1

:=−M301 + 2M302 −M303.

Next we will prove M10 = op(1). Substitute (21) into M101, M102 and M103 respectively, we then
have that

M301 =

p󰁛

l=1

(El − El−1)
ξl(b

′
l + a′1El)Ψl(E

′
la1 + bl)

p5/2(βtr
1 )2

+

p󰁛

l=1

(El − El−1)
ξl(b

′
l + a′1El)M

−1
l (E′

la1 + bl)

p3/2(βtr
1 )2

−
p󰁛

l=1

(El − El−1)
ξ2l (b

′
l + a′1El)M

−1
l E′

lQele
′
lQElM

−1
l (E′

la1 + bl)

p5/2βl(β
tr
1 )2

,

M302 =

p󰁛

l=1

(El − El−1)
ξl(b

′
l + a′1El)M

−1
l E′

lQel(e
′
la1 + bl)

p3/2(βtr
1 )2

−
p󰁛

l=1

(El − El−1)
ξ2l (b

′
l + a′1El)M

−1
l E′

lQel(e
′
la1 + bl)

p3/2βl(β
tr
1 )2

,

M303 =

p󰁛

l=1

(El − El−1)
ξl(e

′
la1a

′
1el − 1 + 2bla

′
1el + b2l + 1)

p1/2(βtr
1 )2

−
p󰁛

l=1

(El − El−1)
ξ2l (e

′
la1 + bl)

2

p1/2βl(β
tr
1 )2

.

These together with (23), (24) and the BurkHölder’s inequality (see Lemma B.2) implies that M10 =
op(1). Note that here we used the fact Qa1 = 0.

Applying Lemma B.3, we have that

E|El(e
′
lΓlel − trΓl)|4 ≤ E|e′lΓlel − trΓl|4 = O(pη4n)

and

E|El(e
′
lγl)|4 ≤ E|e′lγlγ

∗
l el|2 = O(p−2b4l ),
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which verify the condition (ii) in Lemma B.1. Thus, what we need is to obtain the limit of

1

p(βtr
1 )2

p󰁛

l=1

El−1{El[e
′
lΓlel − trΓl + 2e′lγl]}2.

By Lemma B.5, we have that

El−1{El[e
′
lΓlel − trΓl + 2e′lγl]}2

=2El−1tr(ElΓlElΓl) + 4El−1(ElγlElγ
′
l)

+ τEl−1tr(ElΓl ◦ ElΓl) + 4Ee311El−1tr(ElΓl ◦ Elγl1
′).

Notice that

tr(ElΓlElΓl) =p−4tr(ElQElM
−1
l (bl +E′

la1)(bl +E′
la1)

′M−1
l E′

lQ)2(37)

+ p−22El((bl +E′
la1)

′M−1
l E′

lQ)El(QElM
−1
l (bl +E′

la1)) + 1.

In the proof of Theorem 2.2, we have shown that

p−4tr(ElQElM
−1
l E′

la1a1ElM
−1
l E′

lQ)2

+ p−22El(a1ElM
−1
l E′

lQ)El(QElM
−1
l E′

la1) + 1

=

󰀕
l − 1

n− k − l + 1
+ 1

󰀖2

+ op(1).

By the same procedure and the assumptions in Theorem 2.4, we can also have that

p−4tr(ElQElM
−1
l blb

′
lM

−1
l E′

lQ)2 =

󰀣 󰁓l−1
i=1 b

2
i

n− k − l + 1

󰀤2

+ op(1),

p−4tr(ElQElM
−1
l bla1ElM

−1
l E′

lQ)2 =
(l − 1)

󰁓l−1
i=1 b

2
i

n− k − l + 1
+ op(1),

p−2El(blM
−1
l E′

lQ)El(QElM
−1
l E′

la1) = op(1),

and

p−2El(blM
−1
l E′

lQ)El(QElM
−1
l bl) =

󰁓l−1
i=1 b

2
i

n− k − l + 1
+ op(1),

which together with (37) and (33) implies

1

p

p󰁛

l=1

El−1tr(ElΓlElΓl) =
1

p

p󰁛

l=1

󰀣
(l − 1 +

󰁓l−1
i=1 b

2
i )

n− k − l + 1
+ 1

󰀤2

+ op(1).

For ElγlElγ
′
l , by the notation 󰁩Ml =

1
p
󰁨E′
lQ

󰁨El, we have that

Elγ
′
lElγl

=El[(p
−1blQElM

−1
l (bl +E′

la1)− a1bl)
′((p−1blQElM

−1
l (bl +E′

la1)− a1bl)]

=El[p
−2b2l (bl + a′1El)M

−1
l E′

lQ
󰁨El
󰁩M−1

l (bl + 󰁨E′
la1) + b2l ].
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Applying the inversion formula of block matrix (31) again, we obtain that

p−1
p󰁛

l=1

El−1(Elγ
′
lElγl) = p−1

p󰁛

l=1

b2l

󰀣
(l − 1 +

󰁓l−1
i=1 b

2
i )

n− k − l + 1
+ 1

󰀤
+ op(1).

Then by applying Lemma B.6, we have that as n → ∞,

1

p

p󰁛

l=1

El−1(tr(ElΓlElΓl) + 2ElγlElγ
′
l)

=
1

p

p󰁛

l=1

󰀳

󰁃
󰀣
l − 1 +

󰁓l−1
i=1 b

2
i

n− k − l + 1
+ 1

󰀤2

+ 2b2l

󰀣
l − 1 +

󰁓l−1
i=1 b

2
i

n− k − l + 1
+ 1

󰀤󰀴

󰁄+ op(1)

=
n

p

󰁝 cn

0

󰀥󰀕
t(1 + δ1)

1− αn − t
+ 1

󰀖2

+ 2δ1

󰀕
t(1 + δ1)

1− αn − t
+ 1

󰀖󰀦
dt+ op(1)

=
(1− αn)(1 + 2δ1) + cnδ

2
1

1− αn − cn
+ op(1).

We now turn to the term El−1tr(ElΓl ◦ ElΓl). By the notation that uj is an n-dimensional column
vector with the j-th element being 1 and 0 otherwise and repeating the same argument in the proof
of Theorem 2.2, we can obtain that

El−1tr(ElΓl ◦ ElΓl) =

n󰁛

j=1

(Eu′
jΓluj)

2 + op(1).

As {eij} are i.i.d., thus from the assumptions of this theorem, we have that

n󰁛

j=1

(Eu′
jΓluj)

2

=

n󰁛

j=1

(n−1p−1E(bl +E′
la1)

′M−1
l (bl +E′

la1)

− 2p−1u′
ja1E(bl +E′

la1)
′M−1

l E′
lQuj + (u′

ja1)
2]2

=o(1).

Then we conclude that

1

p

p󰁛

l=1

El−1tr(ElΓl ◦ ElΓl) = op(1).

Next, we will prove that the non-random sequence

M4 = o(1).
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By the notation M−1 = (M ij) and {eij} are i.i.d., we have that

E(b′ + a′1E)M−1(E′a1 + b) =

p󰁛

i,j=1

E(bi + a′1ei)M
ij(bj + a′1ej)

=b′bEM11 + pEe′1a1a′1e1M11 + 2Ea′1e1M11
p󰁛

i=1

bi

+

p󰁛

i ∕=j

bibjEM12 + p(p− 1)Ea′1e1M12e′2a1 + 2(p− 1)Ea′1e1M12
p󰁛

i=1

bi.

From the inverse matrix formula, we know that

M11 =
1

β1
=

1

βtr
1

− ξ1
(βtr

1 )2
+

ξ21
β1(βtr

1 )2
.

and

M12 =
e′1QE1M

−1
1 u1

pβtr
1

− ξ1e
′
1QE1M

−1
1 u1

p(βtr
1 )2

+
ξ21e

′
1QE1M

−1
1 u1

pβ1(βtr
1 )2

.

Then it follows from (21), (22) and the Hölder’s inequality that

p−1b′bEM11 − cnδ1
1− cn − αn

= o(p−1/2)

and

Ee′1a1a′1e1M11 − cn
1− cn − αn

= o(p−1/2).

By the facts that

|Ea′1e1ξ1| ≤
󰁳

E|ξ1|2 = O(p−1/2)

and

|
p󰁛

i=1

bi| = O(p1/2),

we can obtain that

Ea′1e1M11
p󰁛

i=1

bi = O(1).

It follows from

|p−1
p󰁛

i ∕=j

bibj | = O(1), |Eξ1e′1QE1M
−1
1 u1| = O(1)

and the Hölder’s inequality, we have that
p󰁛

i ∕=j

bibjEM12 = o(p−1/2).

Therefore, similar to the proof of Theorem 2.2, we conclude that

M2 = o(1),

and we complete the proof of this theorem.
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B.5. Some useful lemmas.

Lemma B.1 (Theorem 35.12 of Billingsley (1995)). Suppose that for each n, Yn1, Yn2, . . . , Ynrn is a real
martingale difference sequence with respect to the increasing σ -field {Fnj} having second moments. If as
n → ∞, for each ε > 0,

(i)
󰁓rn

j=1 E
󰀓
Y 2
nj |Fn,j−1

󰀔
p→ σ2, where σ2 is a positive constant;

(ii)
󰁓rn

j=1 E
󰀓
Y 2
njI(|Ynj |≥ε)

󰀔
→ 0,

then we have that
rn󰁛

j=1

Ynj
D→ N

󰀃
0,σ2

󰀄
.

Lemma B.2 (Burkholder (1971)). Let {Yk} be a martingale difference sequence with respect to the increasing
σ-field {Fk} . Then, for ℓ > 1,

E
󰀏󰀏󰀏
󰁛

Xk

󰀏󰀏󰀏
ℓ
≤ Kℓ

󰀕
E
󰀓󰁛

E(|Xk|2 |Fk−1)
󰀔ℓ/2

+
󰁛

E |Xk|ℓ
󰀖
.

Lemma B.3 (Lemma 2.7 of Bai & Silverstein (1998)). For e = (e1, . . . , en)
′ i.i.d. standardized entries, A a

n× n matrix, we have, for any ℓ ≥ 2

E
󰀏󰀏e′Ae− trA

󰀏󰀏ℓ ≤ Kℓ

󰀕󰀓
E |e1|4 trAA′

󰀔ℓ/2
+ E |e1|2ℓ tr(AA′)ℓ/2

󰀖
.

Lemma B.4 (Lemma 7.2 of Bai & Yao (2005)). Let e = (e1, . . . , en)
′ be a random n-vector with i.i.d.

standardized entries. Suppose E |ei|4 < ∞ and |ei| ≤ ηn
√
n with ηn → 0 slowly. Assume that A is a

symmetric matrix of order n bounded in norm by M . Then, for any given 2 󰃑 ℓ 󰃑 b log
󰀃
nη2n

󰀄
with some

b > 1, there exists a constant K such that

E
󰀏󰀏e′Ae− tr(A)

󰀏󰀏ℓ ≤ nℓ
󰀃
nη4n

󰀄−1 󰀃
MKη2n

󰀄ℓ
.

Lemma B.5. Let B and C be n× n matrices. Let d be a n-vector. Let e = (e1, . . . , en)
′ be a random n-vector

with i.i.d. standardized entries. Let τ := Ee4i − 3. Then, we have that

E
󰀋󰀃

e′Be− trB
󰀄 󰀃

e′Ce− trC
󰀄󰀌

= tr(BC) + tr
󰀃
BC′󰀄+ τ

n󰁛

i=1

biicii

and

E(e′Bee′d) = Ee31
n󰁛

i=1

biidi.

Lemma B.6 (Lemma 3.1 of Bai & Pan (2012)). Let
󰀋
dn = (d1, . . . , dn)

′󰀌 be a sequence of unit vectors with
maxk≤n |dk| → 0. There is a permutation m of {1, . . . , n} given by

󰀕
1 2 · · · n

m(1) m(2) · · · m(n)

󰀖

such that df =
󰀃
df(1), . . . , df(n)

󰀄
and Fnm tends to a uniform distribution over the interval (0, 1), where Fnm

is a distribution function defined by

Fnm(t) =
󰁛

i≤nt

󰀏󰀏df(i)
󰀏󰀏2 .
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SIMILÄ, T. & TIKKA, J. (2007). Input selection and shrinkage in multiresponse linear regression.

Computational Statistics & Data Analysis 52, 406–422.
SKAGERBERG, B., MACGREGOR, J. F. & KIPARISSIDES, C. (1992). Multivariate data analysis applied

to low-density polyethylene reactors. Chemometrics and Intelligent Laboratory Systems 14, 341–356.
SPELLMAN, P. T., SHERLOCK, G., ZHANG, M. Q., IYER, V. R., ANDERS, K., EISEN, M. B., BROWN,

P. O., BOTSTEIN, D. & FUTCHER, B. (1998). Comprehensive Identification of Cell Cycle–regulated
Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the
Cell 9, 3273–3297.

TIBSHIRANI, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological) 58, 267–288.



37

WANG, L., CHEN, G. & LI, H. (2007). Group SCAD regression analysis for microarray time course
gene expression data. Bioinformatics 23, 1486–1494.

XIA, Y. (2017). Testing and support recovery of multiple high-dimensional covariance matrices with
false discovery rate control. TEST 26, 782–801.

XIA, Y., CAI, T. & CAI, T. T. (2018). Two-Sample Tests for High-Dimensional Linear Regression with
an Application to Detecting Interactions. Statistica Sinica 28, 63–92.

ZHANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics 38, 894–942.

ZOU, H. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical
Association 101, 1418–1429.


