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Abstract

When using spatial data to estimate the effects of various factors on a given response vari-
able, it is important to identify the influence of spatial effects. In this paper, we focus on
a method for estimating spatial effects in a dataset detailing the body condition of common
minke whales (Balaenoptera acutorostrata acutorostrata) in the Northeast Atlantic. The cen-
tral idea of our approach is to estimate the spatial effects discretely rather than continuously,
i.e., as coefficients of dummy variables indicating small spaces divided from the space to be
analyzed. Using adjacency information for each segmented small space, our method joins
neighboring spaces by using generalized fused lasso. This procedure is expected to be robust
to nonuniformity in the density of spatial data, as adjacency information for the data is used
rather than the coordinates of the spatial data. For model flexibility, effects other than spatial
effects on the response variable are estimated in a penalized spline regression. The penal-
ized spline regression is optimized via generalized ridge regression in order to reduce the time
required for optimizing smoothness. To illustrate its applicability, we apply our estimation
method to body condition data for common minke whales.
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1. Introduction

In statistical spatial analysis, it is practically difficult to assume a uniform collection of spa-
tial data from the target area, since the data can be both densely and sparsely distributed within
that area. This can be seen, for example, in the locations at which body condition data for the
common minke whale are collected in Norwegian waters. The body condition data include
blubber thickness, girth, and length measured individually, and are typically recorded by com-
mercial whalers in the Northeast Atlantic. The region for commercial whaling corresponds to
the management areas defined by the International Whaling Commission. As shown in Figure
1, the region includes the Eastern Barents Sea (EB), the Svalbard-Bear Island area (ES), the
Norwegian Sea and coastal zones off North Norway including the Lofton area (EW), the North
Sea (EN), and the Western Norwegian Sea and Jan Mayen area (CM) subregions (see Solvang
et al., 2021). The yellow dots in the figure correspond to the positions of whaling during
the period from 1993 to 2017. As can be seen, these positions are not uniformly sampled in
the management subareas but rather are densely and sparsely sampled in specific areas within
them.

The common minke whales migrate to higher latitudes for intensive feeding and, conse-
quently, seasonal fattening. The deposited fat is stored as energy reserves for overwintering
at lower latitudes. Accordingly, it is expected that the body condition of the whales in the
summer grounds will reflect food availability during their most intensive feeding period and
thus indicate how well the high-latitude ecosystems can support the population (Solvang et

al., 2017). Body condition data are recorded, along with the year, month, day, latitude and
longitude, and sex of each individual whale. Using these data, temporal and spatial effects on
body condition have heretofore been analyzed using ordinal linear, random effects and varying
coefficient regression models (Solvang et al., 2017), as well as a varying coefficient model in
canonical correlation analysis (Yamamura et al., 2016). In the varying coefficient model in
Solvang et al. (2017) and Yamamura et al. (2016), where a polynomial was set as the coef-
ficient, the estimated varying coefficients indicated significant temporal and spatial effects on
blubber thickness according to whale migration in summer during the observed period.

While using polynomials in the varying coefficient model can provide a rough indication of
the status of the spatial effect in the commercial whaling region, it is difficult to establish more
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Figure 1. Capture positions in period from 1993 to 2017

precise changes in the corresponding spaces. In such cases, a nonparametric regression model
using basis function expansion (see e.g., Härdle, 1990; Green & Silverman, 1994; Perperoglou
et al., 2019) may be more appropriate than using a polynomial function. Importantly, however;
the model estimation may be sensitive to the density of the data (for scatter plot smoothing, see
Yanagihara & Ohtaki, 2003). In particular, as mentioned above, the density of the spatial data
that we are dealing with here is nonuniform, i.e., there is both densely and sparsely sampled
spatial data. To address this challenge, we propose a method that alternately fits nonparametric
regression and graph trend filtering via generalized fused lasso (see Wang et al., 2016) using
a backfitting algorithm (see e.g., Hastie & Tibshirani, 1990). Generalized fused lasso (GFL)
is a generalization of the original fused lasso proposed by Tibshirani et al. (2005) with respect
to the adjacencies that can be handled. Figure 2 shows the nature of the GFL estimation. In
the GFL, we first segment the original space into small spaces. The GFL fuses the segmented
small spaces with similar spatial effects. This procedure is expected to avoid overfitting in-
fluenced by the special state where the data are densely or sparsely sampled since only the
adjacency information between the data is used rather than the coordinates of the data.

Our focus is specifically on the reduction of the time required to optimize the nonparamet-
ric regression by applying the noniterative optimization method for smoothness in penalized
spline regression proposed by Yanagihara (2012). The method was applied in the formulation
of generalized ridge regression (GRR; Hoerl & Kennard, 1970) to penalized spline regression.
Using the results of Yanagihara (2018), we are able to explicitly obtain the smoothing parame-
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original space segmented small spaces fused spaces

Figure 2. GFL estimation method

ters that minimize the generalized cross-validation (GCV) criterion (Craven & Wahba, 1979),
which, unlike the Cp criterion (Mallows, 1973; 1995), does not require an asymptotically un-
biased estimator of variance. Fukui et al. (2020) applied this penalized spline regression to the
additive model and reported that the method not only dramatically reduces computation time,
but also improves prediction accuracy. Unfortunately, Fukui et al. (2020) did not optimize the
placement and number of basis functions. Of course, while it is desirable to optimize these
hyper parameters, doing so effectively is quite troublesome. Therefore, in the present study,
by using the same concept as the pseudospline in Hastie (1996), we optimize the rank of the
smoother matrix as an alternative to those optimizations.

Solvang et al. (2022) reported the results of an analysis of minke whale blubber thickness
similar to that described in this paper. Their estimation method is a predecessor of our proposed
estimation method.

The remainder of the paper is organized as follows: Section 2 introduces the proposed model
and estimation procedure; Section 3 describes the simulation study used to assess the predictive
performance of our proposed method by applying it to nonuniformly sampled spatial dataset;
Section 4 gives the numerical results produced by applying our method to body condition data
for common minke whales; Section 5 provides a brief summary of the proposed procedures.
Technical details are given in the Appendix.

2. Estimation Method

2.1. Vectorial Form of the Model

We first need to segment the space to be analyzed into m small spaces. If there is already a
small space segmentation, such as by town or street address, this would suffice; otherwise, a
space segmentation is established using, for example, a Voronoi diagram, so that the density
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of the included data is approximately the same. Let yi j be the ith response variable at the jth
segmented small space (i = 1, . . . , n j; j = 1, . . . ,m), where n j and m are the number of sam-
ples and the number of small spaces, respectively. Here, n is the combined sample size for all
spaces, i.e., n =

∑m
j=1 n j. We can express the additive model with a spatial effect as

yi j =

p∑
ℓ=1

fℓ(xℓ,i j) + µ j + εi j, (i = 1, . . . , n j; j = 1, . . . ,m), (2.1)

where fℓ is a trend indicating the influence of the ℓth explanatory variable, and fℓ(xℓ,i j) = βℓxℓ,i j

not including the constant term when it is a multiple regression analysis, µ j is the spatial ef-
fect of the ith sample at the jth small space, and εi j is the error term for the ith sample at
the jth small space. It is assumed that εi j’s (i = 1, . . . , n j; j = 1, . . . ,m) are identically and
independently distributed according to the distribution with E[εi j] = 0 and Var[εi j] = σ2. In
this paper, the function fℓ satisfies

∑m
j=1
∑n j

i=1 fℓ(xℓ,i j) = 0, which is a common constriction in
additive models for a stable estimation.

In this paper, fℓ(xℓ,i j) is estimated nonparametrically using basis function expansions; how-
ever, for some xℓ,i j, it may be desirable to estimate its value linearly. Therefore, we express
fℓ(xℓ,i j) semiparametrically as follows:

p∑
ℓ=1

fℓ(xℓ,i j) =
p1∑
ℓ=1

βℓ
(
xℓ,i j − x̄ℓ

)
+

p∑
ℓ=p1+1

{
sℓ(xℓ,i j) − s̄ℓ

}
, (2.2)

where x̄ℓ and s̄ℓ are sample means of xℓ,i j and sℓ(xℓ,i j), respectively, i.e., x̄ℓ = n−1∑m
j=1
∑n j

i=1 xℓ,i j

and s̄ℓ = n−1∑m
j=1
∑n j

i=1 sℓ(xℓ,i j). In (2.2), the first through p1th explanatory variables are fit-
ted using a linear model with regression coefficients β1, . . . , βp1 . On the other hand, the p1th
through pth explanatory variables are fitted with an additive model based on spline regression.
The following cubic spline without a constant term is considered as sℓ:

sℓ(xℓ,i j) = βℓ,1xℓ,i j + βℓ,2x2
ℓ,i j + βℓ,3x3

ℓ,i j +

b0∑
g=1

αℓ,g(xℓ,i j − τℓ,g)3
+, (2.3)

where b0 is the number of basis functions, knot τℓ,g is the 100× g/(b0 + 1) percentile of the ℓth
explanatory variable, and (x − τ)3

+ = I(x > τ)(x − τ)3 is the cubic power basis function. Here,
I(A) is an indicator function, i.e., I(A) = 1 if A is true and I(A) = 0 if A is not true. Let c̄ℓ,g
(g = 1, 2, 3) and b̄ℓ,g (g = 1, . . . , b0) be sample means defined by

c̄ℓ,g =
1
n

m∑
j=1

n j∑
i=1

xg
ℓ,i j, b̄ℓ,g =

1
n

m∑
j=1

n j∑
i=1

(xℓ,i j − τℓ,g)3
+.

Then, s̄ℓ is given as
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s̄ℓ = βℓ,1c̄ℓ,1 + βℓ,2c̄ℓ,2 + βℓ,3c̄ℓ,3 +
b0∑
g=1

αℓ,gb̄ℓ,g.

Let β and α be k- and b-dimensional vectors, respectively, where k = p1 + 3(p − p1) and
b = b0(p − p1), which are given by

β =
(
β1, . . . , βp1 ,β

′
p1+1, . . . ,β

′
p

)′
, α =

(
α′p1+1, . . . ,α

′
p

)′
, (2.4)

and let xi j and bi j be k- and b-dimensional vectors defined as

xi j =
(
x1,i j − x̄1, . . . , xp1,i j − x̄p1 , cp1+1(xp1+1,i j)′, . . . , cp(xp,i j)′

)′
,

bi j =
(
bp1+1(xp1+1,i j)′, . . . , bp(xp,i j)′

)′
,

where each subvector is given by

βℓ = (βℓ,1, βℓ,2, βℓ,3)′, cℓ(x) =
(
x − c̄ℓ,1, x2 − c̄ℓ,2, x3 − c̄ℓ,3

)′
,

αℓ =
(
αℓ,1, . . . , αℓ,b0

)′ , bℓ(x) =
(
(x − τℓ,1)3

+ − b̄ℓ,1, . . . , (x − τℓ,b0 )3
+ − b̄ℓ,b0

)′
.

Here, the notation “′” denotes the transpose of a vector or matrix. By using the above four
vectors, (2.2) can be expressed as

p∑
ℓ=1

fℓ(xℓ,i j) = β′xi j +α
′bi j. (2.5)

Let y j and ε j be n j-dimensional vectors, X j be an n j × k matrix and B j be an n j × b matrix,
which are given by

y j = (y1 j, . . . , yn j j)′, ε j = (ε1 j, . . . , εn j j)′,
X j = (x1 j, . . . ,xn j j)′, B j = (b1 j, . . . , bn j j)′.

Then, the vectorial form of the model for the jth space ( j = 1, . . . ,m) is given by

y j =X jβ +B jα + µ j1n j + ε j, ( j = 1, . . . ,m), (2.6)

where 1n j is an n j-dimensional vector of 1s. Using the vectorial forms of the first through mth
spaces in (2.6), the vectorial form for all samples is given by

y =Xβ +Bα +Rµ + ε, (2.7)

where y and ε are n-dimensional vectors, X is an n × k matrix, B is an n × b matrix, µ is an
m-dimensional vector, and R is an n × m matrix, which are given by

6



Estimation of Spatial Effects by Generalized Fused Lasso

y = (y′1, . . . ,y
′
m)′, ε = (ε′1, . . . , ε

′
m)′, X = (X ′

1, . . . ,X
′
m)′,

B = (B′1, . . . ,B
′
m)′, µ = (µ1, . . . , µm)′, R =


1n1 ⊗ e′1
...

1nm ⊗ e′m

 .
Here e j ( j = 1, . . . ,m) is an m-dimensional vector of which the jth element is 1 and the others
are 0, and ⊗ denotes the Kronecker product (see e.g., Harville, 1997).

In this paper, unknown parameters β, α and µ in (2.7) are estimated by the least squares
(LS), penalized least squares (PLS), and GFL methods, respectively. The estimation of {β,α}
and µ is alternated by the backfitting algorithm (for more detail about the backfitting algorithm,
see, e.g., Hastie & Tibshirani, 1990). This process is as follows:

Step 1. Initialize: Set µ̂ = ȳ1m, where ȳ is the sample mean of y, i.e., ȳ = n−11′ny.

Step 2. Cycle: Update {β̂, α̂} using the noniterative penalized spline regression proposed
by Yanagihara (2012) with y −Rµ̂ as the vector for response variables, and then
update µ̂ using the GFL with y −Xβ̂ −Bα̂ as the vector of response variables.

Step 3. Iterate: Repeat step 2 until β̂, α̂ and µ̂ change by less than a prespecified threshold.

After estimating the parameters, the estimate of fℓ (ℓ = p1 + 1, . . . , p) is given by

f̂ℓ(x) = β̂′ℓcℓ(x) + α̂′ℓbℓ(x) (ℓ = p1 + 1, . . . , p), (2.8)

where β̂ℓ and α̂ℓ are subvectors of β̂ and α̂ corresponding to the division in (2.4), respectively.
In our method, the smoothness of the penalized spline regression can be optimized without iter-
ations, dramatically reducing the time required for optimization compared to existing methods
(see Fukui et al., 2020). In addition to the reduction in computation time, Fukui et al. (2020)
also report improved prediction accuracy compared to existing methods.

2.2. Estimations of α and β via the GRR

In this subsection, the estimation of α and β in (2.7) is considered under the given µ = µ̂.
Let Q be a b × b orthogonal matrix which diagonalizes B′(In −G)B as

Q′B′(In −G)BQ =D = diag(d1, . . . , db), (d1 ≥ · · · ≥ db), (2.9)

where G is the projection matrix to the subspace spanned by the columns of X , i.e.,
G = X(X ′X)−1X ′, In is an n × n unit matrix, and d1, . . . , db are positive eigenvalues of
B′(In −G)B.

According to Fukui et al. (2020), α and β are estimated by minimizing the penalized resid-
ual sum of squares (PRSS) in (A.1) in Appendix A.1. Here, Θ is a b× b diagonal matrix given

7



M. Yamamura et al.

by Θ = diag(θ1, . . . , θb) and θ = (θ1, . . . , θb)′ are non-negative multiple smoothing parame-
ters. The minimizers of the PRSS are given by (A.2) in Appendix A.1; the GCV criterion for
optimizing θ is given by (A.4) in Appendix A.1. The θ that minimizes GCV in (A.4) can be
obtained in explicit form from the results of Fukui et al. (2020).

As noted in Section 1, we optimize the rank of the smoother matrix as an alternative to
optimizing the placement and number of basis functions. Let P be an n × b matrix defined by

P = (In −G)BQD−1/2. (2.10)

It follows from (A.3) that the underlying smoother matrix is PD(D + Θ)−1P ′. Here, we
consider reducing the rank of the underlying smoother matrix from b to γ, i.e., using the rank-
reduced smoothing matrix P[γ]D[γ](D[γ] + Θ[γ])−1P ′[γ] rather than the underlying smoother
matrix, where P[γ] denotes the matrix consisting of the first through the γth columns of P ,
and D[γ] and Θ[γ] denote the γ × γ matrices consisting of the elements of the first through
the γth columns and the first through the γth rows of D and Θ, respectively. Let Q[γ] de-
note the b × γ matrix consisting of the first through the γth columns of Q. Then, using
P[γ]D[γ](D[γ] + Θ[γ])−1P ′[γ] as the smoothing matrix is equivalent to using the minimizers
of the following PRSS as the estimates:

PRSSθ (α,β | µ̂, γ) =
∥∥∥y −Rµ̂ −Xβ −BQ[γ]Q

′
[γ]α
∥∥∥2 +α′QΘQ′α, (2.11)

where µ̂ is the estimate of µ obtained in the previous iteration consisting of (2.18) and (2.19)
given by µ̂ = µ̂(λ̂). It is clear that PRSSθ(α,β | µ̂, b) coincides with PRSS in (A.1). From ele-
mentary linear algebra, we know that the minimizers of (2.11) are invariant for any θγ+1, . . . , θb.
Hence, it is sufficient to optimize θ[γ] = (θ1, . . . , θγ)′. A simple calculation implies that the
GCV criterion for optimizing θ[γ] is defined by replacing P , D, and Θ in (A.4) with P[γ],
D[γ], and Θ[γ]. Hence, the optimum θ[γ] is given by

θ̂[γ] = arg min
θ[γ]∈Rγ

(y −Rµ̂)′{In −G − P[γ]D[γ](D[γ] +Θ[γ])−1P ′[γ]}2(y −Rµ̂)

[1 − {k + tr(D[γ](D[γ] +Θ[γ])−1)}/n]2 .

Let z[γ] be a γ-dimensional vector consisting of the first through the γth elements of z defined
by

z = (z1, . . . , zb)′ = P ′(y −Rµ̂), (2.12)

and let t(1 | γ) ≤ · · · ≤ t(γ | γ) (γ ∈ {1, . . . , b}) be the order statistics of z2
1, . . . , z

2
γ. Using these

vectors and matrix, we define the following statistic:

s2(a | γ) =


(y −Rµ̂)′(In −G − P[γ]P

′
[γ])(y −Rµ̂)

n − k − γ (a = 0)

(n − k − γ)s2(0 | γ) +∑a
j=1 t( j | γ)

n − k − γ + a
(a = 1, . . . , γ)

. (2.13)
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Let a⋆(γ) be the integer satisfying

a⋆(γ) ∈ A(γ) =
{
a = {0, 1, . . . , γ}

∣∣∣ s2(a | γ) ∈ π(a | γ)
}
,

π(a | γ) =


(0, t(1 | γ)] (a = 0)

(t(a | γ), t(a + 1 | γ)] (a = 1, . . . , γ − 1)

(t(γ | γ),∞) (a = γ)

.
(2.14)

From Yanagihara (2018), there exists only one a ∈ {0, 1, . . . , γ} satisfying s2(a | γ) ∈ π(a | γ),
which means that a⋆(γ) can be one of the values from 0 to γ, i.e., #(A(γ)) = 1. By
using s2(a⋆(γ) | γ) and z in (2.12), we can prepare the γ × γ diagonal matrix V (γ) =
diag(v(1 | γ), . . . , v(γ | γ)) of which the jth diagonal element is given by

v( j | γ) = I
(
s2(a⋆(γ) | γ) ≤ z2

j

) 1 − s2(a⋆(γ) | γ)
z2

j

 .
By a similar calculation to Yanagihara (2018) and Fukui et al. (2020), the minimizers of (2.11)
after optimizing θ[γ] can be obtained in explicit form as follows:

α̂(γ) = Q[γ]V (γ)D−1/2
[γ] z[γ], β̂(γ) = (X ′X)−1X ′ (y −Rµ̂ −Bα̂(γ)) . (2.15)

The rank γ is optimized by minimizing an extended GCV (EGCV; Ohisihi et al., 2020) with
log n as

γ̂ = arg min
γ∈{1,...,b}

(y −Rµ̂)′(In −G − P[γ]V (γ)P ′[γ])
2(y −Rµ̂)

{1 − (k + γ)/n}log n . (2.16)

The EGCV with log n is asymptotically equivalent to the Bayesian information criterion (BIC)
proposed by Schwarz (1978) under the normality assumption. Since an optimization of the
rank γ is in a sense the same as optimizing the number of basis functions to be used, we use
a consistent model selection criterion for selecting γ. Hence, in this study, since the GCV is
used to optimize the smoothing parameters θ, EGCV with log n is correspondingly used to
optimize γ. Using the optimized γ, estimators of α and β after optimizing γ are given by α̂(γ̂)
and β̂(γ̂), respectively.

2.3. Estimation of µ via the GFL

In this subsection, the estimation of µ in (2.7) is considered under the given α = α̂ and
β = β̂. The penalized residual sum of squares (PRSSλ) of the GFL is as follows:

PRSSγ
(
µ | α̂, β̂

)
=
∥∥∥y −Xβ̂ −Bα̂ −Rµ

∥∥∥2 + λ m∑
j=1

∑
ℓ∈D j

ω jℓ |µ j − µℓ |, (2.17)
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where α̂ and β̂ are the estimates of α and β obtained in the previous iteration consisting of
(2.15) and (2.16) given by α̂ = α̂(γ̂) and β̂ = β̂(γ̂), λ is a non-negative tuning parameter, and
D j is the neighboring set of the jth space ( j = 1, . . . ,m). The neighboring setD j is the set for
which i is one of elements if the ith space is adjacent to the jth space ( j = 1, . . . ,m; i , j) . For
example, if the second, third and fifth spaces are adjacent to the first space, thenD1 = {2, 3, 5}.
Here, m j is the number of elements inD j, i.e., m j = #(D j). Furthermore, let ω jℓ be the weight
for adaptive lasso (Zou, 2006), ω jℓ = |µ̄ j − µ̄ℓ |−1, where µ̄ j is the jth element of µ̄ defined by

µ̄ =
(
Om,k+b, Im

) {
(X ,B,R)′(X ,B,R)

}−1 (X ,B,R)′y,

where Om,k+b is an m × (k + b) matrix of zeros.
Let µ̂(λ) be the minimizer of (2.17), i.e.,

µ̂(λ) = arg min
µ∈Rm

PRSSλ
(
µ | α̂, β̂

)
. (2.18)

We optimize λ by minimizing the GCV as

λ̂ = arg min
λ∈Λ

∥y −Xβ̂ −Bα̂ −Rµ̂(λ)∥2
(1 − df(λ)/n)2 (2.19)

where df(λ) is the number of distinct elements in µ̂(λ). The µ̂(λ) and λ̂ are recursively cal-
culated. Based on the domain for λ, Λ = {λ1, . . . , λ100} is set, where λa = λ100(0.75)100−a

(a = 1, . . . , 100). Here, λ100 is given by

λ100 = max
j={1,...,m}

n j|µ̃ j − µ̂∞|∑
ℓ∈D j
ω jℓ
,

and then,

µ̃ j =
1′n j

(y j −X jβ̂ −B jα̂)

n j
, µ̂∞ =

1′mR
′(y −Xβ̂ −Bα̂)

n
.

Setting λ from λ1 to λ100, the calculation is recursively conducted to obtain µ̂(λ1), . . . , µ̂(λ100),
respectively. Finally, the optimum estimation for µ is derived. Since µ̂(λa) (a = 1, . . . , 100)
cannot be obtained by closed forms, unlike α̂ and β̂, the coordinate descent algorithm for the
GFL (see e.g., Ohishi et al., 2021) should be applied to determine µ̂(λa).

3. Simulation Study

To validate our proposed method for nonuniformly sampled spatial data, we conducted a
simulation study. In order to produce nonuniformly sampled spatial data for the simulation,
we generated n-dimensional vectors u1 = (u1,1, . . . , u1,n)′ and u2 = (u2,1, . . . , u2,n)′ as the
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longitude and latitude. First ϵ (= n/100) of u1 and u2 are generated uniformly as follows:

u1,1, . . . , u1,ϵ ∼ i.i.d. U(1, 10),

u2,1, . . . , u2,ϵ are mutually independent and u2,i ∼

U(g1(u1,i), g2(u1,i)) (u1,i ∈ [2, 6])

U(g1(u1,i), 11) (u1,i < [2, 6])
,

where g1 and g2 are functions defined by

g1(x) = log x, g2(x) = (x − 4)2 + 7. (3.1)

The remaining nϵ (= n − ϵ) of u1 and u2 are generated nonuniformly as follows:

(1) The nϵ-dimensional random vector a0 = (a0,1, . . . , a0,nϵ )
′ is generated from the mixture

normal distribution, as a0,1, . . . , a0,nϵ ∼ i.i.d. 0.2 · N(0, 1) + 0.3 · N(15, 5).

(2) The nϵ/2-dimensional random vectors a1 = (a1,1, . . . , a1,nϵ/2)′ and a2 = (a2,1, . . . , a2,nϵ/2)′

are set by transferring the first nϵ/2 of a0 to [1, 10] and the remainder of a0 to [2, 6],
respectively, i.e., given as

a1,i = 1 + 9
a0,i −min j=1,...,nϵ/2 a0, j

max j=1,...,nϵ/2 a0, j −min j=1,...,nϵ/2 a0, j

a2,i = 2 + 4
a0,nϵ/2+i −min j=nϵ/2+1,...,n a0, j

max j=nϵ/2+1,...,n a0, j −min j=nϵ/2+1,...,n a0, j

(i = 1, . . . , nϵ/2).

(3) The random variables ξ1,i and ξ2,i (i = 1, . . . , nϵ/2) are generated by exponential distribu-
tions with the parameters 2.5 and 3.0, respectively.

(4) The (n − ϵ)/2-dimensional random vectors b1 = (b1,1, . . . , b1,nϵ/2)′, and b2 =

(b2,1, . . . , b2,nϵ/2)′ are defined by

b1,i = g1(a1,i) + ξ1,i, b2,i = g2(a2,i) − ξ2,i (i = 1, . . . , n/2).

(5) The nϵ longitude and latitude are given by (u1,ϵ+1, . . . , u1,n)′ = (a′1,a
′
2)′, and

(u2,ϵ+1, . . . , u2,n)′ = (b′1, b
′
2)′.

We also create the following four divided subregions:

Subregion A (u1,i ≤ 2.7, u2,i > 4.7); Subregion B (u1,i > 2.7, u2,i > 4.7);
Subregion C (u1,i ≤ 3.1, u2,i ≤ 4.7); Subregion D (u1,i > 3.1, u2,i ≤ 4.7).

(3.2)

When actually dividing the space for use of the GFL, the space is divided along these subre-
gions, as are the data for the common minke whales in Norwegian waters shown in Figure 1.
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Figure 3. Sample points

Figure 3 shows the four subregions and the sample points for data generated by the simulation
procedure. The domain for obtaining the sample is defined as R ⊂ [1, 10]× [0, 11], where R is
given by

(x, y) ∈ R ⇐⇒ x ∈ [1, 10] and

g1(x) < y ≤ 11 (11 < g2(x))

g1(x) < y < g2(x) (11 ≥ g2(x))
,

where functions g1 and g2 are given by (3.1). In a practical situation, the area within the domain
corresponds to ocean, while the area outside the domain corresponds to land. The simulation
data are generated by the following model:

yi ∼ N
(
η(x1,i, . . . , x4,i, u1,i, u2,i), 1

)
(i = 1, . . . , n),

η(x1,i, . . . , x4,i, u1,i, u2,i) = f1(x1,i) + · · · + f4(x4,i) + g(u1,i, u2,i),

where xℓ,i (ℓ = 1, . . . , 4; i = 1, . . . , n) is generated independently by U(0, 1), and fℓ(x) (ℓ =
1, . . . , 4) is the true trend given by

• f1 (Hastie et al., 2001): f1(x) =
sin(12x + 0.2)

x + 0.2
.

• f2 (partial linear trend): f2(x) =


−60(x − 17/60)2 + 16/15 (x < 1/4)

4x (1/4 ≤ x < 3/4)

80(x − 29/40)2 + 59/20 (3/4 ≤ x)

.

• f3 (linear trend): f3(x) = 6x.
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• f4 (Wand, 2000): f4(x) = 8{1.5ϕ((x− 0.35)/0.15)− ϕ((x− 0.8)/0.04)}, where ϕ(x) is the
distribution function for the standard normal distribution.

The shape of each trend is shown in Figure 4. Here, g(x, y) indicates a true spatial effect, which
is defined using the following function, g0:

g0(x, y) = 15

∣∣∣∣∣∣(x − 5) exp
{
−1

5
(x − 5)2 − 1

5
x − 1

5
(y − 5)2

}∣∣∣∣∣∣ .
For the true spatial effects, three cases are considered. Cases 1 and 2 involve a spatial effect
that changes discretely. Let E∗1, . . . , E

∗
δ be polygons denoting the true subareas for the simula-

tion domain, where δ is the number of subareas, and let ζℓ = (ζℓ,1, ζℓ,2)′ be the center of gravity
of the polygon vertices in the true subarea E∗ℓ (ℓ = 1, . . . , δ). Now, for (x, y) ∈ E∗ℓ , the discrete
spatial effect for the response variable, g, is defined by

g(x, y) = g0(ζℓ,1, ζℓ,2)

In Case 1, δ = 9; in Case 2, δ = 25. The values E∗1, . . . , E
∗
δ are determined using Voronoi de-

composition, the details of which will be described later. Case 3 includes continuous variation
of the spatial effect, given by

g(x, y) = g0(x, y).

Figure 5 shows the spatial effect g(x, y) for each case. The right, middle and left panels indicate
the g(x, y) for Cases 1, 2 and 3, respectively.

0

5

0.00 0.25 0.50 0.75 1.00

f1

f2

f3

f4

Figure 4. True trends in the simulation study

Prediction accuracy is evaluated using two types of MSE, which are given for data points
and for points other than data points gridded in the space, defined by
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Figure 5. True spatial effects in simulation study

MSE =


E

1n
n∑

i=1

{
η(x1,i, . . . , x4,i, u1,i, u2,i) − η̂(x1,i, . . . , x4,i, u1,i, u2,i)

}2 (sample points)

E

 1
100

100∑
i=1

{η(τi, . . . , τi, κi, νi) − η̂(τi, . . . , τi, κi, νi)}2
 (grid points)

,

where τi = (i − 1)/99 (i = 1, . . . , 100) is obtained by dividing [0, 1] into 99 equal parts, and
(κi, νi) (i = 1, . . . , 100) is obtained by dividing the domain [1, 10]× [0, 11] into 9 vertical equal
parts and 100 points in the 13 horizontal grids contained inR (see Figure6). MSE is determined

 0
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 8

10

 2  4  6  8 10

Figure 6. Grid points (κi, νi) (i = 1, . . . , 100)
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using 1,000 Monte Carlo iterations. The number of basis functions b0 is 15. The segmented
space for applying the GFL is divided for each area in (3.2). The division in the subregion is
conducted so as to be around the n0 sample number included in each segmented small space,
where n0 = 50, 100, 300, 500, 1,000 for n = 5,000, 10,000, 20,000. The segmented small
spaces are determined by Voronoi decomposition as follows:

(i) Let nG be the number of samples of the subregion G, and hG be a value of the ceiling
function nG/n0, i.e., ⌈nG/n0⌉ (G = A,B,C and D). Then, for each subregion, the sample
is divided into hG clusters using the k-mean method.

(ii) Voronoi decomposition is carried out using the centers of the clusters obtained in (i).
The generated Voronoi partitions are denoted as segmented small spaces.

We compared our proposed method with the following two methods:

• GAM (generalized additive model): Here, f1, f2, f3, f4, and g(x, y) are estimated with
the ‘mgcv’ package in R (see Wood, 2023). In this package, g(x, y) is estimated using
the thin-plate spline technique (see e.g., Green & Silverman, 1994, chap. 7).

• PR (polynomial regression): Here, the basis functions are polynomial basis functions as
used in Yamamura et al. (2016) and Solvang et al. (2017). With this method, we select
the best degrees of the polynomials in f1, f2, f3, f4, and g(x, y) from all the possible
combinations, from the first to the sixth, using the Bayesian information criterion (BIC).

Table 1. MSE for sample points

Case n
Proposed (n0)

GAM PR
50 100 300 500 700 1,000

5000 0.218 0.334 0.788 0.660 0.637 1.488 0.397 0.787
1 10000 0.143 0.197 0.454 0.641 0.741 0.599 0.385 0.786

20000 0.098 0.148 0.274 0.342 0.471 0.507 0.418 0.797

5000 0.267 0.385 0.810 0.913 0.924 1.216 0.405 0.863
2 10000 0.168 0.242 0.321 0.606 0.815 0.956 0.415 0.856

20000 0.129 0.173 0.318 0.338 0.521 0.567 0.437 0.870

5000 0.085 0.112 0.273 0.470 0.480 0.477 0.109 0.331
3 10000 0.055 0.070 0.142 0.218 0.273 0.435 0.112 0.320

20000 0.038 0.041 0.080 0.115 0.151 0.209 0.102 0.321

Tables 1 and 2 provide a summary of the MSE for the data points and the grid points. For
the data points, in virtually all cases, our proposed method showed higher prediction accuracy
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Table 2. MSE for grid points

Case n
Proposed (n0)

GAM PR
50 100 300 500 700 1,000

5000 0.345 0.334 0.411 0.362 0.356 0.901 0.766 29.531
1 10000 0.205 0.283 0.360 0.488 0.356 0.378 0.794 22.464

20000 0.208 0.214 0.363 0.299 0.418 0.474 0.667 8.712

5000 0.289 0.296 0.569 0.868 0.901 1.532 0.605 26.583
2 10000 0.227 0.216 0.207 0.484 0.556 0.996 0.725 17.894

20000 0.187 0.207 0.256 0.163 0.313 0.499 1.146 6.699

5000 1.208 1.358 1.829 2.659 2.719 3.027 1.156 7.916
3 10000 0.887 1.093 1.573 1.753 2.235 2.528 1.080 5.014

20000 0.661 0.760 1.280 1.582 1.601 1.855 1.072 2.917

Table 3. Running time for sample points

Case n
Proposed (n0)

GAM PR
50 100 300 500 700 1,000

5000 6.290 3.107 1.375 0.915 0.876 0.656 1.680 0.710
1 10000 16.194 5.783 2.195 1.614 1.496 1.318 2.473 1.206

20000 32.854 13.924 4.782 3.422 2.926 2.715 4.224 2.397

5000 6.671 3.415 1.419 0.992 0.972 0.646 1.683 0.710
2 10000 13.238 6.637 2.305 1.723 1.534 1.346 2.481 1.205

20000 35.904 13.868 4.676 3.522 2.914 2.732 4.211 2.393

5000 6.903 2.944 1.354 0.903 0.877 0.629 1.683 0.709
3 10000 13.829 6.378 2.173 1.587 1.373 1.380 2.468 1.205

20000 35.676 15.517 4.886 3.459 2.886 2.732 4.206 2.391

as well as better accuracy for finer division. Except for Case 3 with n = 5, 000, the proposed
method had a better prediction accuracy than either the GAM or PR. Among the three meth-
ods, the prediction accuracy of PR proved to be the worst. It should be noted that PR is not
appropriate for sparse data points in the area since it produces a large curve with a sixth order
polynomial even if the prediction accuracy for the data points is better. Table 3 summarizes the
running time for the three methods when applied to the sample points. Since iterative calcu-
lation is not necessary for the estimation, applying polynomials is fastest. When n0 = 50 and
100, the running time for the GAM appeared to be shorter than that for the proposed method.
This is because when n0 is small, the fusing of the elements of µ by the GFL must be re-
peated more frequently. Although the proposed method with n0 = 300 did not have the best
prediction accuracy among the proposed methods, the running time was nearly the same as
that for the GAM, and the MSEs for the sample and grid points in the proposed method with
n0 = 300 were tended to be slightly better than those of the GAM. Table 4 shows the following
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Table 4. Running time for proposed method as percentage of ‘mgcv’ package running time

Case n
n0

50 100 300 500 700 1,000

5000 52.20 37.02 21.36 15.94 14.29 10.70
1 10000 85.35 49.26 26.85 20.44 21.24 19.07

20000 61.94 52.97 36.85 28.35 27.44 24.53

5000 49.30 40.79 21.88 14.80 16.50 11.51
2 10000 69.24 51.67 26.19 20.11 21.76 17.23

20000 67.21 50.88 34.86 31.09 26.67 23.89

5000 61.65 34.90 21.26 15.36 14.66 11.66
3 10000 72.02 50.98 25.65 20.65 17.74 19.16

20000 68.07 61.19 37.29 29.57 25.85 24.23

percentage for the sample points:

100 × running time with the proposed method
running time when only f1, f2, f3 and f4 are estimated by the ‘mgcv’ package

(%).

This percentage indicates how much faster the smoothing based on the GRR is, relative to
the time for smoothing using the ‘mgcv’ package. According to our results, the GRR-based
smoothing reduces the running time dramatically, to as little as 1/10 of the time for smoothing
with the ‘mgcv’ package.

4. Real Data Example

By applying the proposed approach to the body condition data for the common minke whales
obtained in Norwegian scientific and commercial whaling operations in the Northeast Atlantic
during the months from April to September, we test its practicality and assess its real-world
performance. Previous analyses of such body condition data collected from 1993 through 2013
have been conducted using the varying coefficients model (Solvang et al., 2017) and the canon-
ical correlation procedure for varying coefficient estimation (Yamamura et al., 2016). For our
study, we updated the data to include the years 2014-2017. The body condition metric typi-
cally takes into account the structural size, e.g., body length of the whale. Immediately after
death, the whales are taken onboard and hauled across the foredeck of the boat. Total body
length is measured in a straight line from the tip of the upper jaw to the apex of the tail fluke
notch. Blubber thickness is measured at three sites (Figure 7): dorsally behind the blowhole
(BT1) and behind the dorsal fin (BT2), and laterally just above the center of the flipper (BT3).
Blubber measurements are made perpendicular from the skin surface to the muscle-connective
tissue interface. Length measurements are recorded to the nearest centimeter, while blubber
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measurements are taken to the nearest millimeter. For all captured whales, the year, month,
day, and location (latitude and longitude) of capture are also recorded.

Figure 7. Measurement sites on whale body

Solvang et al. (2017) recognized that BT2 is difficult to measure consistently and potentially
produces more measurement errors. The particular challenge is the large local variation in
blubber thickness between the actual spot and close neighboring areas on the whale’s body.
Because of this, we excluded BT2 from our analysis. Furthermore, we excluded data from
1993-1996 which presented a different tendency over the entire period. After these exclusions,
data for 11,509 whales were used in our analyses. BT1 served as the response variable yi j. Ta-
ble 5 shows summary statistics for length, BT1, latitude and longitude of the capture position,
and calendar day. Calendar day is sequentially counted from the first day of April to the day
that the measurement of caught whales is completed in September. For example, calendar days
74, 10, and 173 indicate that the measurements were completed on June 13th, April 10th, and
September 20th, respectively. The explanatory variables x1,i j, x2,i j, x3,i j and x4,i j correspond to

Table 5. Data description

Length BT1 Latitude Longitude Calendar day
(cm) (mm) (April 1=1)

Mean 744.71 37.25 71.30 17.31 73.46
(S.D.) 97.00 9.91 5.54 8.98 24.03
Min. 350.00 2.00 56.50 -9.13 9.00
Max. 990.00 100.00 81.30 35.03 172.00

sex, year, calendar day, and length, i.e., p = 4 in (2.1). Since sex is a dummy variable (0 for
male, 1 for female), we estimated it linearly. This means that p1 = 1 in equation (2.2). As in
the simulation study, the number of basis functions b0 was set to 15. Based on the 5 subre-
gions shown in Figure 1, segmented small spaces that included at least 300 individuals were
defined. Finally, the number of segmented small spaces m was set to 37. Figure 8 shows the 5
subregions and the m-spaces that were segmented. In Figure 8, the red frames represent the 5
subregions, the blue frames represent the 37 segmented spaces, and the dots correspond to the
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position of whaling. The µ̂ for each space is estimated. If µ̂ is the same as in the neighboring
spaces, these spaces are fused together as one space.

60°N

65°N

70°N

75°N

80°N

10°W  0° 10°E 20°E 30°E

Figure 8. Segmented spaces

Table 6. Running time, estimated coefficient, and optimal values of hyperparameters

running time (sec) iteration (times) β̂1 λ̂ df(λ̂) γ̂

2.39 8 3.55 4.72 ×10−3 23 8

The estimation results are shown in Table 6 and Figures 9 and 10. Table 6 shows the running
time to obtain the estimation result, the number of iterations until the backfitting algorithm
converges, the estimated regression coefficient for sex, the optimal λ derived from (2.19), the
number of final spaces after being fused (df(λ̂) in (2.19)), and the optimal γ derived from
(2.16). Figures 9 and 10 show the estimation results for µ̂ = (µ̂1, . . . , µ̂m)′, and for fℓ(x) (year,
calendar day, and length) derived from (2.8), respectively. In Figure 10, the marker “|” on the
horizontal axis of each figure represents the sample points. The estimates in the figure were
centered by the weighted mean of the respective spatial effects, i.e., µ̄ = n−1∑m

j=1 n jµ̂ j. Both
figures also include 95% simultaneous confidence intervals constructed by the model-based
bootstrap method (see Appendix A.2 for details on how to compute simultaneous confidence
intervals using this method). In Figure 9, the middle panel is the estimated spatial effect, the
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left and right panels are the lower and upper bounds of the 95% simultaneous confidence in-
terval for the spatial effect, and the dots correspond to the whaling position. In Figure 10, the
right, middle, and left panels are the estimated fℓ(x) for year, calendar day, and length, respec-
tively. The gray zones indicate the 95% simultaneous confidence intervals for fℓ(x). From the
GFL estimation results, the number of subdivided areas has been reduced to 23 (from 37). The
northern area around Svalbard showed the highest value (2.34) among the spaces, while the
coastal area of mid-Norway had the lowest value (−3.24). Based on a previous study of length
distributions in catches from the Northeastern Atlantic stock of minke whale (Øien, 1988), and
focusing on positive estimates for the coastal areas around Svalbard and mid-Norway, we in-
vestigated the proportion of immature individuals whose length was less than 700 centimeters.
Spatial effect estimates, counts of immature and total individuals, and the percentage of imma-
ture whales in the coastal areas of Svalbard and mid-Norway are summarized in Table 7. The
areas showing the highest percentages are in mid-Norway, in the Vestfjorden area, as compared
to the coastal areas of Svalbard, a trend that supports the outcome reported by Øien in 1988.
Vestfjorden is known as an area where calves spend most of their summer (Jonsgård, 1951).
The coastal areas from Trondheimsfjorden up to and including Vestfjorden are more suitable
for immature whales, likely because the shallow waters provide a measure of protection and
offer reasonable feeding conditions, as demonstrated by the higher (positive) spatial effects on
BT1.

Table 7. Proportion of individuals with a length of less than 700 centimeters in coastal areas

Area
Positive estimates
seen in coastal area

Number of individuals less
than 700 cm in length /
total number of individuals

Percentage of individuals
less than 700 cm in length

2.13 42/268 16
0.51 70/289 24

Svalbard 0.76 58/232 25
1.84 129/643 20
2.34 60/303 19

1.28 82/312 26
Mid-Norway 0.94 268/319 84

0.61 189/338 56

In addition, the coastal areas of Svalbard are known to be important feeding grounds for
females, where the minke whales are nourished and accumulate fat reserves not only in their
blubber but also in their visceral fat during the summer (Solvang et al., 2022). The effect at
around 65 degrees North and the Jan Mayen area suggests that feeding on summering herring
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may contribute to this (Solvang et al., 2022).
The result for the effect of sex was 3.55, which is reasonable, as females are larger than

males in general. For the year changes, BT1 decreased until 2015; however, the more recent
tendency is an increase in BT1. The effect for length showed a sharp increasing trend up to
500 cm, followed by a linear increasing trend. This result is reasonable insofar as whales with
greater body length tend to have greater blubber thickness. As for the confidence intervals,
the width of the intervals for calendar day and length widened towards both ends of the data.
The same tendency was observed for year, although it did not widen as rapidly as in the case
of calendar day and length. This is likely due to the fact that calendar day and length were
observed sparsely at the ends of the data, while year was observed relatively uniformly.
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Figure 9. Estimated spatial effect on BT1

5. Conclusion and Discussion

To estimate the spatial effects in densely and sparsely sampled spatial data, we have pro-
posed a method that alternately applies nonparametric regression and graph trend filtering via
the GFL using a backfitting algorithm. In the GFL, the spatial data are segmented in advance
into small spaces of approximately the same density. The segmented small spaces are fused by
the GFL in order to reduce arbitrariness in the segmentation and to improve prediction accu-
racy. In addition, by dividing the spatial data into small spaces of similar density, a wide space
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Figure 10. Estimated effects on BT1 by year, calendar day and length

is created where the data are sparsely scattered and a narrow space is created where the data is
densely scattered. This method is suitable for trend estimation for nonuniformly sampled spa-
tial data, since the wide space created by sparsely sampled data will lead to non-sensitive trend
estimation. In our nonparametric regression, we applied penalized spline regression based on
the GRR as proposed by Yanagihara (2012). In this method, the smoothing parameters that
minimize the GCV are obtained in explicit form, which drastically reduces the time required
for optimization. In addition, in an ordinary additive model, it is necessary to optimize the
placement and number of basis functions for each explanatory variable; however, since the
task of optimizing these values is quite tedious, it is common either to ignore it or to muddle
through with the appropriate optimizations. In the proposed method, we avoid such tedious
optimizations by optimizing the rank of the smoother matrix, which allows us to achieve high
prediction accuracy by strictly performing the task, albeit a simplified version, rather ignoring
the optimizations altogether or muddling through the process.

In a series of simulations, we compared the proposed method to two others: a method that
uses the ‘mgcv’ package (GAM) and the method proposed in Yamamura et al. (2016) and
Solvang et al. (2017), which estimates both f and the spatial effects using polynomials (PR).
The comparisons focused on their respective MSEs for the sample points and grid points, as
well as their relative running times. The PR approach proved to be very fast, as it can be ap-
plied to multiple regression with polynomial equations; however, the MSE at the grid points,
which is the extrapolation prediction, was very poor because the spatial effects and the f val-
ues are estimated with polynomial equations. The proposed method was superior to the GAM
in terms of the MSE for both the sample and grid points, but takes considerably longer than
the GAM when the size of the segmented space is made too small. Even though it requires
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substantial running time, it is clear that the estimation of effects other than the spatial effect by
the penalized spline regression based on GRR reduces running time drastically. Since the key
to improving prediction accuracy is how small the size of the segmented spaces can be made,
further reduction of running time will be an important issue to be addressed in the future. The
fact that the GAM running time is not longer can be attributed to the use of a thin-plate spline to
estimate the spatial effects. The thin-plate spline places basis functions without bandwidths at
all sample points, thus eliminating the need to optimize the placement, number, or bandwidth
of the basis functions.

To show the performance of the proposed method when applied to real world data, we ap-
plied our method to data collected for the common minke whale in order to estimate the effects
on blubber thickness (BT1) of sex, year of observation, month and day of observation (calendar
day), total length of the whale, and capture location. The sex effect was a natural result, with
females having a thicker BT1 than males. The effect of year showed a decreasing trend until
2015, but subsequently followed an increasing trend. The effect of calendar day could roughly
be described as showing an increasing trend; however, the trend was downward in May but
turned upward in June. The effect of length also showed an increasing trend in a rough sense,
while a more detailed view showed a leveling off in the range of 500 to 600 cm. The effect of
location was greater on the north side and lower on the south side. Similar tendencies were
reported by Solvang et al. (2022). Although our confidence intervals might seem too wide
compared to those obtained with the ‘mgcv’ package, it should be noted that the confidence
intervals derived from the ‘mgcv’ package are point-wise values (for example, they correspond
to a particular year), whereas our confidence intervals are simultaneous values, i.e., they in-
clude the estimated curve. It is thus natural that our confidence intervals are wider than those
derived with the ‘mgcv’ package. Nevertheless, for calendar day and length, the intervals at
the endpoints were too wide, no matter how small the number of data points. Finding a way to
avoid fluctuations in the estimated trend at the endpoints represents another future challenge.
Finally, the results derived from the proposed method (in particular, the predictors at non-
sampled points) depended on which initial space segmentation is used. To produce a better
predictor, it will be necessary to study more closely the influence of the initial segmentation.

The R code for the proposed method is available at https://github.com/ohishim/amgfl.
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Appendix

A. Mathematical Details

A.1. GCV Criterion for Optimizing θ

According to Fukui et al. (2020), α and β are estimated by minimizing the following penal-
ized residual sum of squares (PRSS):

PRSSθ (α,β | µ̂) = ∥y −Xβ −Bα −Rµ̂∥2 +α′QΘQ′α, (A.1)

where Θ is a b × b diagonal matrix given by Θ = diag(θ1, . . . , θb) and θ = (θ1, . . . , θb)′ are
non-negative multiple smoothing parameters. Here, µ̂ is the estimate of µ obtained in the one
previous iteration consisting of (2.18) and (2.19) given by µ̂ = µ̂(λ̂). Using the result from
Fukui et al. (2020) after treating y −Rµ̂ as a vector of new response variables in (A.1) yields
the minimizers of (A.1) as

ᾱθ = Q(D +Θ)−1D1/2z, β̄ = (X ′X)−1X ′ (y −Rµ̂ −Bᾱθ) , (A.2)

where z is given by (2.12). From elementary linear algebra, we have

y −Rµ̂ −Bᾱθ −Xβ̄ =
{
In −G − PD(D +Θ)−1P ′

}
(y −Rµ̂), (A.3)

where G = X(X ′X)−1X ′ and P is given by (2.10). Therefore, the GCV criterion for opti-
mizing θ can be given by
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(y −Rµ̂)′{In −G − PD(D +Θ)−1P ′}2(y −Rµ̂)
[1 − {k + tr(D(D +Θ)−1)}/n]2 . (A.4)

A.2. Simultaneous Confidence Intervals via Bootstrap

We here describe the computation of simultaneous confidence intervals for fℓ(x) (ℓ =
p1 + 1, . . . , p) and µ using the model-based bootstrap method (see e.g., Politis, 2014). (These
are calculated in lieu of confidence intervals for each point.) First, to express the ath bootstrap
resample of y (a = 1, . . . ,NB), the following n×n random matrix is prepared, as in Yanagihara
et al. (2017):

Da = (da,1, . . . ,da,n)′, da,1, . . . ,da,n ∼ i.i.d. MNn(1, n−11n),

where MNn(1, n−11n) denotes the n-variate one-trial multinomial distribution with the same
cell probabilities n−1. Additionally, we assume that D1, . . . ,DNB are mutually independent.
The ath bootstrap resample of y can then be expressed as

y⋆a =Xβ̂ +Bα̂ +Rµ̂ + (ȳ − µ̄)1n +Daê, ê = y −Bβ̂ − α̂ −Rµ̂ − (ȳ − µ̄)1n,

where µ̄ is a weighed mean of µ̂, i.e., µ̄ = n−11′nRµ̂ = n−1∑m
j=1 n jµ̂ j. Let β̂⋆a,ℓ, α̂

⋆
a,ℓ and µ̂⋆a, j be

estimates of βℓ, αℓ and µ j derived from the ath bootstrap resample y⋆a , and let ξ̂⋆a,ℓ and hℓ(x)
be (3 + b0)-dimensional vectors defined as

ξ̂⋆a,ℓ =
(
β̂⋆

′

a,ℓ, α̂
⋆′

a,ℓ

)′
, hℓ(x) =

(
cℓ(x)′, bℓ(x)′

)′ .
We can now prepare means and variances

ξ̄⋆ℓ =
1

NB

NB∑
a=1

ξ̂⋆a,ℓ, S⋆ℓ =
1

NB

NB∑
a=1

(
ξ̂⋆a,ℓ − ξ̄⋆ℓ

) (
ξ̂⋆a,ℓ − ξ̄⋆ℓ

)′
,

µ̄⋆j =
1

NB

NB∑
a=1

µ̂⋆a, j, s⋆j =
1

NB

NB∑
a=1

(
µ̂⋆a, j − µ̄⋆j

)2
,

along with the following set

Cℓ =
[

min
i=1,...,n j; j=1,...,m

xℓ,i j, max
i=1,...,n j; j=1,...,m

xℓ,i j,

]
.

The maximum values can be calculated as

t⋆a,ℓ = max
x∈Cℓ

|hℓ(x)′(ξ⋆b,ℓ − ξ̄⋆ℓ )|√
hℓ(x)′S⋆

ℓ
hℓ(x)

, t⋆a,0 = max
j=1,...,m

|µ̂⋆a, j − µ̄⋆j |√
s⋆j

.
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The maximum value ta,ℓ is obtained at, for example, the 100 points into which the Cℓ inter-
val is divided. Now let z⋆ℓ and z⋆0 be (1 − α/2)-quantiles of t⋆1,ℓ, . . . , t

⋆
NB,ℓ

and t⋆1,0, . . . , t
⋆
NB,0

,
respectively. Then, the (1 − α)-simultaneous confidence intervals for fℓ(x) and µ j are given by

fℓ(x) ∈
[

f̂ℓ(x) − z⋆ℓ
√
hℓ(x)′S⋆

ℓ
hℓ(x), f̂ℓ(x) + z⋆ℓ

√
hℓ(x)′S⋆

ℓ
hℓ(x)

]
(x ∈ Cℓ; ℓ = p1 + 1, . . . , p),

µ j ∈
[
µ̂ j − z⋆0

√
s⋆j , µ̂ j + z⋆0

√
s⋆j

]
( j = 1, . . . ,m).
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