
TR-No. 24-02, Hiroshima Statistical Research Group, 1–23

Generalized Fused Lasso for Grouped Data
in Generalized Linear Models

Mineaki Ohishi

Center for Data-driven Science and Artificial Intelligence, Tohoku University
Kawauchi 41, Aoba-ku, Sendai, 980-8576, Japan

Abstract

Generalized fused Lasso (GFL) is a powerful method based on adjacent relationships or the
network structure of data. It is used in a number of research areas, including clustering, dis-
crete smoothing, and spatio-temporal analysis. When applying GFL, the specific optimization
method used is an important issue. In generalized linear models, efficient algorithms based
on the coordinate descent method have been developed for trend filtering under the binomial
and Poisson distributions. However, to apply GFL to other distributions, such as the negative
binomial distribution, which is used to deal with overdispersion in the Poisson distribution, or
the gamma and inverse Gaussian distributions, which are used for positive continuous data, an
algorithm for each individual distribution must be developed. To unify GFL for distributions
in the exponential family, this paper proposes a coordinate descent algorithm for generalized
linear models. To illustrate the method, a real data example of spatio-temporal analysis is
provided.

(Last Modified: February 8, 2024)

Key words: Grouped data, Coordinate descent algorithm, Generalized fused Lasso,
Generalized linear models, Multivariate trend filtering.

E-mail address: mineaki.ohishi.a4@tohoku.ac.jp

1. Introduction

Assume we have grouped data such that y j1, . . . , y jn j are observations of the jth group
( j ∈ {1, . . . ,m}) for m groups. Further, assume the following generalized linear models (GLMs;
Nelder & Wedderburn, 1972) with canonical parameter θ ji and dispersion parameter ϕ > 0:

y ji ∼ p ji(θ ji, ϕ) = exp
[

a ji

a(ϕ)
{θ jiy ji − b(θ ji)} + c(y ji, ϕ)

]
(i ∈ {1, . . . , n j}), (1.1)

where y ji is independent with respect to j and i, a ji is a constant defined by

1



Generalized Fused Lasso for GLMs

a ji =

(the number of trials) (y ji follows a binomial distribution)

1 (otherwise)
,

a(·) > 0, b(·), and c(·) are known functions, and b(·) is differentiable. The θ ji has the following
structure:

θ ji = h(η ji), η ji = β j + q ji,

where h(·) is a known differentiable function, β j is an unknown parameter, and q ji is a known
term called the offset, which is zero in many cases. Although θ ji depends not only on the group
but also on the individual, the jth group is characterized by a common parameter β j. We are
thus interested in describing the relationship among the m groups. Here, the expectation of y ji

is given by

E[y ji] = µ(η ji) = ḃ(θ ji),

where µ(·) is a known function and ḃ(·) is a derivative of b(·), i.e., ḃ(θ) = db(θ)/dθ. Further-
more, µ−1(·) is a link function, and h(·) is an identify function, i.e., h(η) = η, when µ−1(·) is a
canonical link. Tables 1, 2, and 3 summarize the relationships between model (1.1) and each
individual distribution. In this paper, we consider clustering for m groups or discrete smoothing
via generalized fused Lasso (GFL; e.g., Höfling et al., 2010; Ohishi et al., 2021).

Table 1. Expectation (ζ (= E[y])) and dispersion (ϕ)

Gaussian N(ζ, ϕ)
Binomial B(a, ζ)/a (ϕ = 1)
Poisson P(ζ) (ϕ = 1)

Negative binomial NB(ζ, 1/ϕ) (Poisson-Gamma mixture: y ∼ P(ζ0) and ζ0 ∼ Ga(1/ϕ, ζϕ))
Gamma Ga(1/ϕ, ζϕ) (shape: 1/ϕ; scale: ζϕ)

Inverse Gaussian IG(ζ, 1/ϕ) (shape: 1/ϕ)

GFL is an extension of fused Lasso (Tibshirani et al., 2005) which can incorporate re-
lationships among multiple variables, such as adjacent relationships and network structure,
into parameter estimation. For example, Xin et al. (2014) applied GFL to the diagnosis
of Alzheimer’s disease by expressing the structure of structural magnetic resonance images
of human brains as a 3D grid graph; Ohishi et al. (2021) applied GFL to model spatial
data based on geographical adjacency. Although the GFL in these particular instances is
based on one factor (brain structure or a geographical relationship), it can deal with rela-
tionships based on multiple factors. For example, we can define an adjacent relationship
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Table 2. GLM components for canonical link (h(η) = η)

µ(η) link (µ−1(ζ)) a(ϕ) b(θ) V(ζ)(1)

Gaussian η ζ ϕ θ2/2 1
Binomial exp(η)/{1 + exp(η)} log{ζ/(1 − ζ)} 1 − log{1 − µ(θ)} ζ(1 − ζ)
Poisson exp(η) log ζ 1 exp(θ) ζ

Negative binomial ϕ−1 exp(η)/{1 − exp(η)} log{ζ/(ϕ−1 + ζ)} 1 ϕ−1 log{ϕ−1 + µ(θ)} ζ + ϕζ2

Gamma −1/η −1/ζ ϕ − log(−θ) ζ2

Inverse Gaussian (−η)−1/2 −1/ζ2 2ϕ −2
√
−θ ζ3

(1) V(·) is a variance function.

Table 3. GLM components for log-link (µ−1(ζ) = log ζ)

h(η) h−1(θ) ḣ(η)

Negative binomial log[exp(η)/{ϕ−1 + exp(η)}] log[ϕ−1 exp(θ)/{1 − exp(θ)}] {1 + ϕ exp(η)}−1

Gamma − exp(−η) − log(−θ) exp(−η)
Inverse Gaussian − exp(−2η) − log(−θ)/2 2 exp(−2η)

for spatio-temporal cases based on two factors by combining geographical adjacency and the
order of time. Yamamura et al. (2021), Ohishi et al. (2022), and Yamamura et al. (2023)
dealt with multivariate trend filtering (e.g., Tibshirani, 2014) based on multiple factors via
GFL and applied it to the estimation of spatio-temporal trends. Yamamura et al. (2021) and
Ohishi et al. (2022) used a logistic regression model, which coincides with model (1.1) when
n j = 1, q ji = 0 (∀ j ∈ {1, . . . ,m};∀i ∈ {1, . . . , n j}) under a binomial distribution. Since this
relationship holds by the reproductive property of the binomial distribution, their methods can
also be applied to grouped data. Yamamura et al. (2023) used a Poisson regression model,
which coincides with model (1.1) when n j = 1 (∀ j ∈ {1, . . . ,m}) under a Poisson distribution.
As is the case for Yamamura et al. (2021) and Ohishi et al. (2022), the method of Yamamura
et al. (2023) can also be applied to grouped data from the reproductive property of the Pois-
son distribution. Yamamura et al. (2021), Ohishi et al. (2022) and Yamamura et al. (2023)
proposed coordinate descent algorithms to obtain the GFL estimator. Although optimization
problems for GLMs, such as logistic and Poisson regression models, are generally solved
by linear approximation, Ohishi et al. (2022) and Yamamura et al. (2023) directly minimize
coordinate-wise objective functions and derive update equations of a solution in closed form.
Although Yamamura et al. (2021) minimized the coordinate-wise objective functions using
linear approximation, Ohishi et al. (2022) showed numerically that direct minimization can
provide the solution faster and more accurately than minimization using a linear approxima-
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tion. Ohishi et al. (2021) also derived an explicit update equation for the coordinate descent
algorithm, which corresponds to model (1.1) under the Gaussian distribution. As described,
coordinate descent algorithms have been developed to produce GFL estimators for three spe-
cific distributions; however, none have been proposed for other distributions. For example, we
have an option of using the negative binomial distribution to deal with overdispersion in the
Poisson distribution (e.g., Gardner et al., 1995; Ver Hoef & Boveng, 2007), or the gamma or
inverse Gaussian distribution for positive continuous data. To apply GFL to these distributions,
it is necessary to derive update equations for each distribution individually.

In this paper, we propose a coordinate descent algorithm to obtain GFL estimators for model
(1.1) in order to unify the GFL approach for distributions in the exponential family. The nega-
tive log-likelihood function for model (1.1) is given by

1
a(ϕ)

m∑
j=1

n j∑
i=1

[
a ji

{
b(h(β j + q ji)) − y jih(β j + q ji)

}
− c(y ji, ϕ)

]
=

1
a(ϕ)

m∑
j=1

n j∑
i=1

a ji

{
b(h(β j + q ji)) − y jih(β j + q ji)

}
− 1

a(ϕ)

m∑
j=1

n j∑
i=1

c(y ji, ϕ).

We estimate parameter vector β = (β1, . . . , βm)′ by minimizing the following function defined
by removing terms that do not depend on β from the above equation and by adding a GFL
penalty:

L(β) =
m∑

j=1

n j∑
i=1

a ji

{
b(h(β j + q ji)) − y jih(β j + q ji)

}
+ λ

m∑
j=1

∑
ℓ∈D j

w jℓ |β j − βℓ |, (1.2)

where λ is a non-negative tuning parameter, D j ⊆ {1, . . . ,m}\{ j} is an index set expressing
adjacent relationship among groups and satisfying ℓ ∈ D j ⇔ j ∈ Dℓ, and w jℓ is a positive
weight satisfying w jℓ = wℓ j. The GFL penalty shrinks the difference between two adjacent
groups |β j − βℓ | and often gives a solution satisfying |β j − βℓ | = 0 (⇔ β j = βℓ). That is, GFL
can estimate some parameters to be exactly equal, thus enabling the clustering of m groups or
the accomplishment of discrete smoothing. To obtain the GFL estimator for β, we minimize
the objective function (1.2) via a coordinate descent algorithm. As Ohishi et al. (2022) and
Yamamura et al. (2023), we directly minimize coordinate-wise objective functions without the
use of approximations. For ordinary situations, where a canonical link (h(η) = η) is used and
there is no offset (q ji = 0), and for several other situations, the update equation of a solution
can be derived in closed form. Table 4 summarizes relationships between an individual distri-
bution and an update equation. Here, ⃝ indicates that the update equation can be obtained in
closed form, and × indicates that it cannot. Even when the update equation cannot be obtained
in closed form, the proposed algorithm can specify an interval that includes the solution, which
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Table 4. Whether the update equation can be obtained in closed form

Using canonical link

offset

without with

Gaussian ⃝ ⃝
Binomial ⃝ ×
Poisson ⃝ ⃝

Negative binomial ⃝ ×
Gamma ⃝ ×

Inverse Gaussian ⃝ ×

Using log-link

offset

without with

Negative binomial ⃝ ×
Gamma ⃝ ⃝

Inverse Gaussian × ×

means we can easily obtain the solution by a simple numerical search.
The remainder of the paper is organized as follows: In Section 2, we give an overview of

coordinate descent algorithm and derive the objective functions for each step. In Section 3, we
discuss coordinate-wise minimization of the coordinate descent algorithm and derive update
equations in closed form in many cases. In Section 4, we evaluate the performance of the pro-
posed method via numerical simulation. In Section 5, we provide a real data example. Section
6 concludes the paper. Technical details are given in the Appendix.

2. Preliminaries

As in Ohishi et al. (2022) and Yamamura et al. (2023), we minimize the objective function
(1.2) using a coordinate descent algorithm. Algorithm 1 gives an overview of the algorithm.
The descent cycle updates the parameters separately, and several parameters are often updated

Algorithm 1 Overview of the coordinate descent algorithm
Require: λ and initial vector for β

repeat
execute descent cycle
if some parameters are exact equal then

execute fusion cycle
end if

until solution converges

to be exactly equal. If several parameters are exactly equal, their updates can become stuck. To
avoid this, the fusion cycle simultaneously updates equal parameters (Friedman et al., 2007).
In each cycle of the coordinate descent, the following function is essentially minimized:
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f (x) =
d∑

i=1

ai {b(h(x + qi)) − yih(x + qi)} + 2λ
r∑
ℓ=1

wℓ |x − zℓ |, (2.1)

where ai and wℓ are positive constants and zℓ (ℓ = 1, . . . , r) are constants satisfying z1 < · · · <
zr. The minimization of f (x) is described in Section 3, and the following subsections show that
an objective function in each cycle is essentially equal to f (x).

2.1. Descent cycle

The descent cycle repeats coordinate-wise minimizations of the objective function L(β)
in (1.2). To obtain a coordinate-wise objective function, we extract terms that depend on
β j ( j ∈ {1, . . . ,m}) from L(β). As described in Ohishi et al. (2021), the penalty term can be
decomposed as

m∑
l=1

∑
ℓ∈Dl

wlℓ |βl − βℓ | = 2
∑
ℓ∈D j

w jℓ |β j − βℓ | +
m∑

l, j

∑
ℓ∈Dl\{ j}

wlℓ |βl − βℓ |.

Then, only the first term depends on β j. By regarding terms that do not depend on β j as
constants and removing them from L(β), the coordinate-wise objective function is obtained as

L j(β) =
n j∑

i=1

a ji

{
b(h(β + q ji)) − y jih(β + q ji)

}
+ 2λ

∑
ℓ∈D j

w jℓ |β − β̂ℓ |, (2.2)

where β̂ℓ indicates βℓ is given. By sorting elements of D j in increasing order of β̂ℓ (∀ℓ ∈ D j),
we can see that L j(β) essentially equals f (x) in (2.1). If there exist ℓ1, ℓ2 ∈ D j (ℓ1 , ℓ2) such
that β̂ℓ1 = β̂ℓ2 , we can temporarily redefine D j and w jℓ as

D j ←− D j\{ℓ2}, w jℓ1 ←− w jℓ1 + w jℓ2 .

Since GFL estimates several parameters as being equal, this redefinition is required in most
updates.

2.2. Fusion cycle

In the fusion cycle, equal parameters are replaced by a common parameter and L(β) is
minimized with respect to the common parameter. Let β̂1, . . . , β̂m be current solutions for
β1, . . . , βm, and ξ̂1, . . . , ξ̂t (t < m) be their distinct values. The relationship among the current
solutions and their distinct values is specified as

Ek =
{
j ∈ {1, . . . ,m} | β̂ j = ξ̂k

}
(k = 1, . . . , t).

That is, the following statements are true:
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j1, j2 ∈ Ek ⇐⇒ β̂ j1 = β̂ j2 = ξ̂k, j1 ∈ Ek1 , j2 ∈ Ek2 (k1 , k2)⇐⇒ ξ̂k1 = β̂ j1 , β̂ j2 = ξ̂k2 .

Then, the β j (∀ j ∈ Ek) are replaced by a common parameter ξk and L(β) is minimized with
respect to ξk. Hence, to obtain a coordinate-wise objective function, we extract terms that
depend on ξk (k = 1, . . . , t) from L(β).

We can decompose the first term of L(β) as

m∑
j=1

n j∑
i=1

a ji

{
b(h(β j + q ji)) − y jih(β j + q ji)

}
=
∑
j∈Ek

n j∑
i=1

a ji

{
b(h(ξk + q ji)) − y jih(ξk + q ji)

}
+
∑
j<Ek

n j∑
i=1

a ji

{
b(h(β j + q ji)) − y jih(β j + q ji)

}
.

Furthermore, as Ohishi et al. (2021), the penalty term of L(β) can be decomposed as
m∑

j=1

∑
ℓ∈D j

w jℓ |β j − βℓ | = 2
∑
j∈Ek

∑
ℓ∈D j\Ek

w jℓ |ξk − βℓ | +
∑
j<Ek

∑
ℓ∈D j\Ek

w jℓ |β j − βℓ |.

By regarding terms that do not depend on ξk as constants and removing them from L(β), the
coordinate-wise objective function is obtained as

L∗k(ξ) =
∑
j∈Ek

n j∑
i=1

a ji

{
b(h(ξ + q ji)) − y jih(ξ + q ji)

}
+ 2λ

∑
j∈Ek

∑
ℓ∈D j\Ek

w jℓ |ξ − β̂ℓ |. (2.3)

As in the descent cycle, we can see that L∗k(ξ) essentially equals f (x) in (2.1).

3. Main results

In this section, to obtain update equations for the descent and fusion cycles of the coordi-
nate descent algorithm, we describe the minimization of f (x) in (2.1). Following Ohishi et al.

(2022) and Yamamura et al. (2023), we directly minimize f (x). One of the difficulties of the
minimization of f (x) is that f (x) has multiple non-differentiable points z1, . . . , zr. We cope
with this difficulty by using a subdifferential. The subdifferential of f (x) at x̃ ∈ R is given by

∂ f (x̃) = {u ∈ R | f (x) ≥ f (x̃) + u(x − x̃) (∀x ∈ R)} = [g−(x̃), g+(x̃)],

where g−(x) and g+(x) are left and right derivatives defined by

g−(x) = lim
δ→−0

g(x, δ), g+(x) = lim
δ→+0

g(x, δ), g(x, δ) =
f (x + δ) − f (x)

δ
.

Then, x̃ is a stationary point of f (x) if 0 ∈ ∂ f (x̃). For details of a subdifferential, see, e.g.,
Rockafellar (1970), Parts V and VI. In the following subsections, we separately describe the
minimization of f (x) in cases where a canonical link and a general link are used.
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3.1. Canonical link

We first describe the minimization of f (x) in (2.1) with a canonical link, i.e., h(η) = η.
That is, the update equation of the coordinate descent algorithm is given by minimizing the
following function:

f (x) =
d∑

i=1

ai {b(x + qi) − yi(x + qi)} + 2λ
r∑
ℓ=1

wℓ |x − zℓ |. (3.1)

Notice that f (x) in (3.1) is strictly convex. Hence, x̃ is the minimizer of f (x) if and only
if 0 ∈ ∂ f (x̃). First, based on this relationship, we derive the condition that f (x) attains the
minimum at a non-differentiable point zℓ.

The subdifferential of f (x) at zℓ is given by

∂ f (zℓ) = [g−(zℓ), g+(zℓ)],

g−(zℓ) =
d∑

i=1

ai{µ(zℓ + qi) − yi} − 2λwℓ + 2λ
r∑

l,ℓ

wl sign(zℓ − zl),

g+(zℓ) =
d∑

i=1

ai{µ(zℓ + qi) − yi} + 2λwℓ + 2λ
r∑

l,ℓ

wl sign(zℓ − zl).

Hence, if there exists ℓ⋆ ∈ {1, . . . , r} such that 0 ∈ ∂ f (zℓ⋆ ), f (x) attains the minimum at x = zℓ⋆
and ℓ⋆ uniquely exists because of the strict convexity of f (x).

On the other hand, when ℓ⋆ does not exist, we can specify an interval that includes the min-
imizer by checking the signs of the left and right derivatives at each non-differentiable point.
Let s(x) = (sign(g−(x)), sign(g+(x))). From z1 < · · · < zr and the strict convexity of f (x), we
have

∃!ℓ∗ ∈ {0, 1, . . . , r} s.t. ∀ℓ ∈ {1, . . . , r}, s(zℓ) =

(−1,−1) (ℓ ≤ ℓ∗)
(1, 1) (ℓ > ℓ∗)

.

Then, the minimizer of f (x) exists in the following interval:

R∗ = (zℓ∗ , zℓ∗+1); z0 = −∞, zr+1 = ∞.

Hence, it is sufficient to search for the minimizer in R∗. For all x ∈ R∗, the following equation
holds:

|x − zℓ | =

x − zℓ (ℓ ≤ ℓ∗)
−x + zℓ (ℓ > ℓ∗)

.
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This result allows us to rewrite the penalty term in f (x) as

r∑
ℓ=1

wℓ |x − zℓ | =
ℓ∗∑
ℓ=1

wℓ(x − zℓ) −
r∑

ℓ=ℓ∗+1

wℓ(x − zℓ) = w̃1x − w̃2,

w̃1 =

ℓ∗∑
ℓ=1

wℓ −
r∑

ℓ=ℓ∗+1

wℓ, w̃2 =

ℓ∗∑
ℓ=1

wℓzℓ −
r∑

ℓ=ℓ∗+1

wℓzℓ.

Hence, f (x) is rewritten in non-absolute form as

f (x) =
d∑

i=1

ai {b(x + qi) − yi(x + qi)} + 2λ(w̃1x − w̃2) (x ∈ R∗).

The f (x) is differentiable when x ∈ R∗ and its derivative is given by

d
dx

f (x) =
d∑

i=1

ai {µ(x + qi) − yi} + 2λw̃1 =

d∑
i=1

aiµ(x + qi) + u, u = 2λw̃1 −
d∑

i=1

aiyi.

Then, the solution x∗ of d f (x)/dx = 0 is the minimizer of f (x). Hence, we have the following
theorem.

Theorem 1. Let x̂ be the minimizer of f (x) in (3.1). Then, x̂ is given by

x̂ =

zℓ⋆ (ℓ⋆ exists)

x∗ (ℓ∗ exists)
,

where ℓ∗ exists if and only if ℓ⋆ does not exist.

Algorithm 2 The coordinate descent algorithm for a canonical link
Require: λ and initial vector for β

repeat
(descent cycle)
for j ∈ {1, . . . ,m} do

update β j by applying Theorem 1 to (2.2)
end for
define Ek (k = 1, . . . , t)
if t < m then

(fusion cycle)
for k ∈ {1, . . . , t} such that #(Ek) > 1 do

update ξk (= β j; j ∈ Ek) by applying Theorem 1 to (2.3)
end for

end if
until solution converges

We can execute Algorithm 1 by applying Theorem 1 to (2.2) and (2.3) in the descent and fusion
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cycles, respectively. Thus, a detailed implementation of Algorithm 1 when using a canonical
link is provided in Algorithm 2. To apply Theorem 1, we need to obtain x∗. In many cases, x∗
can be obtained in closed form according to the following proposition.

Proposition 1. Let x∗ be the solution of d f (x)/dx = 0 and q0 be a value such that q1 = · · · =
qd = q0. Then, x∗ is given as follows:

• When q0 exists, x∗ is given in a general form as

x∗ = µ−1

−u/
d∑

i=1

ai

 − q0.

• Even when q0 does not exist, x∗ for the Gaussian and Poisson distributions is given by

x∗ =


1
d

− d∑
i=1

qi − u

 (Gaussian)

log(−u) − log

 d∑
i=1

exp(qi)

 (Poisson)

.

For example, q0 exists and q0 = 0 holds for GLMs without an offset. When q0 does not exist,
x∗ can be obtained for each distribution. For the Gaussian and Poisson distributions, since
µ(x+ q) can be divided with respect to x and q, x∗ can be obtained in closed form. Note that x∗
for a Gaussian distribution when q0 exists and equals 0 coincides with the result in Ohishi et al.

(2021). For distributions for which such a decomposition is impossible, such as the binomial
distribution, a numerical search is required to obtain x∗. However, we can easily obtain x∗ by
a simple algorithm, such as a line search, because f (x) is strictly convex and has its minimizer
in the interval R∗.

3.2. General link

Here, we consider the minimization of f (x) in (2.1) with a general link, i.e., h(·) is a generally
differentiable function. Then, although strict convexity of f (x) is not guaranteed, its continuity
is maintained. This means the uniqueness of the minimizer of f (x) is not guaranteed, but we
can obtain minimizer candidates by using the same procedure as in the previous subsection.

The subdifferential of f (x) at zℓ is given by

∂ f (zℓ) = [g−(zℓ), g+(zℓ)],

g−(zℓ) =
d∑

i=1

aiḣ(zℓ + qi) {µ(zℓ + qi) − yi} − 2λwℓ + 2λ
r∑

l,ℓ

wl sign(zℓ − zl),
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g+(zℓ) =
d∑

i=1

aiḣ(zℓ + qi) {µ(zℓ + qi) − yi} + 2λwℓ + 2λ
r∑

l,ℓ

wl sign(zℓ − zl),

where ḣ(x) = dh(x)/dx. Since zℓ satisfying 0 ∈ ∂ f (zℓ) is a stationary point of f (x), such points
are minimizer candidates of f (x). Next, we define intervals as Rℓ = (zℓ, zℓ+1) (ℓ = 0, 1, . . . , r).
For x ∈ Rℓ, f (x) can be written in non-absolute form as

f (x) = fℓ(x) =
d∑

i=1

ai {b(h(x + qi)) − yih(x + qi)} + 2λ(w̃1,ℓx − w̃2,ℓ),

w̃1,ℓ =

ℓ∑
l=1

wl −
r∑

l=ℓ+1

wl, w̃2,ℓ =

ℓ∑
l=1

wlzl −
r∑

l=ℓ+1

wlzl.

We can then search for minimizer candidates of f (x) by piecewise minimization. That is,
x ∈ Rℓ minimizing fℓ(x) is a minimizer candidate. Hence, we have the following theorem.

Theorem 2. Let x̂ be the minimizer of f (x) in (2.1) and define a set S by

S = {z ∈ {z1, . . . , zr} | 0 ∈ ∂ f (z)} ∪
r∪
ℓ=0

{
arg min

x∈Rℓ
fℓ(x)
}
.

Now, suppose that

∃Z− ∈ R s.t. x ≤ Z− =⇒ ḟ0(x) < 0, ∃Z+ ∈ R s.t. x ≥ Z+ =⇒ ḟr(x) > 0, (3.2)

where ḟℓ(x) = d fℓ(x)/dx. Then, S is the set of minimizer candidates of f (x) and x̂ is given by

x̂ = arg min
x∈S

f (x).

The assumption (3.2) excludes the case in which f (x) attains the minimum at x = ±∞. More-
over, we have the following corollary (the proof is given in Appendix A.1).

Corollary 1. Suppose that for all ℓ ∈ {0, 1, . . . , r},

∀x ∈ Rℓ, f̈ℓ(x) =
d2

dx2 fℓ(x) > 0,

is true, and that (3.2) holds. Then, f (x) is strictly convex and #(S) = 1, where S is given

in Theorem 2. Moreover, the unique element of S is the minimizer of f (x) and is given as in

Theorem 1.

To execute Algorithm 1 for GLMs with a general link, we can replace Theorem 1 with Theo-
rem 2 or Corollary 1 in Algorithm 2. The next subsection gives specific examples of using a
general link.
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3.2.1. Examples

This subsection focuses on the negative binomial, gamma, and inverse Gaussian distribu-
tions with a log-link as examples of using a general link. In the framework of regression, the
negative binomial distribution is often used to deal with overdispersion in Poisson regression,
making it natural to use a log-link. Note that NB-C and NB2 indicate negative binomial re-
gression with canonical and log-links, respectively (for details, see, e.g., Hilbe, 2011). The
gamma and inverse Gaussian distributions are used to model positive continuous data. Their
expectations must be positive. However, their canonical links do not guarantee that their ex-
pectations will, in fact, be positive. Hence, a log-link rather than a canonical link is often
used for these distributions (e.g., Algamal, 2018; Dunn & Smyth, 2018, Chap. 11). Here, we
consider coordinate-wise minimizations for the three distributions with a log-link.

For x ∈ Rℓ, f (x) in (2.1) is given by

f (x) = fℓ(x)

=



d∑
i=1

(ϕ−1 + yi) log
{
ϕ−1 + exp(x + qi)

}
+ vℓx − 2λw̃2,ℓ −

d∑
i=1

yiqi (NB2)

u exp(−x) + vℓx − 2λw̃2,ℓ +

d∑
i=1

qi (Gamma)

exp(−x)
{
u1 exp(−x) − 2u2

}
+ vℓx − 2λw̃2,ℓ (Inverse Gaussian)

,

vℓ =


2λw̃1,ℓ −

∑d
i=1 yi (NB2)

2λw̃1,ℓ + d (Gamma)

2λw̃1,ℓ (Inverse Gaussian)

, u =
d∑

i=1

yi

exp(qi)
,

u1 =

d∑
i=1

yi exp(−2qi), u2 =

d∑
i=1

exp(−qi).

Hence, the first- and second-order derivatives of fℓ(x) are given by

ḟℓ(x) =



d∑
i=1

(
ϕ−1 + yi

)
exp(x + qi)

{
ϕ−1 + exp(x + qi)

}−1
+ vℓ (NB2)

−u exp(−x) + vℓ (Gamma)

2 exp(−x){u2 − u1 exp(−x)} + vℓ (Inverse Gaussian)

,

f̈ℓ(x) =


ϕ−1

d∑
i=1

(
ϕ−1 + yi

)
exp(x + qi)

{
ϕ−1 + exp(x + qi)

}−2
(NB2)

u exp(−x) (Gamma)

2 exp(−x){2u1 exp(−x) − u2} (Inverse Gaussian)

.
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We can see that f̈ℓ(x) > 0 holds for all ℓ ∈ {0, 1, . . . , r}, for NB2 and the gamma distribu-
tion. Hence, the minimizers of f (x) can be uniquely obtained from Corollary 1. On the other
hand, the uniqueness of the minimizer for the inverse Gaussian distribution is not guaranteed;
however, we have v0 < 0, vr > 0, and

u2 − u1 exp(−x) =

< 0 (x < log(u1/u2))

> 0 (x > log(u1/u2))
.

This implies x < min{log(u1/u2), z1} ⇒ ḟ0(x) < 0 and x > max{log(u1/u2), zr} ⇒ ḟr(x) > 0.
Hence, the minimizer for the inverse Gaussian distribution can be obtained by Theorem 2.

We now give specific solutions. From above, we have the following proposition.

Proposition 2. Let x̃ℓ be a stationary point of fℓ(x). If x̃ℓ exists, it is given by

x̃ℓ =


log(−vℓ/ϕ) − log

(
2λw̃1,ℓ + d/ϕ

) − q0 (NB2 only when ∃q0 s.t. q1 = · · · = qd = q0)

log(u/vℓ) (Gamma)

log
({
−u2 +

√
u2

2 + 2u1vℓ

}
/vℓ

)
(Inverse Gaussian)

.

Moreover, a relationship between x̃ℓ and the minimizer of f (x) is given by

x̃ℓ exists in Rℓ =⇒

x̃ℓ is the unique minimizer of f (x) (NB2, Gamma)

x̃ℓ is a minimizer candidate of f (x) (Inverse Gaussian)
.

3.3. Some comments regarding implementation

3.3.1. Dispersion parameter estimation

In the previous subsections, we discussed the estimation of β j which corresponds to the es-
timation of the canonical parameter θ ji. The GLMs in (1.1) also have dispersion parameter ϕ.
Although ϕ is fixed at one for the binomial and Poisson distributions, it is unknown for other
distributions, and, hence, we need to estimate the value of ϕ. The Pearson estimator is often
used as a suitable estimator (e.g., Dunn & Smyth, 2018, Chap. 6). Let β̂1, . . . , β̂m be estimators
of β1, . . . , βm, t be the number of distinct values of them, and ζ̂ ji = µ(β̂ j + q ji). Then, the
Pearson estimator of ϕ is given by

ϕ̂ =
χ2

n − t
, χ2 =

m∑
j=1

n j∑
i=1

(y ji − ζ̂ ji)2

V(ζ̂ ji)
,

where V(·) is a variance function (see Table 2). For distributions other than the negative bino-
mial distribution, the estimator of ϕ can be obtained after β is estimated since the estimation
of β does not depend on ϕ. For the negative binomial distribution, the estimation of β depends

13
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on ϕ because µ(·) and b(·) depend on ϕ. Hence, we need to add a step updating ϕ and repeat
updates of β and ϕ alternately. Moreover, this Pearson estimator is used for the diagnosis of
overdispersion in the binomial and Poisson distributions. If ϕ̂ > 1, it is doubtful that the model
is appropriate.

3.3.2. Penalty weights

The objective function L(β) in (1.2) includes penalty weights, and the GFL estimation pro-
ceeds with the given weights. Although setting w jℓ = 1 is usual, this may cause a problem of
over-shrinkage because all pairs of parameters are shrunk uniformly by the common λ. As one
option to avoid this problem, we can use the following weight based on adaptive-Lasso (Zou,
2006):

w jℓ = 1/|β̃ j − β̃ℓ |,

where β̃ j is an estimator of β j and the maximum likelihood estimator (MLE) may be a reason-
able choice for it. If there exists q j0 such that q j1 = · · · = q jn j = q j0, the MLE is given in the
following closed form:

β̃ j = µ
−1

 n j∑
i=1

a jiy ji/

n j∑
i=1

a ji

 − q j0.

For other cases, see Appendix A.2.

3.3.3. Tuning parameter selection

It is important for a penalized estimation, such as GFL estimation, to select a tuning pa-
rameter, which, in this paper, is represented as λ in (1.2). Because λ adjusts the strength of
the penalty against a model fitting, we need to select a good value of λ in order to obtain a
good estimator. The optimal value of λ is commonly selected from candidates based on the
minimization of, e.g., cross-validation and a model selection criterion. For a given λmax, can-
didates for λ are selected from the interval [0, λmax]. Following Ohishi et al. (2021), λmax is
defined by a value such that all β j ( j ∈ {1, . . . ,m}) are updated as β̂max when a current solution
of β is β̂max = β̂max1m, where β̂max is the MLE under β = β1m (see Appendix A.2) and 1m

is the m-dimensional vector of ones. When a current solution of β is β̂max, the discussion in
Subsection 3.2 gives the condition that β j is updated as β̂max as

0 ∈ ∂L j(β̂max)⇐⇒ A j − 2λw†j ≤ 0 ≤ A j + 2λw†j ,

A j =

n j∑
i=1

a jiḣ(β̂max + q ji)
{
µ(β̂max + q ji) − y ji

}
, w†j =

∑
ℓ∈D j

w jℓ.
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Hence, λmax is given by

λmax = max
j∈{1,...,m}

|A j|
2w†j

.

4. Simulation

In this section, we focus on modeling using count data and establish whether our proposed
method can select the true cluster from the clustering of groups through simulation. For count
data, Poisson regression and NB2 are often used. Hence, we compare the performance of the
two approaches for various settings of the dispersion parameter. Note that GFL for Poisson
regression has already been proposed by Yamamura et al. (2023) and that our contribution is
to apply GFL to NB2. Note, too, that simulation studies were not conducted in Yamamura
et al. (2023).

Let m∗ be the number of true clusters and E∗k ⊂ {1, . . . ,m} (k ∈ {1, . . . ,m∗}) be an index set
specifying groups in the kth true cluster. Then, we generate simulation data from

y ji ∼ NB (k, 1/ϕ) ( j ∈ E∗k , i ∈ {1, . . . , n j}).

We consider four cases of m and m∗ as (m,m∗) = (10, 3), (10, 6), (20, 6), (20, 12), and use the
same settings as Ohishi et al. (2021) for adjacent relationships of m groups and true clusters.
The sample sizes for each group are common, i.e., n1 = · · · = nm = n0. Furthermore, the esti-
mation of ϕ, the definition of the penalty weights, and the candidates for λ follow Subsection
3.3, and the optimal value of λ is selected based on the minimization of BIC (Schwarz, 1978)
from 100 candidates. Here, the performance of the two methods is evaluated by Monte Carlo
simulation with 1,000 iterations.

Tables 5 and 6 summarize the results for m = 10, 20, respectively, in which SP is the selec-
tion probability (%) of the true cluster, ϕ̂ is the Pearson estimator of ϕ, and time is runtime (in
seconds). First, focusing on ϕ = 0, i.e., the true model according to the Poisson distribution,
the value of SP using Poisson regression approaches 100% as n0 increases. Furthermore, we
can say that Poisson regression provides good estimation since ϕ̂ is approximately 1. On the
other hand, NB2 is unable to select the true cluster. The reason for this may be that the dis-
persion parameter in the negative binomial distribution is positive. Next, we focus on ϕ > 0.
Here, Poisson regression produced overdispersion since ϕ̂ is larger than 1, and, hence, it is
unable to select the true cluster. On the other hand, the SP value for NB2 approaches 100%
as n0 increases. Furthermore, ϕ̂ is roughly the true value, indicating that NB2 can provide
good estimation. Finally, it is apparent that Poisson regression is always faster than NB2. The
reason for this may be that Poisson regression requires only the estimation of β, whereas NB2
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Table 5. Simulation results when m = 10

SP (%) ϕ̂ time (s)

m∗ ϕ n0 Poisson NB2 Poisson NB2 Poissosn NB2

3 0 100 67.7 70.0 0.99 0.03 0.31 1.37
500 92.2 77.7 1.00 0.02 0.50 2.48

1,000 97.6 65.3 1.00 0.02 0.70 3.72
5,000 99.6 48.9 1.00 0.01 2.56 14.42

10,000 99.7 52.3 1.00 0.01 5.49 30.84

1 100 20.5 43.3 2.87 0.99 0.30 0.51
500 49.3 84.8 2.89 0.99 0.48 0.89

1,000 60.3 93.1 2.90 1.00 0.68 1.34
5,000 76.1 98.8 2.90 1.00 2.52 5.05

10,000 80.0 99.3 2.90 1.00 5.27 10.15

3 100 3.6 18.0 6.54 2.97 0.29 0.57
500 11.4 68.5 6.67 2.99 0.47 1.04

1,000 18.8 84.9 6.69 3.00 0.67 1.64
5,000 32.4 97.8 6.70 3.00 2.46 6.73

10,000 36.2 98.5 6.70 3.00 5.16 14.05

6 0 100 52.4 52.5 0.99 0.02 0.34 1.20
500 87.0 67.9 1.00 0.02 0.56 2.28

1,000 95.0 61.9 1.00 0.01 0.80 3.51
5,000 99.5 64.2 1.00 0.01 2.99 14.51

10,000 99.9 70.2 1.00 0.01 6.48 30.93

1 100 8.4 12.2 4.23 0.99 0.32 0.57
500 31.3 64.4 4.28 0.99 0.54 1.06

1,000 44.8 81.7 4.29 1.00 0.77 1.63
5,000 64.1 97.0 4.30 1.00 2.92 6.01

10,000 71.0 99.1 4.30 1.00 6.10 11.95

3 100 1.5 2.6 10.57 2.96 0.31 0.61
500 9.0 29.2 10.85 2.99 0.50 1.22

1,000 15.1 57.6 10.86 2.99 0.72 1.91
5,000 26.8 92.3 10.89 3.00 2.74 7.57

10,000 31.2 96.6 10.90 3.00 5.77 15.72

requires repeatedly estimating β and ϕ alternately. We can conclude from this simulation that
Poisson regression is better when the true model is according to a Poisson distribution and that
NB2 can effectively deal with overdispersion in Poisson regression.
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Table 6. Simulation results when m = 20

SP (%) ϕ̂ time (s)

m∗ ϕ n0 Poisson NB2 Poisson NB2 Poissosn NB2

6 0 100 42.1 29.1 0.99 0.02 0.74 3.86
500 86.1 57.7 1.00 0.01 1.14 5.13

1,000 94.6 47.8 1.00 0.01 1.59 7.35
5,000 98.6 46.7 1.00 0.01 6.08 30.11

10,000 99.7 47.2 1.00 0.01 13.68 68.28

1 100 1.1 6.2 4.41 0.99 0.72 1.15
500 13.5 53.8 4.44 1.00 1.12 2.00

1,000 22.0 75.5 4.44 1.00 1.59 2.98
5,000 42.8 97.1 4.45 1.00 5.79 11.40

10,000 46.5 99.4 4.45 1.00 12.96 23.71

3 100 0.0 0.2 11.02 2.98 0.74 1.33
500 0.5 19.6 11.28 2.99 1.16 2.41

1,000 1.4 44.5 11.31 2.99 1.68 3.77
5,000 4.8 90.2 11.35 3.00 6.25 15.81

10,000 5.1 97.1 11.35 3.00 13.81 34.25

12 0 100 12.3 9.7 0.99 0.01 0.75 3.87
500 72.9 68.2 1.00 0.01 1.19 4.76

1,000 89.4 78.7 1.00 0.01 1.67 6.36
5,000 98.5 90.4 1.00 0.01 6.52 26.50

10,000 99.4 93.4 1.00 0.01 14.93 61.25

1 100 0.1 0.1 7.44 0.99 0.69 1.04
500 1.3 3.8 7.54 1.00 1.11 1.90

1,000 5.3 15.0 7.54 1.00 1.58 2.91
5,000 19.1 78.6 7.55 1.00 6.02 11.56

10,000 25.8 95.1 7.55 1.00 13.97 24.21

3 100 0.0 0.0 20.07 2.99 0.69 1.19
500 0.0 0.0 20.55 3.00 1.09 2.23

1,000 0.2 1.3 20.59 3.00 1.56 3.47
5,000 2.0 37.6 20.64 3.00 5.71 14.34

10,000 2.5 68.3 20.65 3.00 12.94 31.52

5. Real data example

In this section, we apply our method to the estimation of spatio-temporal trend using real
crime data. The data consist of the number of recognized crimes committed in the Tokyo
area as collected by the Metropolitan Police Department, available at TOKYO OPEN DATA
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(https://portal.data.metro.tokyo.lg.jp/)1. Although these data were aggregated for
each chou-chou (level 4), the finest regional division, we integrate the data for each chou-oaza
(level 3) and apply our method by regarding level 3 as individuals and the city (level 2) as
the group (see Figure 1). There are 53 groups as a division of space, and spatial adjacency is

level 2 level 3

level 4

Figure 1. Divisions of Tokyo

defined by the regional relationships of level 2. We use six years of data, from 2017 to 2022.
The sample size is n = 9,570. Temporal adjacency is defined using a chain graph for the six
time points. According to Yamamura et al. (2021), we can define adjacent spatio-temporal
relationships for m = 318 (= 53 × 6) groups by combining spatial and temporal adjacencies.
Furthermore, following Yamamura et al. (2023), we use population as a variable for the offset.
The population data were obtained from the results of the population census, as provided in
e-Stat (https://www.e-stat.go.jp/en). Since the population census is conducted every
five years, we use the population in 2015 for the crimes in 2017 to 2019 and the population in
2020 for the crimes in 2020 to 2022.

In this analysis, we apply our method to the above crime data, with n = 9,570 individuals
aggregated into m = 318 groups, and estimate the spatio-temporal trends in the data. Specif-
ically, y ji, the number of crimes in the ith region of the jth group, is modeled based on the
Poisson and negative binomial distributions, respectively, as

1 We arranged and used the following production: Tokyo Metropolitan Government & Metropolitan Police Depart-
ment. The number of recognized cases by region, crime type, and method (yearly total; in Japanese), https:
//creativecommons.org/licenses/by/4.0/deed.en.
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y ji ∼ P
(
exp(β j + q ji)

)
, y ji ∼ NB

(
exp(β j + q ji), ψ

)
,

where q ji is a logarithm transformation of the population and canonical and log-links are used,
respectively. Estimation of the dispersion parameter, the setting of penalty weights, and the
candidates for the tuning parameter follow Subsection 3.3. The optimal tuning parameter is
selected from 100 candidates based on the minimization of BIC. Table 7 summarizes the esti-
mation results. The ϕ̂ indicates the Pearson estimator of the dispersion parameter. Since the

Table 7. Summary of real data example

ϕ̂ cluster time (s)

Poisson 2728.28 160 12.48
NB2 18.77 109 111.92

2017 2018

2019 2020

2021 2022
−10

−5

0

Figure 2. GFL estimates of β by NB2
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value of ϕ̂ in the Poisson regression is far larger than 1, there is overdispersion, and we can say
that using Poisson regression is inappropriate. To cope with this overdispersion, we adopted
NB2. The cluster value in the table indicates the number of clusters using GFL. Poisson re-
gression and NB2 clustered the m = 318 groups into 160 and 109 groups, respectively. Figure
2 is a yearly choropleth map of the GFL estimates of β using NB2. The map shows that the
larger the value, the easier it is for crime to occur, and that the smaller the value, the harder it
is. As in this figure, we can visualize the variation of trend with respect to time and space.

6. Conclusion

To unify models based on a variety of distributions, we proposed a coordinate descent al-
gorithm to obtain GFL estimators for GLMs. Although Yamamura et al. (2021), Ohishi et al.

(2022), and Yamamura et al. (2023) dealt with GFL for the binomial and Poisson distributions,
our method is more general, covering both these distributions and others. The proposed algo-
rithm repeats the partial update of parameters and directly solves sub-problems without any
approximations of the objective function. In many cases, the solution can be updated in closed
form. Indeed, in the ordinary situation where a canonical link is used and there is no offset,
we can always update the solution in closed form. Moreover, even when an explicit update is
impossible, we can easily update the solution using a simple numerical search since the inter-
val containing the solution can be specified. Hence, our algorithm can efficiently search the
solution.
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Appendix

A.1. Proof of Corollary 1

Suppose that for all ℓ ∈ {0, 1, . . . , r}, the statement

∀x ∈ Rℓ, f̈ℓ(x) > 0,

is true and that (3.2) holds. Then, ḟℓ(x) is strictly increasing on Rℓ and hence, fℓ(x) is strictly
convex. Moreover, there is the following relationship among a derivative and one-sided deriva-
tives:

lim
x→zℓ−0

ḟℓ−1(x) = g−(zℓ) < g+(zℓ) = lim
x→zℓ+0

ḟℓ(x) (ℓ = 1, . . . , r).

This fact and (3.2) imply the strict convexity of f (x) on R and hence, the minimizer uniquely
exists.

A.2. Derivation of MLEs

We first describe the derivation of the MLE of β j. For distributions with a convex likelihood
function, the MLE is obtained by solving

n j∑
i=1

a jiḣ(β j + q ji)
{
µ(β j + q ji) − y ji

}
= 0.

In Tables 2 and 3, all distributions, with the exception of the inverse Gaussian distribution with
log-link, have convexity. The MLE of β j is given in closed form in the following cases:

β̃ j =



µ−1

 n j∑
i=1

a jiy ji/

n j∑
i=1

a ji

 − q j0 (q j1 = · · · = q jn j = q j0)

n−1
j

n j∑
i=1

(y ji − q ji) (Gaussian)

log
n j∑

i=1

y jiḣ(q ji) − log
n j∑

i=1

ḣ(q ji) exp(q ji) (Poisson or Gamma with log-link)

.
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Other distributions, including the inverse Gaussian distribution with log-link, require a numer-
ical search. Furthermore, the negative binomial distribution requires the repeated updating of
β and ϕ alternately.

Next, we describe the derivation of βmax. The βmax is the MLE of β under β = β1m, and for
distributions with a convex likelihood function, its value is obtained by solving

m∑
j=1

n j∑
i=1

a jiḣ(β + q ji)
{
µ(β + q ji) − y ji

}
= 0.

Notice that this is essentially equal to the derivation of the MLE of β j. Hence, βmax is given in
closed form in the following cases:

β̂max =



µ−1

 m∑
j=1

n j∑
i=1

a jiy ji/

m∑
j=1

n j∑
i=1

a ji

 − q0 (q ji = q0 (∀ j, i))

n−1
m∑

j=1

n j∑
i=1

(y ji − q ji) (Gaussian)

log
m∑

j=1

n j∑
i=1

y jiḣ(q ji) − log
m∑

j=1

n j∑
i=1

ḣ(q ji) exp(q ji) (Poisson or Gamma with log-link)

.
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