Extendibility and stable extendibility of the square of the normal bundle associated to an immersion of the real projective space

Teiichi Kobayashi and Kazushi Komatsu
(Received October 10, 2001)

Abstract. The purpose of this paper is to study the extendibility and the stable extendibility of the square of the normal bundle associated to an immersion of the real projective space and the extendibility of its complexification.

1. Introduction

Let X be a space and A be its subspace. A t-dimensional F-vector bundle ζ over A is called extendible (respectively stably extendible) to X, if there is a t-dimensional F-vector bundle over X whose restriction to A is equivalent (respectively stably equivalent) to ζ as F-vector bundles, where F is the real number field R, the complex number field C or the quaternion number field H (cf. [10] and [3]). Let R^n be the n-dimensional Euclidean space and RP^n be the n-dimensional real projective space.

We study the question: Determine the dimension n for which a vector bundle over RP^n is extendible (or stably extendible) to RP^m for every $m > n$. The answers have been obtained for the tangent bundle of RP^n (cf. [5] and [7]), for the square of the tangent bundle of RP^n (cf. [4]) and for the normal bundle associated to an immersion of RP^n in R^{n+k} (cf. [8] and [9]).

Denote by $\phi(n)$ the number of integers s such that $0 < s \leq n$ and $s \equiv 0, 1, 2$ or $4 \mod 8$. For the square of the normal bundle associated to an immersion of RP^n in R^{n+k}, we have

Theorem 1. Let v^2 be the square of the normal bundle v associated to an immersion of RP^n in R^{n+k}, where $k > 0$.

(1) Assume that there is an integer a such that

$$2(n+1)^2 + 2k(n+1) \leq a\phi(n) \leq 2(n+1)^2 + 2k(n+1) + k^2.$$

Then v^2 is stably extendible to RP^m for every $m > n$, and if $n < k^2$ in addition to the above condition, v^2 is extendible to RP^m for every $m > n$.

2000 Mathematics Subject Classification. Primary 55R50; Secondary 55N15.

Key words and phrases. vector bundle, extendible, stably extendible, tangent bundle, normal bundle, tensor product, K-theory, KO-theory, real projective space.
(2) Assume that there is an integer a such that
\[2(n + 1)^2 + 2k(n + 1) + k^2 < a2^\delta(n) < 2(n + 1)^2 + 2k(n + 1) + 2^\delta(n). \]
Then \(v^2 \) is not stably extendible to \(\mathbb{R}P^m \) for \(m = a2^\delta(n) - 2(n + 1)^2 - 2k(n + 1) \).

Theorem 2. Let \(v^2 \) be the square of the normal bundle \(v \) associated to an immersion of \(\mathbb{R}P^n \) in \(R^{2n+1} \). Then \(v^2 \) is extendible to \(\mathbb{R}P^m \) for every \(m > n \) if and only if \(1 \leq n \leq 17 \) or \(n = 20, 21 \).

Denote by \(\lfloor x \rfloor \) the integral part of a positive real number \(x \). For the complexification of the square of the normal bundle associated to an immersion of \(\mathbb{R}P^n \) in \(R^{n+k} \), we have

Theorem 3. Let \(cv^2 \) be the complexification of the square of the normal bundle \(v \) associated to an immersion of \(\mathbb{R}P^n \) in \(R^{n+k} \), where \(k > 0 \).

1. Assume that there is an integer \(b \) such that
\[2(n + 1)^2 + 2k(n + 1) \leq b2^{[n/2]} \leq 2(n + 1)^2 + 2k(n + 1) + k^2. \]
Then \(cv^2 \) is stably extendible to \(\mathbb{R}P^m \) for every \(m > n \), and if \(n \leq 2k^2 \) in addition to the above condition, \(cv^2 \) is extendible to \(\mathbb{R}P^m \) for every \(m > n \).

2. Assume that there is an integer \(b \) such that
\[2(n + 1)^2 + 2k(n + 1) + k^2 < b2^{[n/2]} < 2(n + 1)^2 + 2k(n + 1) + 2^{[n/2]}. \]
Then \(cv^2 \) is not stably extendible to \(\mathbb{R}P^m \) for \(m = b2^{[n/2]+1} - 4(n + 1)^2 - 4k \).

(1 + n + 1).

Theorem 4. Let \(cv^2 \) be the complexification of the square of the normal bundle \(v \) associated to an immersion of \(\mathbb{R}P^n \) in \(R^{2n+1} \). Then \(cv^2 \) is extendible to \(\mathbb{R}P^m \) for every \(m > n \) if and only if \(1 \leq n \leq 18 \) or \(n = 20, 21 \).

This note is arranged as follows. Theorem 1 is proved in Section 2. In Section 3 we study the Whitney sum decomposition of the square of the normal bundle associated to an immersion of \(\mathbb{R}P^n \) in \(R^{2n+1} \) and prove Theorem 2. Theorem 3 is proved in Section 4. In Section 5 we study the Whitney sum decomposition of the complexification of the square of the normal bundle associated to an immersion of \(\mathbb{R}P^n \) in \(R^{2n+1} \) and prove Theorem 4.

2. Proof of Theorem 1

Let \(\xi_n \) be the canonical \(R \)-line bundle over \(\mathbb{R}P^n \). The ring structure of \(KO(\mathbb{R}P^n) \) is determined in [1]. We recall the results that are necessary for
our proofs. We use the same letter for a vector bundle and its isomorphism class.

(2.1) [1, Theorem 7.4]. (1) The reduced KO-group $\tilde{KO}(RP^n)$ is isomorphic to the cyclic group $Z/2^{\phi(n)}$, generated by $\xi_n - 1$.
(2) $(\xi_n)^2 = 1$.

Lemma 2.2. Let $v^2 = v(f) \otimes v(f)$ be the square of the normal bundle $v(f)$ associated to an immersion f of RP^n in R^{n+k}. Then the equality

$$v^2 = \{a2^{\phi(n)} - 2(n+1)^2 - 2k(n+1)\} \xi_n + 2(n+1)^2 + 2k(n+1) + k^2 - a2^{\phi(n)}$$

holds in $KO(RP^n)$, where a is any integer.

Proof. Let $\tau = \tau(RP^n)$ be the tangent bundle of RP^n and let \oplus denote the Whitney sum. Since $\tau \oplus 1 = (n+1)\xi_n$ and $\tau \oplus v = n+k$, $v = -(n+1)\xi_n + n+k+1$. Hence we have, by (2.1),

$$v^2 = (n+1)^2(\xi_n)^2 - 2(n+1)(n+k+1)\xi_n + (n+k+1)^2$$

$$= \{a2^{\phi(n)} - 2(n+1)(n+k+1)\} \xi_n + (n+1)^2 + (n+k+1)^2 - a2^{\phi(n)}$$

$$= \{a2^{\phi(n)} - 2(n+1)^2 - 2k(n+1)\} \xi_n + 2(n+1)^2 + 2k(n+1) + k^2 - a2^{\phi(n)}$$

in $KO(RP^n)$ for any integer a. q.e.d.

Let d denote $\dim_R F$, where $F = R, C$ or H. For a real number x, let $[x]$ denote the smallest integer n with $x \leq n$. The following fact is well-known (cf. [2, Theorem 1.5, p. 100]).

(2.3). If α and β are two t-dimensional F-vector bundles over an n-dimensional CW-complex X such that $[(n+2)/d - 1] \leq t$ and $\alpha \oplus k = \beta \oplus k$ for some k-dimensional trivial F-bundle k over X, then $\alpha = \beta$.

Proof of Theorem 1(1). By Lemma 2.2, we have $v^2 = A\xi_n + B$, where $A = a2^{\phi(n)} - 2(n+1)^2 - 2k(n+1)$ and $B = 2(n+1)^2 + 2k(n+1) + k^2 - a2^{\phi(n)}$. By the assumption $A \geq 0$ and $B \geq 0$. For every $m > n$, $i^*(A\xi_m \oplus B) = A\xi_n \oplus B$, where $i: RP^n \rightarrow RP^m$ is the standard inclusion. Hence v^2 is stably extendible to RP^m for every $m > n$, since v^2 is stably equivalent to $A\xi_n \oplus B$.

If $n < k^2$, in addition, $\dim RP^n = n < k^2 = \dim v^2 = A + B$, and so we obtain $v^2 = A\xi_n \oplus B$ by (2.3). Thus v^2 is extendible to RP^m for every $m > n$. q.e.d.

The following result is Theorem 4.1 in [7] which is the stable extendible version of Theorem 6.2 in [5].
Let \(\zeta \) be a \(t \)-dimensional \(R \)-vector bundle over \(\mathbb{R}P^n \). Assume that there is a positive integer \(\ell \) such that \(\zeta \) is stably equivalent to \((t+\ell)\zeta_n \) and \(t+\ell < 2^{\theta(n)} \). Then \(n < t+\ell \) and \(\zeta \) is not stably extendible to \(\mathbb{R}P^m \) for any \(m \) with \(m \geq t+\ell \).

Proof of Theorem 1(2). Put \(\zeta = \zeta^2, \ t = k^2 \) and \(\ell = a2^{\theta(n)} - 2(n+1)^2 - 2k(n+1) - k^2 \). Then \(\zeta \) is stably equivalent to \((t+\ell)\zeta_n \) by Lemma 2.2, and \(t+\ell < 2^{\theta(n)} \) and \(\ell > 0 \) by the assumption. Hence, by (2.4), \(\zeta^2 \) is not stably extendible to \(\mathbb{R}P^m \) for \(m = a2^{\theta(n)} - 2(n+1)^2 - 2k(n+1) \). q.e.d.

3. Proof of Theorem 2

In this section we discuss the square \(\zeta^2 = \zeta(f) \otimes \zeta(f) \) of the normal bundle \(\zeta(f) \) associated to an immersion \(f \) of \(\mathbb{R}P^n \) in \(\mathbb{R}^{2n+1} \) in detail.

Theorem 3.1. Let \(\zeta(f_n)^2 = \zeta(f_n) \otimes \zeta(f_n) \) be the square of the normal bundle \(\zeta(f_n) \) associated to an immersion \(f_n \) of \(\mathbb{R}P^n \) in \(\mathbb{R}^{2n+1} \). Then we have

\[
\begin{align*}
\zeta(f_1)^2 &= 4, & \zeta(f_2)^2 &= 9, & \zeta(f_3)^2 &= 16, \\
\zeta(f_4)^2 &= 4\xi_4 \oplus 21, & \zeta(f_5)^2 &= 36, & \zeta(f_6)^2 &= 4\xi_6 \oplus 45, \\
\zeta(f_7)^2 &= 64, & \zeta(f_8)^2 &= 12\xi_8 \oplus 69, & \zeta(f_9)^2 &= 16\xi_9 \oplus 84, \\
\zeta(f_{10})^2 &= 28\xi_{10} \oplus 93, & \zeta(f_{11})^2 &= 128\xi_{11} \oplus 16, & \zeta(f_{12})^2 &= 92\xi_{12} \oplus 77, \\
\zeta(f_{13})^2 &= 112\xi_{13} \oplus 84, & \zeta(f_{14})^2 &= 124\xi_{14} \oplus 101, & \zeta(f_{15})^2 &= 256, \\
\zeta(f_{16})^2 &= 124\xi_{16} \oplus 165, & \zeta(f_{17})^2 &= 240\xi_{17} \oplus 84, & \zeta(f_{18})^2 &= 604\xi_{18} - 243, \\
\zeta(f_{19})^2 &= 448\xi_{19} - 48, & \zeta(f_{20})^2 &= 284\xi_{20} \oplus 157 \ and & \zeta(f_{21})^2 &= 112\xi_{21} \oplus 372.
\end{align*}
\]

Proof. In Lemma 2.2, let \(k = n+1 \) and put \(a \) as in the following table for \(1 \leq n \leq 21 \):

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>8</td>
<td>9</td>
<td>16</td>
<td>13</td>
<td>18</td>
<td>25</td>
<td>32</td>
<td>21</td>
<td>13</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n)</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then the equalities above follow from Lemma 2.2, (2.1) and (2.3). q.e.d.
Lemma 3.2. Define
\[
\ell(n) = \begin{cases}
2^{\phi(n)+1} - 5(n+1)^2, & \text{if } n = 18, 19, 22 \text{ or } 23, \\
2^{\phi(n)} - 5(n+1)^2, & \text{otherwise}.
\end{cases}
\]
Then \((n+1)^2 + \ell(n) < 2^{\phi(n)}\) if \(n \geq 18\), and \(\ell(n) > 0\) if \(n = 18, 19\) or \(n \geq 22\).

Proof. If \(n = 18, 19, 22\) or 23, the inequality \((n+1)^2 + \ell(n) < 2^{\phi(n)}\) and \(\ell(n) > 0\) are easily verified. Otherwise, \((n+1)^2 + \ell(n) = 2^{\phi(n)} - 4(n+1)^2 < 2^{\phi(n)}\).

As is easily seen, the inequality \(\ell(n) > 0\) holds for \(24 \leq n = 8s + i \leq 31\). For larger values of \(n\), we have the inequality \(\ell(n) > 0\) by induction on \(s\).

q.e.d.

Theorem 3.3. Let \(v(f_n)^2 = v(f_n) \otimes v(f_n)\) be the square of the normal bundle \(v(f_n)\) associated to an immersion \(f_n\) of \(RP^n\) in \(R_{2n+1}\). Then, if \(n = 18, 19\) or \(n \geq 22\), \(v^2\) is not stably extendible to \(RP^m\) for any \(m\) with \(m \geq a2^{\phi(n)} - 4(n+1)^2\), where \(a = 2\) if \(n = 18, 19, 22\) or 23, or \(a = 1\) otherwise.

Proof. Put \(\zeta = v(f_n)^2\), \(t = (n+1)^2\) and \(\ell = a2^{\phi(n)} - 5(n+1)^2\). Then \(\zeta\) is stably equivalent to \((t + \ell)\zeta_n\) by Lemma 2.2, and \(t + \ell < 2^{\phi(n)}\) and \(\ell > 0\) by Lemma 3.2. Hence the result follows from (2.4).

q.e.d.

Proof of Theorem 2. \(\zeta_n\) and the trivial bundles over \(RP^n\) are extendible to \(RP^m\) for every \(m > n\). Hence the if part follows from Theorem 3.1.

The only if part is a consequence of Theorem 3.3.

q.e.d.

4. Proof of Theorem 3

We recall the ring structure of \(K(RP^n)\) determined in [1].

(4.1) [1, Theorem 7.3]. The reduced \(K\)-group \(\tilde{K}(RP^n)\) is isomorphic to the cyclic group \(Z/2^{[n/2]}\), generated by \(c\zeta_n - 1\).

Lemma 4.2. Let \(cv^2 = c(v(f) \otimes v(f))\) be the complexification of the square of the normal bundle \(v(f)\) associated to an immersion \(f\) of \(RP^n\) in \(R_{n+k}\). Then the equality
\[
(cv^2 = \{b2^{[n/2]} - 2(n+1)^2 - 2k(n+1)\}c\zeta_n + 2(n+1)^2 + 2k(n+1) + k^2 - b2^{[n/2]}\)
holds in \(K(RP^n)\), where \(b\) is any integer.

Proof. Complexifying the equality in Lemma 2.2 and using (4.1), we have the equality above, since \([n/2] \leq \phi(n)\).

q.e.d.

Proof of Theorem 3(1). By Lemma 4.2, we have \(cv^2 = Ac\zeta_n + B\), where \(A = b2^{[n/2]} - 2(n+1)^2 - 2k(n+1)\) and \(B = 2(n+1)^2 + 2k(n+1) + k^2 - b2^{[n/2]}\).
By the assumption $A \geq 0$ and $B \geq 0$. For every $m > n$, $i^*(Ac \xi_m \oplus B) = Ac \xi_n \oplus B$, where $i: RP^n \rightarrow RP^m$ is the standard inclusion. Hence cv^2 is stably extendible to RP^m for every $m > n$, since cv^2 is stably equivalent to $Ac \xi_n \oplus B$.

If $n \leq 2k^2$, in addition, $[(\dim RP^n + 2)/2 - 1] = [n/2] \leq k^2 = \dim v^2 = A + B$, and so we obtain $cv^2 = Ac \xi_n \oplus B$ by (2.3). Thus cv^2 is extendible to RP^m for every $m > n$.

The following result is Theorem 2.1 in [7] which is the stably extendible version of Theorem 4.2 for $d = 1$ in [6].

(4.3). Let ζ be a t-dimensional C-vector bundle over RP^n. Assume that there is a positive integer ℓ such that ζ is stably equivalent to $(t + \ell)c \xi_n$ and $t + \ell < 2^{[n/2]}$. Then $[n/2] < t + \ell$ and ζ is not stably extendible to RP^m for any m with $m \geq 2t + 2\ell$.

Proof of Theorem 3(2). Put $\zeta = cv^2$, $t = k^2$ and $\ell = b2^{[n/2]} - 2(n + 1)^2 - 2k(n + 1) - k^2$. Then ζ is stably equivalent to $(t + \ell)c \xi_n$ by Lemma 4.2, and $t + \ell < 2^{[n/2]}$ and $\ell > 0$ by the assumption. Hence, by (4.3), cv^2 is not stably extendible to RP^m for $m = b2^{[n/2]} + 4(n + 1)^2 - 4k(n + 1)$. q.e.d.

5. Proof of Theorem 4

In this section we discuss the complexification $cv^2 = c(v(f) \otimes v(f))$ of the square of the normal bundle $v(f)$ associated to an immersion f of RP^n in R^{2n+1} in detail.

Theorem 5.1. Let $cv(f_n)^2 = c(v(f_n) \otimes v(f_n))$ be the complexification of the square of the normal bundle $v(f_n)$ associated to an immersion f_n of RP^n in R^{2n+1}. Then we have

\[
\begin{align*}
 cv(f_1)^2 &= 4, 	v(f_2)^2 = 9, 	v(f_3)^2 = 16, 	v(f_4)^2 = 25, \\
 cv(f_5)^2 &= 36, & cv(f_6)^2 &= 4c \xi_6 \oplus 45, & cv(f_7)^2 &= 64, \\
 cv(f_8)^2 &= 12c \xi_8 \oplus 69, & cv(f_9)^2 &= 100, & cv(f_{10})^2 &= 28c \xi_{10} \oplus 93, \\
 cv(f_{11})^2 &= 128c \xi_{11} \oplus 16, & cv(f_{12})^2 &= 92c \xi_{12} \oplus 77, & cv(f_{13})^2 &= 112c \xi_{13} \oplus 84, \\
 cv(f_{14})^2 &= 124c \xi_{14} \oplus 101, & cv(f_{15})^2 &= 256, & cv(f_{16})^2 &= 124c \xi_{16} \oplus 165, \\
 cv(f_{17})^2 &= 240c \xi_{17} \oplus 84, & cv(f_{18})^2 &= 92c \xi_{18} \oplus 269, & cv(f_{19})^2 &= 448c \xi_{19} - 48, \\
 cv(f_{20})^2 &= 284c \xi_{20} \oplus 157 & \text{and} & cv(f_{21})^2 &= 112c \xi_{21} \oplus 372.
\end{align*}
\]

Proof. Complexifying the equalities in Theorem 3.1, we have the
equalities above except for $n = 4, 9$ and 18. Using relations $4c_2 \xi_4 = 4$ for $n = 4$, $16c_2 \xi_9 = 16$ for $n = 9$ and $512c_2 \xi_{18} = 512$ for $n = 18$, we have the equalities above from those in Theorem 3.1 by (2.3). q.e.d.

Lemma 5.2. Define

$$\ell(n) = \begin{cases} 2^{\left\lfloor n/2 \right\rfloor + 2} - 5(n + 1)^2, & \text{if } n = 19, \\ 2^{\left\lfloor n/2 \right\rfloor + 1} - 5(n + 1)^2, & \text{if } 20 \leq n \leq 23, \text{ and} \\ 2^{\left\lfloor n/2 \right\rfloor} - 5(n + 1)^2, & \text{otherwise.} \end{cases}$$

Then $(n + 1)^2 + \ell(n) < 2^{\left\lfloor n/2 \right\rfloor}$ if $n \geq 19$, and $\ell(n) > 0$ if $n = 19$ or $n \geq 22$.

Proof. If $n = 19, 22$ or 23, the inequality $(n + 1)^2 + \ell(n) < 2^{\left\lfloor n/2 \right\rfloor}$ is easily verified. Otherwise, $(n + 1)^2 + \ell(n) = 2^{\left\lfloor n/2 \right\rfloor} - 4(n + 1)^2 < 2^{\left\lfloor n/2 \right\rfloor}$.

As is easily seen, the inequality $\ell(n) > 0$ holds for $n = 19, 22$ and 23. For larger values of n, we have the inequality $\ell(n) > 0$ by induction. q.e.d.

Theorem 5.3. Let $cv(f_n)^2 = c(v(f_n) \otimes v(f_n))$ be the complexification of the square of the normal bundle associated to an immersion of $\mathbb{R}P^n$ in \mathbb{R}^{2n+1}. Then, if $n = 19$ or $n \geq 22$, $cv(f_n)^2$ is not stably extendible to $\mathbb{R}P^m$ for any m with $m \geq b2^{\left\lfloor n/2 \right\rfloor + 1} - 8(n + 1)^2$, where $b = 4$ if $n = 19$, $b = 2$ if $n = 22$ or 23, and $b = 1$ otherwise.

Proof. Put $\zeta = cv(f_n)^2$, $\ell = (n + 1)^2$ and $\ell = b2^{\left\lfloor n/2 \right\rfloor} - 5(n + 1)^2$. Then ζ is stably equivalent to $(t + \ell)c_2 \xi_m$ by Lemma 4.2, and $t + \ell < 2^{\left\lfloor n/2 \right\rfloor}$ and $\ell > 0$ by Lemma 5.2. Hence the result follows from (4.3). q.e.d.

Proof of Theorem 4. $c_2 \xi_n$ and the trivial bundles over $\mathbb{R}P^n$ are extendible to $\mathbb{R}P^m$ for every $m > n$. Hence the *if* part follows from Theorem 5.1.

The *only if* part is a consequence of Theorem 5.3. q.e.d.

References

T. Kobayashi
Kochi Asakura-ki 292-21
780-8066 Japan
kteiichi@lime.ocn.ne.jp

K. Komatsu
Kochi University
Department of Mathematics
Faculty of Science
Kochi 780-8520 Japan
komatsu@math.kochi-u.ac.jp