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Abstract. Dynamical aspects of the asymmetric cellular automata were in-
vestigated to consider the signaling processes in biological systems. As a meta-
model of the cascade of feed-forward loop type network motifs in biological
reaction networks, we consider the one dimensional asymmetric cellular au-
tomata where the state of each cell is controlled by a trio of cells, the cell itself,
the nearest upstream cell and the next nearest upstream cell. Through the
systematic simulations, some novel input-dependent wave propagations were
found in certain asymmetric CA, which may be useful for the signaling pro-
cesses like the distinction, the filtering and the memory of external stimuli.

1. Introduction. Signal transduction and gene expression are the most important
information processing in several biological systems[1, 2, 3, 4]. In these processes,
several functions such as the amplification or distinction of the specific signals,
filtering the noises, memory, etc. are realized by several biochemical reactions. The
understanding of such non-trivial phenomena are important for not only biology
but also non-equilibrium physics and the information engineering.

The biological information pathways often consist of some cascade structures.
Then, some types of open flow dynamical systems were studied as models of such
reaction systems[4, 5]. Recently, the network motif called ’feed-forward loop (FFL)’
has been well known to appear frequently in biological reaction networks[6], where
the state of each element is controlled by the states of the nearest upstream elements
and those of the next nearest upstream. Such network motif is considered much
important for the gene regulations generating the spatial and temporal patterns in
morphogenesis[6, 7].

The aim of this paper is to uncover the potential, the possible functional be-
haviors, of FFL type reaction systems, which should provide important hints to
understand several signaling processes. For this aim, we need to prepare simpler
dynamical systems that can be treated systematically. Thus, as one of the simplest
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Figure 1. (a) Illustration of FFLCA. Numbers indicate the cell indexes.

dynamical systems, the asymmetric cellular automata (CA) inspired by the FFL
type network motif are investigated.

In this paper, we mainly focus on the input-dependent phenomena of such asym-
metric CA to consider the transduction of the signals in biochemical reaction net-
works. In the next section, we introduce the model. In section 3, we show some
remarkable behaviors of such CA. Here some novel input-dependent wave propaga-
tions are found, which can be useful for signaling processes. In the last section, we
summarize and show the examples of more complex behaviors in this model.

2. Model. Recently, CA has been studied extensively to consider the replications
and diversification of lives (or artificial lives)[8, 9], calculation processes of some
types of machines[10, 11], pattern formations of reaction diffusion systems[12], flow
of various types of particles[13, 14, 15], etc.. To this time, elementary CA are
studied systematically by Wolfram, and some variants are proposed[16].

For example, the time evolution of the simplest asymmetric CA are given by,

Xi
n+1 = F (Xi−1

n , Xi
n). (1)

Hers, Xi
n gives 0 or 1 (i gives the cell number and n gives the time.) and the

evolutions of Xi
n are determined by only the states of two cells, itself (Xi

n) and
the upstream cell (Xi−1

n ), through the dynamic rule F (). (16 types of F () can be
defined.)

On the other hand, the time evolution of the state X of the element i constructing
the FFL is roughly described as X[i]t+δt = F (X[i]t, X[i− 1]t, X[i− 2]t, ...). In the
living systems, each element has almost two discrete states like “Active - Inactive”
or “ON - OFF” in most of the cases[2, 3, 4]. These facts seem the dynamics of such
systems can be approximately described by the simple asymmetric CA.

Then, in this paper, we consider a following CA with stochastic inputs, as a
meta-model of FFL cascade;

S0
n = Input(0), (2)

S1
n = Input(1), (3)

Si
n+1 = FR(Si−2,

n , Si−1,
n , Si

n). (4)

Here, i gives the cell index (2 ≤ i < N in (4)), n is the discrete time and Si
n is

the state of ith cell at time n. Si
n can have two values, 0 or 1, where Si

n = 1
and Si

n = 0 states correspond to the active and inactive states of each element
in signaling pathways respectively. Input(0) and Input(1) are the external stimuli
to the system which are given 1 with probability P or 0 with probability 1 − P
independently in each n.
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FR() gives reaction rules. Here, the index R is the rule number as mentioned in
the below. Note that (Si−2

n , Si−1
n , Si

n) has 8 patterns from (0, 0, 0) to (1, 1, 1), and
Si

n+1 is given 0 or 1 for each case obeying the dynamic rules FR(). Then, 256 types
of FR() are allowed from

FR(0, 0, 0) = 0, FR(0, 0, 1) = 0, FR(0, 1, 0) = 0, FR(0, 1, 1) = 0,
FR(1, 0, 0) = 0, FR(1, 0, 1) = 0, FR(1, 1, 0) = 0, FR(1, 1, 1) = 0
to
FR(0, 0, 0) = 1, FR(0, 0, 1) = 1, FR(0, 1, 0) = 1, FR(0, 1, 1) = 1,
FR(1, 0, 0) = 1, FR(1, 0, 1) = 1, FR(1, 1, 0) = 1, FR(1, 1, 1) = 1.
In other word, we can model 256 types of reaction pathways by FR(). Referring to

the Wolfram’s way, we name all types of rules by the rule number R which is defined
as, R = 20FR(0, 0, 0) +21FR(0, 0, 1) +22FR(0, 1, 0) +23FR(0, 1, 1) +24FR(1, 0, 0)
+25FR(1, 0, 1) +26FR(1, 1, 0) +27FR(1, 1, 1). In convenience, we call such CA as
FFLCA (feed-forward loop CA). The illustration of FFLCA is given in Fig. 1.

Note, FFLCA with R = 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204,
221, 238 or 255, are completely equivalent to one of the asymmetric CA described
by Eq. (1). It is known that such type of CA cannot realize any remarkable com-
plex dynamics as obtained in FFLCA or those like type IV dynamics named by
Wolfram[16] because such CA are too simple. However, some of the other FFLCA
exhibit several non-trivial dynamics, several types of input-dependent wave propa-
gations, as shown in the following sections.

3. Typical input-dependent wave propagations in FFLCA. In this section,
the dynamical aspects of FFLCA are considered. Depending on the rule number
R, FFLCA show a variety of patterns in i − n space: uniform states, stripe or
checker flag patterns, chaotic pattern, etc.. It is noted that at least the system
needs to exhibit the input-dependent dynamics in order to realize the behaviors like
signaling processes. Then, we only focus on a part of FFLCA which can show the
input-dependent phenomena.

In this section, we consider FFLCA showing two types of wave dynamics against
the change in the input properties.

I) FFLCA showing two distinct pulses.
As the first example, we consider the behaviors of the FFLCA with R = 120

obeying the following reaction rule:
0) F120(0, 0, 0) = 0, 1) F120(0, 0, 1) = 0, 2) F120(0, 1, 0) = 0, 3) F120(0, 1, 1) = 1,
4) F120(1, 0, 0) = 1, 5) F120(1, 0, 1) = 1, 6) F120(1, 1, 0) = 1, 7) F120(1, 1, 1) = 0.
This FFLCA show the following input-dependent behaviors; i) No waves of Si

n =
1 are created when both Input(0) and Input(1) are 0. ii) When only one of the
inputs, Input(0) or Input(1), are given 1, the particle like traveling waves of Si

n = 1
appear as shown in Fig. 2(a). iii) When both Input(0) and Input(1) are given 1,
the traveling structure in which Si

n = 1 and Si
n = 0 are mixed in i - n space appear

as shown in Fig. 2(b) (we call it mixed wave.). Thus, two types of traveling waves
are observed depending on the inputs.

Here, the particle like wave is realized by the rule 4) which give the temporal
evolution as Sj−2

m = 1, Sj
m = 0 → Sj−2

m+1 = 0, Sj
m+1 = 1 when Sj−1

m = 0. Then,
Sj′

m′ = 1 state can propagate to downstream.
On the other hand, the rule 3), 5), 6) and 7) construct the mixed wave. These

rules indicate that Sj
m+1 becomes 1 if two of three cells’ states, Sj−2

m , Sj−1
m and Sj

m

are 1 but Sj
m+1 becomes 0 if all of them are 1. The former effect increases the area
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Figure 2. Typical temporal evolution of the FFLCA with R=120.
(a) Particle like wave. (b) Mixed wave. (c) Typical temporal evo-
lution with P = 0.2 (N = 100). White cells indicate Si

n = 0 and
blacks indicate Si

n = 1.

Sj′

m′ = 1 as well as the latter effect creates the voids of Sj′

m′ = 0. Thus, the mixed
wave propagate with the gradual expansion in i− n space.

Figure 2(c) show the typical temporal evolution of this FFLCA with N = 100
and P = 0.2 where two types of pulse like traveling waves coexist. It is noted that
the rule 1) and 2) are not important to realize the present behavior. The similar
behaviors are found in some other FFLCA for example R = 88, 108, 113, 133, 180,
225 and 229.

II) FFLCA showing the wave filtering.
As the second example, we consider the behaviors of the FFLCA with R = 248

obeying the following reaction rule:
0) F248(0, 0, 0) = 0, 1) F248(0, 0, 1) = 0, 2) F248(0, 1, 0) = 0, 3) F248(0, 1, 1) = 1,
4) F248(1, 0, 0) = 1, 5) F248(1, 0, 1) = 1, 6) F248(1, 1, 0) = 1, 7) F248(1, 1, 1) = 1.
This FFLCA show the following input-dependent behaviors; i) No waves of Si

n =
1 are created when both Input(0) and Input(1) are 0. ii) When only one of the
inputs, Input(0) or Input(1), are given 1, the particle like traveling waves of Si

n = 1
appear as shown in Fig. 3(a). iii) When both Input(0) and Input(1) are given 1,
the traveling wave of Si

n = 1 where the front of this propagates fast but the rear of
this moves slowly as shown in Fig. 3(b). Then, such waves expand rapidly in i - n
space (we call it expanding wave.).

Moreover, the particle like wave disappears when it collides to the expanding
waves (Fig. 3(b)). Thus, the waves created by the input “Input(0) or Input(1) are
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Figure 3. Typical temporal evolution of the FFLCA with R=248.
(a) Particle like wave. (b) Expanding wave. Typical temporal
evolution with (c) P = 0.01 and (d) P = 0.15 (N = 100). Colors
of each cell are the same meaning as the previous figure.

1”, tend to be blocked with the increase in the frequency of the input “Input(0)
and Input(1) are 1”.

Here, the particle like wave is realized by the rule 4) with the same manner as
the previous. On the other hand, the rule 3), 5), 6) and 7) construct the expanding
wave. These rules indicate that Sj

m+1 becomes 1 if more than one cells’ states of
three, Sj−2

m , Sj−1
m and Sj

m are 1. Thus, the area of Sj′

m′ = 1 expands rapidly in i−n
space.

Figure 3(c) and 3(d) show the typical temporal evolution of this FFLCA with (c)
P = 0.01 and (d) P = 0.15 (N = 100). As shown in these figures, the propagations
of the particle like waves are blocked by the expanding waves when P is large while
only the particle like wave propagates when P is smaller. Here, it is noted that the
rule 1) and 2) are not important to realize such behavior. Similar behaviors with
the wave blocking are found in some other FFLCA for example R = 37, 49, 67, 111,
115, 131 and 216.
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Figure 4. Typical temporal evolution of the FFLCA with R=188.
(a)Pattern is sustained. (b) Pattern is re-created by Si

n = 0 waves.
(c) Typical temporal evolution with P = 0.5 → 0.01 → 0.5 (N =
100).

III) FFLCA behaves like memory.
As the third example, we consider the behaviors of the FFLCA with R = 188

obeying the following reaction rule:
0) F188(0, 0, 0) = 0, 1) F188(0, 0, 1) = 0, 2) F188(0, 1, 0) = 1, 3) F188(0, 1, 1) = 1,
4) F188(1, 0, 0) = 1, 5) F188(1, 0, 1) = 1, 6) F188(1, 1, 0) = 0 7) F188(1, 1, 1) = 1.
This FFLCA realizes the sustainment and the re-creation of the pattern of Si

n

as shown in Fig. 4. i) When Input(0) or/and Input(1) are 1, the pattern of Si
n

is sustained temporally as shown in Fig. 4(a). Here, several patterns can be con-
structed by the area of Si

n = 1 with several length and the area of Si
n = 0 with the

unit length. ii) When Input(0) and Input(1) are kept 0 for a enough time span, the
traveling cluster of Si

n = 0 appears and re-creates the patterns of Si
n as shown in

Fig. 4(b).
Figure 4(c) shows the typical temporal evolution of this FFLCA with N = 100.

Here, we change P as P = 0.5 → 0.01 → 0.5. When P = 0.01, the pattern of Si
n

is re-created where several patterns can be formed depending on the sequence of
Input(0) and Input(1), and such formed patterns are sustained when P is large.
Thus, this FFLCA can behaves like the memory.

The sustainment of the formed patterns is realized by the rule 2) ∼ 7) as follows.
The rule 2) ∼ 5) indicates that S2

n becomes 1 if one of the inputs, Input(0) or
Input(1), are 1. Moreover, by the rule 7) and 8), S2

n does not change if Input(0)
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and Input(1) are 1. Thus, S2
n = 1 is sustained unless Input(0) and Input(1) are 0.

In such a case, S3
n is also 1 and this state is sustained because S2

n is given 1. Then,
S4

n (= 0 or 1) is fixed temporally because S2
n = S3

n = 1. By the similar way, the
sequences of Sj

n for j > 5 are also fixed; Sj
n = 1 is fixed if Sj−1

n or Sj−2
n are 1 while

Sj
n = 0 or 1 is fixed if Sj−1

n and Sj−2
n are 1.

The rule 0) and 1) indicates that if Sj−2
m = 0, Sj−1

m = 0 appear, Sj
m+1 become

0. Then, the area Si
n = 0 can expand to downstream cells if Input(0) and Input(1)

continues to be 0 for a long time span. The profiles of the re-created pattern depends
on the number and the propagating distance of Si

n = 0 clusters.
The similar behaviors are found in some other FFLCA for example R = 158,

159, and 194.

4. Summary and discussions. In this paper, feed-forward loop cellular automata
(FFLCA) is introduced to study the possible dynamical behaviors of FFL type
network motif in biochemical reaction systems. Against the inputs to upper cells,
several types of input-dependent wave propagations are observed in FFLCA with
certain rules.

Such input-dependent behaviors are realized by the interactions among two or
more types of propagating structures with different velocities. It is noted that
we can observe similar structures also in simpler asymmetric CAs as described by
Eq. (1) with certain dynamic rules. However, their velocities are given unique for
each dynamic rule. Then, such simpler CAs cannot realize the input-dependent
phenomena as shown in FFLCA.

We expect our results may provide some insight to biological phenomena. Of
course the presented CA is too simple to give a good approximation of the real
biological network. However, the results obtained in such simple dynamical systems
should give a base to characterize the behaviors in several signaling processes.

The living cells can sense and respond to environmental signals. For example,
Eukaryotic cells can sense the chemical gradient and move with directional prefer-
ence toward or away from the source of the chemical cues[17, 18, 19], many species
of bacteria regulate gene expression in response to changes in cell population density
(Quorum sensing)[20, 21, 22], etc..

We expect some of the signaling pathways in these organisms exhibit similar
properties to FFLCA because such properties seem useful to sense environmen-
tal changes. For example, it is expected that these organisms may easily sense
the change in the concentrations of chemicals in the environment if their signaling
pathways can form two or more different patterns depending on the frequency of
the receipt of chemicals. Such “amplification” can be realized by FFLCA as shown
in Fig. 2 and 3; where P is assumed as the frequency of the receipt of chemicals
like cAMP, autoinducer released by quorum sensing bacteria, etc..

Moreover, large phenotype fluctuations in isogenetic cells have been reported
in several organisms recently[23, 24, 25]. We also expect the formation of several
quasi-stable patterns in FFLCA that behaves like memory may provide some hints
to such large fluctuations.

In the presented study, we mainly focus on the example FFLCA showing two
types of pattern dynamics depending on the input sequence. Of course, more com-
plex input-dependent behaviors were also observed in FFLCA with certain dynamic
rules.
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Figure 5. Typical temporal evolution of FFLCA with (a) R = 65
(P = 0.5) and (b) R = 73 (P = 0.5).(a) F indicates the fast wave
and S indicates the slow waves. (b) Types of arrows indicates the
types of patterns.

For example, in the FFLCA with R = 65, three types of defect waves, the
standing wave, the slow wave and the fast wave, appear and show the annihilation
or the change to the other wave types by the collision with each other (Fig. 5(a).
Similar behaviors are found also in the FFLCA with R = 54, 61, 125 and 147.).
In the FFLCA with R = 73, moreover, three types of traveling patterns appear
depending on the input sequences and coexist with each other (Fig. 5(b). Similar
behaviors are found also in the FFLCA with R = 109). We need to clear the relation
between the dynamics and the rules for such complex cases.

Thus, as given in our results, FFL type network motif involves a rich potential to
realize a variety of signaling processes. In addition, we should consider the charac-
teristics of the other types of network motifs like the single-input modules (SIM) and
the dense overlapping regulons (DOR), and the cross-talk among them[1, 2, 3, 4, 6].
The relation between each FFLCA rules showing some functional behaviors and the
dynamical aspects of the chemical reactions, the mechanical properties of biological
molecule, etc. should also be uncovered in the future.
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