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The drift motions of particles in a nonequilibrium lattice gas system are investigated. We consider a
system that consists of two particles interacting repulsively and the potential forces acting on these
particles. When only one particle is driven by an external driving field, the other particle shows the
following two types of drift motions on the average, depending on the field strength, under certain
conditions: I) The particle drifts in the same direction as the external field (forward drift) if the external
field is sufficiently strong. II) The particle drifts in the opposite direction to the external field (backward
drift) if the external field is of a certain strength. We explain the mechanisms of this phenomenon by
considering the transition diagrams.
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Nonequilibrium lattice gases are simple mathematical
models which have been useful and important in the studies
of the universal properties of nonequilibrium systems with a
numerous degrees of freedom.1) Recently, many varieties of
nonequilibrium phenomena such as nonequilibrium phase
transitions,2) a variety of particle flows,3–7) appearances of
long-range spatial correlations,8,9) the fluctuation theorem,10)

and the mathematical foundations of nonequilibrium stat-
istical mechanics and thermodynamics have been investi-
gated through such lattice gases.11–13)

In this letter, we investigate the drift motions of particles
in a lattice gas system along a circle which consists of only
two particles interacting repulsively and the potential forces
acting on them. Under nonequilibrium conditions, lattice gas
systems have been known to show some nontrivial phenom-
ena, such as the appearance of long-range spatial correla-
tions, even if the system involves only two particles.9) In our
system, the following novel phenomena are found when only
one particle is driven by an external driving field; while the
driven particle always drifts in the same direction as the
external field, the other particle may drift in two directions,
the same as or opposite the direction of the external field,
depending on the field strength.

In the following sections, the details of numerical and
analytical results are shown. First, we introduce our model
and show the numerical results, where the above-mentioned
drift motions are observed. Next, we explain the mechanism
of these phenomena by considering the transition diagrams.

Now, we introduce a lattice gas model, which belongs to a
class of driven diffusive two-channel systems.5) We consider
a lattice system with two parallel one-dimensional lanes
along a circle where each lane involves L sites with a
periodic boundary.5–7) Each lane contains only one particle
which hops randomly to the nearest sites without changing
lanes. The sites occupied by particles in the first and second
lanes are denoted x1 and x2, respectively, which are given as
integer numbers from 0 to L� 1.

The effect of potential forces acting on the particles is
described by the following Hamiltonian:

Hðx1; x2Þ ¼ Vðx1Þ þ Vðx2Þ þ V12ðx1; x2Þ; ð1Þ

where VðxÞ represents the one-body potential on each lane,
and V12ðx1; x2Þ represents the interaction potential between
the two particles. Furthermore, an external driving field is
applied to the particle on the second lane. We denote the
field strength F.

The time evolution of this system is described by the
iteration of the following three steps. First, one of the two
particles is randomly chosen. Let the position of the chosen
particle be x. Second, its neighbor site y, x� 1 or xþ 1, is
randomly chosen. Third, the chosen particle moves from x to
y with the probability

cðx; y; x1; x2Þ ¼
1

1þ exp½Qðx ! y; x1; x2Þ=kBT�
; ð2Þ

with

Qðx ! y; x1; x2Þ
¼ Hðx01; x

0
2Þ � Hðx1; x2Þ � Fðx02 � x2Þ;

ð3Þ

where ðx01; x02Þ ¼ ðx1; yÞ when x ¼ x2, and ðx01; x02Þ ¼ ðy; x2Þ
when x ¼ x1.

14) kB is the Boltzmann constant and T is
temperature. Here, the time step is given by [number of
above iterations]/[number of particles (¼ 2)].15)

Specifically, we study the case where VðxÞ ¼ VbjL=2� xj
(Fig. 1), and V12ðx1; x2Þ ¼ d�x1;x2 using the L� L unit matrix
�i j. Also, we focus on the case L ¼ 4. We have found that
this size is minimum to exhibit the phenomenon we
demonstrate in the presented paper.

Now, we demonstrate the simulation of this system. In the
following section, we only consider cases with kBT � d and
F > 0 for simplicity. First, we focus on the dynamical
aspects for the case with Vb � d.
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Fig. 1. Illustrations of effects of potential and external field in each lane.
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Figures 2(a) and 2(b) show typical temporal evolutions of
the rotation numbers of the particle in (a) the first lane (RN1)
and (b) the second lane (RN1) for F ¼ 0:5d, 1:1d and 2:4d
under Vb ¼ 0:98d and kBT ¼ 0:01d. Here, RNi is defined as
the number of rotations along the circle by the particle in the
ith lane in the direction xi : 0 ! 1 ! � � � ! ðL� 1Þ !
0 !. As shown in Fig. 2(b), the drift direction of the particle
in the second lane is always the same as the direction of the
external field independent of F. On the other hand, as shown
in Fig. 2(a), the drift direction of the particle in the first lane
changes depending on F; the drift direction of the particle is
the same as the direction of the external field for a large F,
but it becomes opposite that of the external field following a
decrease in F. Here, such former and latter motions of the
particle in the first lane are named forward and backward
drifts, respectively.

Figures 3(a) and 3(b) show the rotation frequency of the
particle in (a) the first lane (RF1) and (b) the second lane
(RF2) as a function of F=d for several Vb=d (Vb ¼ 0:4d,
0:98d and 1:6d) with kBT ¼ 0:01d. Here, the rotation
frequency of the particle in the ith lane is defined as RFi �
ðRNið�Þ � RNið0ÞÞ=� with time � ! 1. As shown in
Fig. 3(b), the drift direction of the particle in the second
lane is always the same as the direction of the external field.

On the other hand, the dynamical properties of the particle in
the first lane change depending on the relationship between
Vb and d as shown in Fig. 3(a): I) Only forward drift appears
when Vb � d. II) Forward and backward drifts appear
depending on F when Vb � d. III) There are no drift motions
independent of F when Vb � d. Figure 3(c) gives the phase
diagram for the drift directions of a particle in the first lane
as a function of F and Vb. Here, the gray region indicates
RF1 > �, and the black region indicates RF1 < ��, where
� ¼ 10�4 is set as an example. As shown in this figure, the
region where the backward drift appears is given by a certain
range of F and Vb space around F � d and Vb � d.

Now, we try to explain the mechanism of our obtained
phenomena. First, we name all states of this system using the
sites occupied by the particles in each lane ðx1; x2Þ. Since
L ¼ 4, this system has 16 states from ð0; 0Þ to ð3; 3Þ. The
transitional tendency from ðx1; x2Þ to ðx01; x02Þ is given by
Qðx ! y; x1; x2Þ, which was defined previously. Here,
ðx01; x02Þ ¼ ðx1; yÞ when x ¼ x2, and ðx01; x02Þ ¼ ðy; x2Þ when
x ¼ x1. Then, we obtain the transition diagrams; including
all information on the transitions between states.

Figure 4 shows the typical transition diagrams in the cases
where (a) F � 0:5d, (b) F � d and (c) F � 2:5d under
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Fig. 2. Typical temporal evolutions of rotation numbers of particle in (a)

first lane (RN1) and (b) second lane (RN2) for F ¼ 0:5d, 1:1d and 2:4d
under Vb ¼ 0:98d and kBT ¼ 0:01d.
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Fig. 3. Rotation frequency of particle in (a) first lane (RF1) and (b) second

lane (RF2) as a function of F=d for several Vb (Vb ¼ 0:4d, 0:98d and

1:6d) with kBT ¼ 0:01d. (c) Phase diagram for drift direction of particle

in first lane. The gray area indicates RF1 > 0 and the black area indicates

RF1 < 0.
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Fig. 4. Typical transition diagram (left) and illustration of effect of

potential and external field in each lane (right) for (a) F � 0:5d, (b) F �
d, (c) F � 2:5d with Vb � d.
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Vb � d. Here, ði; jÞ indicates the state ðx1; x2Þ, the arrows
give the direction of the transition with a probability higher
than � 0:5 implying Qðx ! y; x1; x2Þ=d . 0, and the values
beside these arrows indicate the value of jQðx ! y; x1; x2Þ=
dj. The motion of the system is represented by the random
walk caused by the fluctuation with kBT in the transition
diagram. Here, the transition in a vertical direction indicates
the motion of the particle in the first lane, and that in a
horizontal direction indicates the same in the second lane.
For simplicity, we consider the case with low temperature,
i.e., 1 � kBT=d > 0. In this case, only transitions in the
directions with Qðx ! y; x1; x2Þ=d . 0 are allowed due to
the smallness of kBT .

The appearance of the forward and backward drift
motions of the particle in the first lane as shown in Figs. 2
and 3 is explained as follows. Figure 4(a) gives a typical
diagram in the cases where Vb � d for F � d. In this
diagram, a state ðx1; x2Þ ¼ ð2; 3Þ is an attractor. This implies
that particles in both lanes drift little, which is consistent
with the results in Figs. 2 and 3.

On the other hand, if F increases to � d, the system can
escape from the state ðx1; x2Þ ¼ ð2; 3Þ as shown in Fig. 4(b).
In such a situation, some transition paths, including the
horizontal rotation from left to right, appear in the diagram.
This means the particle in the second lane continues to
drift in the same direction as that of the external field.
Moreover, it is remarkable that this diagram also has the
transition paths with the vertical rotation from bottom to top;
for example, ð2; 2Þ ! ð1; 2Þ ! ð1; 3Þ ! ð1; 0Þ ! ð1; 1Þ !
ð0; 1Þ ! ð3; 1Þ ! ð2; 1Þ [as indicated by thin arrows in
Fig. 4(b)]. However, this diagram has no paths with the
vertical rotations from top to bottom. This fact means that,
due to the drift of the particle in the second lane, the particle
in the first lane drifts in the direction opposite that of the
external field.

If F exceeds � 2d, the direction of the arrow between
ðx1; x2Þ ¼ ð3; 2Þ and ðx1; x2Þ ¼ ð3; 3Þ in the diagram changes.
Then, as in Fig. 4(c), the diagram not only has the transition
paths with vertical rotations from bottom to top but also
those from top to bottom. In this case, the drift direction of
the particle in the first lane becomes the same as that of the
external field as mentioned below.

In Fig. 4(c), the following two facts were clearly
apparent; i) The system tends to stay in the states ðx1; x2Þ ¼
ð2; jÞ for most of the time. ii) The state ðx1; x2Þ ¼ ð2; 2Þ gives
an entrance to the transition paths with both vertical
rotations. Then, the paths with vertical rotations starting
from ðx1; x2Þ ¼ ð2; 2Þ in the diagram contribute predomi-
nantly to the motions of the particle in the first lane.

It is noted that the shorter path is generally easier to
realize. Thus, we consider the shortest path from ðx1; x2Þ ¼
ð2; 2Þ to ðx1; x2Þ ¼ ð2; jÞ with the vertical rotation as the main
path that gives the motion of the particle in the first lane. The
shortest path with the rotation from bottom to top starting
from ð2; 2Þ is given by ð2; 2Þ ! ð1; 2Þ ! ð1; 3Þ ! ð1; 0Þ !
ð1; 1Þ ! ð0; 1Þ ! ð3; 1Þ ! ð2; 1Þ [as indicated by thin ar-
rows in Fig. 4(c)]. On the other hand, the shortest path with
the rotation from top to bottom is given by ð2; 2Þ ! ð3; 2Þ !
ð3; 3Þ ! ð0; 3Þ ! ð1; 3Þ ! ð2; 3Þ, which is shorter than the
previous [as indicated by broken arrows in Fig. 4(c)]. Thus,
the latter path contributes predominantly to the transitions in

a vertical direction in the diagram. This means that the
particle in the first lane drifts in the same direction as that of
the external field on the average.

Thus, in the first lane, forward and backward drift motions
appear depending on the strength of the external field.

In cases where Vb � d, the typical transition diagrams are
given as in Fig. 5. In such cases, only the forward drift
motion appears as follows. For a small F, the particles in
both lanes drift little because an attractor exists at the state
ð3; 2Þ as in Fig. 5(a). With the increase in F to F � 1:5d, the
system can escape from the state ð3; 2Þ as in Fig. 5(b). In this
case, we naturally found that the vertical rotation from top to
bottom tends to be realized in the transition diagram in a
similar manner to that in Fig. 4(c). These results are
consistent with those in Fig. 3. In a similar way, the
mechanisms of the drift motion given in cases where Vb � d

are also easily explained.
In this letter, we investigated the drift motions of a

nonequilibrium small lattice gas system. We found that this
system shows two types of drift motion and inversion of the
drift direction depending on the strength of the external field
by a simple mechanism.

Phenomena similar to our results have been observed,
such as the motions of the flagellar motor in bacteria. The
flagellar motor is a rotational motor where a rotor realizes
steady rotations due to the unique directional flows of
protons driven by the electrochemical potential gradient
across the membrane.16–18) Here, it is remarkable that this
rotor shows both directional rotations, clockwise and
counterclockwise depending on the environment around
the cell.

Such motions have been obtained by our system, where
the particle in the first lane, that in the second lane and the
external field in our model correspond to the rotor, the
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Fig. 5. Typical transition diagram (left) and illustration of effect of

potential and external field in each lane (right) for (a) F � 0:5d, (b) F �
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proton and the electrochemical potential gradient in the
flagellar, respectively. Thus, we expect our results to provide
important hints and bases to uncover the possible mecha-
nism for several characteristics of this motor. The detailed
studies for this motor, other biological motors or the ion
pumps19) based on the presented study are important issues
for the future.

In the presented study, only the behaviors of the system in
cases where L ¼ 4 and each lane involves only one particle
are investigated. Now, we shall investigate more general
cases with a larger L, more than three lanes, and multiple
particles existing in each lane.
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