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Liquid-solid phase transition of a system with two particles in a rectangular box

Akinori Awazu*
Department of Mathematical Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
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We study the statistical properties of two hard spheres in a two-dimensional rectangular box. In this system,
a relation similar to the van der Waals equation is obtained between the width of the box and the pressure
working on the sidewalls. The autocorrelation function of each particle’s position is calculated numerically.
This calculation shows that, near the critical width, the time at which the correlation becomes zero gets longer
as the height of the box increases. Moreover, fast and slow relaxation processes such as thea andb relaxations
in supercooled liquids are observed when the height of the box is sufficiently large. These relaxation processes
are discussed with reference to the probability distribution of the relative positions of the two particles.
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The liquid-solid phase transition is a very familiar ph
nomenon. This transition in a system with so many degr
of freedom has been studied through many kinds of ana
cal and numerical models@1#. Numerically, the liquid-solid
phase transition is studied in a system containing 10–4

hard or soft core particles by Monte Carlo and molecu
dynamics simulations@2–6#. The motions of individual par-
ticles ~molecules! are different in the liquid phase and th
solid phase: In the liquid phase, particles can exchange
sitions with each other, and each particle can move
around the system. On the other hand, in the solid ph
particles cannot exchange positions, and they move onl
restricted small areas.

Now we consider a rectangular box containing two ha
spheres with the same diameterd. The height of the box is
larger than 2d. When the width of the box is larger than 2d,
these spheres can exchange positions@Fig. 1~a!#. However,
these particles cannot exchange their positions when
width of the box is smaller than 2d @Fig. 1~b!#. Thus we
regard these as the simplest forms of, respectively, the liq
state and the solid state. Then, a problem arises: In su
simple system near the critical width (52d) of the box, can
we find characteristic phenomena like the Alder transit
@3,4,6# of a system with many hard spheres? In this paper,
focus on statistical and dynamical properties of the sphe
near the critical width of the box to understand this proble

The system under consideration consists of tw
dimensional hard sphere particles with unit mass and
radius which are confined in a two-dimensional rectangu
box. Here, the width and the height of the box are, resp
tively, a and b, and all the walls are rigid~Fig. 1!. Interac-
tions between two particles or between a particle and a w
occur only through hard core collisions. These collisions
implemented in the following manner: the tangential velo
ties to the collision plane are preserved, while the norm
component of the relative velocityDvn changes to2Dvn .
The total energy of the system is given as 1. Because
system consists of rigid spheres and rigid walls, the qua
tive behaviors are independent of the total energy. We
b.4 for most of our discussion which means these two p
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ticles can exchange their positions in the horizontal directi
Note that in this paper the state witha.4 is regarded as the
liquid state and the state witha,4 is regarded as the soli
state.

Figures 2~a! and 2~b! are typical relationships between th
width a and the pressurePa on the sidewalls for heightsb
54.3–6.7. Here,Pa is defined as the time average of th
impulses caused by the bouncing of particles on the s
walls per unit length per unit time. In these figures, a reg
of a in which the volume compressibility is negative appea
for small b around the critical widtha* 54.0. These curves
are similar to the van der Waals loop@1# or the loop of the
Alder transition@3,4,6# which includes the liquid-solid coex
istence region. This negative volume compressibility see
to indicate the appearance of a phase transition around
critical width a* 54.0 that distinguishes the solid state fro
the liquid state. Ifb becomes larger than a critical valueb*
;6.0, however, this curvature is reduced, and the compr
ibility becomes positive for alla. In this case, we canno
observe the distinction between the liquid and solid sta
Figures 2~c! and 2~d! are the typical relationships betwee
the widtha and the pressure on the upper and lower wallsPb
for heightsb54.3–6.7. Here,Pb is defined as the time av
erage of the impulses caused by the bouncing of particle
the upper and lower walls per unit length per unit time. U
like the relation ofPa anda, Pb decrease monotonically with
increase ofa. Such anisotropy seems to be one of the ch

FIG. 1. Illustration of two-particle system in rectangular box.~a!
Width of box is larger than the sum of two diameters~liquid state!,
and~b! width of box is smaller than the sum of two diameters~solid
state!.
©2001 The American Physical Society02-1
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acteristic features of this system, which does not appear
system with many hard spheres. If we focus only on thea-Pa
relation, however, this system can be regarded as one o
simplest models to imitate the phenomena of the liquid-so
phase transition. Here,a andPa correspond, respectively, t
the volume and pressure of a system with many particle

Now, we consider the counterpart ofb above in a system
with many hard spheres or in more general systems w
many degrees of freedom. Figure 3~a! shows typical autocor-
relation functions for the position of each particleC(t)

FIG. 2. Relationships between the widtha and the pressurePa

with ~a! b54.3,4.5,4.7,4.9,~b! b55.1,5.5,5.9,6.3,6.7 in descendin
order, and that between the widtha and the pressurePb with ~c!
b54.3,4.5,4.7,4.9,~d! b55.1,5.5,5.9,6.3,6.7.

FIG. 3. Autocorrelation function of each particle’s positio
C(t); ~a! a53.8,4.1,4.5,5.0 with b55.5, and ~b! b
54.3,5.1,5.9,6.7 witha54.1. Fitting lines areC(t)5t20.75 and
C(t)5exp„2(t/t)0.67
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5^x(0)x(t)&/^x(0)x(0)& in the solid state (a53.8) and in
liquid states (a54.1, a54.5, anda55.0 withb55.5). Here,
x(t) is the position of a particle. In the liquid state, the r
laxation process becomes slower as the width comes cl
to the critical value. In the solid state (a53.8), the correla-
tion function has a finite value fort→` because two par-
ticles cannot exchange their positions. Figure 3~b! shows au-
tocorrelation functions forb54.3,5.1,5.9,6.7 near the critica
width a* (a54.1). These curves indicate that each rela
ation process contains both fast and slow processes f
little above the critical width. These fast and slow relaxatio
can be fitted with functions, respectively,t2b (b;0.75) and
exp„2(t/t)a

… ~a;0.67, t5const.!. On increasingb, the
form of C(t) changes as follows.~i! The time at which the
correlation becomes zero gets longer.~ii ! When b is larger
than a critical valueb** ;5.0, the fast relaxation and th
slow relaxation are clearly separated by the appearanc
plateau. These relaxations are similar to theb anda relax-
ations of the density fluctuations in a supercooled liquid@7#.
A system that includes nonuniform molecules tends to
come a supercooled liquid when it is cooled or compres
@7#. Moreover, the liquid-solid coexistence region disappe
in a system with many hard spheres when the size poly
persity of the spheres is larger than a critical value@6#. From
these facts, we conclude that the present two-particle sys
imitates the phase transition in a system that consists
many nonuniform elements. Here, the quantityb corresponds
to the dispersion of particles characters like the size poly
persity in a system with many particles. In order to discu
the mechanism producing the above simulation results,
focus on the statistical properties of each particle’s traject
for eachb near the widtha* .

Figures 4~a!, 4~b!, and 4~c! are typical trajectories of the
centers of particles for, respectively,b54.7, b55.7, andb
56.7 with a54.1. If the volume of the box is large enoug
and we can ignore the particle volume, these trajectories
the rectangular region that is enclosed by the points@a
2d#/2,@b2d#/2), (@a2d#/2,2@b2d#/2), (2@a2d#/2,@b
2d#/2), and (2@a2d#/2,2@b2d#/2) @Fig. 4~c!#. Here,d
is the diameter of each particle, which is set as 2 in o
discussion. This means particles wander all around the

FIG. 4. Typical trajectories of particles~a! b54.7, ~b! b55.7,
and ~c! b56.7 with a54.1.
2-2
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as in ideal gas systems. When the size of the box beco
small, however, the finite volume effect of the particles b
comes evident. In particular, if the relation

~a2d!21~b2d!2,~2d!2 ~1!

is satisfied, a region appears around the central part of
box that the particles’ centers cannot enter. Whenb,2
12A3, the above equation is satisfied arounda5a* 54 and
the trajectory of the centers of the particles is shown in F
4~a!. For a,a* 54 the trajectory of the centers of the pa
ticles is given like Fig. 4~b! for 212A3,b,b* 56. In
these cases, the trajectory of the center of a particle is sim
to what is observed in a Sinai billiard@8#. Thus, in order to

FIG. 5. ~a! a-Pa relations of the rectangular Sinai billiard wit
b54.5,5.1, and 5.7, and~b! a-Pa relation of two particles in a
square box.
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discuss these situations, we consider an (a2d)3(b2d)
rectangular Sinai billiard which includes a hard sphere w
diameterd (d52). Using the equipartition rule, we can ca
culate thea-Pa relation of the Sinai billiard analytically as in
the correlated cell model@9#. For each particle in the Sina
billiard, the entropyS is obtained by using the phase spa
volumeS5 ln@Ar(a,b)Av# and the free energyF is given by
F5U2S. ~The Boltzmann constantkB and temperatureT
are set as 1.! Here, Ar(a,b) and Av are the phase spac
volumes of, respectively, the real space part and the velo
space part, and the internal energyU is constant because thi
system consists of hard walls and a hard sphere.

Ar(a,b) is given by

FIG. 6. Probability distributions~a! Pdy of vertical component
of relative position vectordy, and~b! Pdx of horizontal component
of relative position vectordx between two particles witha54.1.
b54.3,4.7,5.1,5.5, and 5.9 from the bottom@neardx50.0 in ~b!#.
Ar5H ~a2d!~b2d!2
p

4
d2 ~a.4!

~a2d!~b2d!2~a2d!
d

2
cos u2

d2

2
u ~a<4!,

~2!

~3!
of
r-

ne

en-

s
use
to

di-

of
where sinu5(a2d)/d andd52. Using the above relation
with Pab52]F/]a, the a-Pa relation of the system forb
,6 is obtained, and we can observe a liquid-solid ph
transition as in Fig. 5~a!. In this case, the widtha5a* 54 is
a singular point and this point gives the maximal press
independent ofb. On the other hand, however, thea-Pa
relations in the simulation results@Figs. 2~a! and 2~b!# have
an inflection point near the critical widtha5a* 54, and the
form of each curve is smooth. In addition, we conside
square box system in whicha and b are varied witha5b.
This system satisfiesb,212A3 arounda;a* . Following
the calculation for the rectangular Sinai billiard above, t
a-Pa relation of the (a2d)3(a2d) square Sinai billiard
can be obtained analytically. The profile of thea-Pa relation
for the square Sinai billiard obtained in this calculation
almost the one as the result for the rectangular billiard. Ho
ever, it is remarkable thatPa (5Pb) decreases monoton
cally with increasinga(5b) in the simulation of two par-
ticles in a square box@Fig. 5~b!# @10#.
e

e

a

e

-

Finally, we discuss the mechanism of the appearance
the plateau inC(t), the autocorrelation function of each pa
ticle’s position, near the widtha5a* by considering statis-
tical properties of the particle trajectories. Now, we defi
Pdx and Pdy as the probability distributions ofdx and dy.
Here,dx is the horizontal component anddy is the vertical
component of the relative position vector between the c
ters of two particles. Figures 6~a! and 6~b! are, respectively,
dy-Pdy relations and dx-Pdx relations for b
54.3,4.7,5.1,5.5,5.9 witha54.1. In Fig. 6~a!, the maximum
points of Pdy are always far from the pointdy50. In Fig.
6~b!, however, the position of the maximum point ofPdx
depends onb. Whenb is small, the maximum points ofPdx
are far from the pointdx50. This means that two particle
tend to face each other on a diagonal line of the box. Beca
of this tendency, it is rather easy for these two particles
exchange their positions in both vertical and horizontal
rections. Hence, the time at whichC(t) becomes 0 is rela-
tively short. On the other hand, only one maximum point
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 032102
Pdx appears atdx50 whenb is larger than the critical value
b** ;5.0. In this case, the height of the box is large enou
for the particles to change positions almost freely but only
the horizontal direction. This is considered to be the origin
the fast relaxation in the simulation. This situation al
means that statistically two particles tend to line up ve
cally. In this case, the exchange of two particles’ positions
the vertical direction is strongly hindered. This is the orig
of the plateau inC(t), after which the slow relaxation start

In this paper, the liquid-solid phase transition and the lo
time correlation of two hard spheres confined in a tw
dimensional rectangular box are studied. Between the w
of the box and the pressure at the sidewalls, a relation
the van der Waals equation is obtained. However, the ra
of the box width in which the volume compressibility
negative goes to zero when the height of this box pas
through a critical value. The autocorrelation function of ea
particle’s position is calculated near the critical width. As t
height of the box increases, the time at which this correlat
becomes zero gets longer. Moreover, a fast relaxation a
slow relaxation are clearly separated by the appearance
plateau when the height of this box is sufficiently larg
l

e,
s

03210
h
n
f

-
n

g
-
th
e

ge

es
h

n
a

f a
.

These relaxation processes are discussed by considerin
form of the probability distribution of the relative position
of two particles. As a conclusion, this system is conside
to be one of the simplest systems that imitates the liqu
solid phase transition of a system with many nonunifo
elements. Still, in the relation between the width of the b
and the pressure at the sidewalls, some discrepancies ap
between the analytical and simulation results. Thus furt
consideration is required of dynamical properties like t
long time correlation, which forbids equipartition. These to
ics seem to have a close relation with the slow dynamics
Hamilton dynamical systems@11#. In addition, the pressure
on the walls is anisotropic in our system, while the press
of a system with many particles is usually uniform. This al
is a problem to be solved. Moreover, the understanding
the glass transition or other nonequilibrium systems@12#
through our simple model is a future issue.
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