
CryptMT Stream Cipher Ver. 3: Description ?

Makoto Matsumoto1, Mutsuo Saito2, Takuji Nishimura3, and Mariko
Hagita4

1 Dept. of Math., Hiroshima University, m-mat@math.sci.hiroshima-u.ac.jp
2 Dept. of Math., Hiroshima University, saito@math.sci.hiroshima-u.ac.jp

3 Dept. of Math. Sci., Yamagata University, nisimura@sci.kj.yamagata-u.ac.jp
4 Dept. of Info. Sci., Ochanomizu University, hagita@is.ocha.ac.jp

Abstract. CryptMT Version 3 (CryptMT3) is a stream cipher obtained
by combining a large LFSR and a nonlinear filter with memory using in-
teger multiplication. Its period is proved to be no less than 219937−1, and
the 8-bit output sequence is at least 1241-dimensionally equidistributed.
It is one of the fastest stream ciphers on a CPU with SIMD operations,
such as Intel Core 2 Duo.

1 Introduction

In this article, we discuss pseudorandom number generators (PRNGs) for
stream ciphers. We assume that the PRNG is implemented in software,
and the platform is a 32-bit CPU with enough memory and fast integer
multiplication.

Our proposal [5][6] is to combine a huge state linear generator (called
the mother generator) and a filter with memory, as shown in Figure 1.

Definition 1. (Generator with a filter with memory.) Let X be a finite
set (typically the set of the word-size integers). The mother generator G
generates a sequence x0, x1, x2, . . . ∈ X. Let Y be a finite set, which is the
set of the possible states of the memory in the filter. We take a y0 ∈ Y .
Let f : Y ×X → Y be the state transition function of the memory of the
filter, that is, the content yi of the memory is changed by the recursion

yi+1 := f(yi, xi).

The output at the i-th step is given by g(yi), where g : Y → O is the
output function which converts the content of the memory to an output
symbol in O.
? CryptMT is proposed to eSTREAM Project http://www.ecrypt.eu.org/stream/.

The reference codes are available there. This work is supported in part by JSPS
Grant-In-Aid #16204002, #18654021, #18740044, #19204002 and JSPS Core-to-
Core Program No.18005.

2

Fig. 1. Combined generator = linear generator + filter with memory.

In a previous manuscript [5], we chose the mother generator to be
Mersenne Twister [4], which generates a sequence of 32-bit integers by an
F2-linear recursion. The filter is given by

f(y, x) := y × (x|1) mod 232, g(y) := 8 MSBs of y (1)

where (x|1) denotes x with LSB set to 1, and 8 MSBs mean the 8 most
significant bits of the integer y. Initially, the memory is set to an odd
integer y0. This is CryptMT Version 1 (CryptMT1). There has been no
attacks reported to this generator (even non-practical attacks). We in-
troduced CryptMT Version 2 [7] and Version 3 [8], not to improve the
security, but to improve the speed of initialization and generation. This
manuscript is based on [8]. Theoretical analysis of this type of generators
is developed in [9], where the quasigroup property of the filter plays the
role of “balanced filter”.

2 CryptMT Version 3: A new variant based on 128-bit
operations

Modern CPUs often have single-instruction-multiple-data (SIMD) oper-
ations. Typically, a quadruple of 32-bit registers is considered as a single
128-bit register. CryptMT Ver.3 proposed here is a modification of the
Version 1, so that it fits to the high-speed SIMD operations.

3

2.1 Notation

Let us fix the notations for 128-bit integers. A bold italic letter x denotes
a 128-bit integer. It is a concatenation of four 32-bit registers, each of
which is denoted by x[3],x[2],x[1],x[0], respectively, from MSB to LSB.

The notation x[3][2] denotes the 64-bit integer obtained by concate-
nating the two 32-bit integers x[3] and x[2], in this order. Similarly,
x[0][3][2][1] denotes the 128-bit integer obtained by permuting (actually
rotating) the four 32-bit integers in x. Thus, for example, x = x[3][2][1][0]
holds.

An operation on 128-bit registers that is executed for each 32-bit
integer is denoted with the subscript 32. For example,

x +32 y := [(x[3] + y[3]), (x[2] + y[2]), (x[1] + y[1]), (x[0] + y[0])],

that is, the first 32-bit part is the addition of x[3] and y[3] modulo 232, the
second 32-bit is that of x[2] and y[2] (without the carry from the second
32-bit part to the first 32-bit part, differently from the addition of 128-bit
integers). The outer most [] in the right hand side is to emphasize that
they are concatenated to give a 128-bit integer.

Similarly, for an integer S,

x >>32 S := [(x[3] >> S), (x[2] >> S), (x[1] >> S), (x[0] >> S)]

means the shift right by S bits applied to each of the four 32-bit integers,
and

x >>64 S := [(x[3][2] >> S), (x[1][0] >> S)]

means the shifts applied to each of the two 64-bit integers.
In the following, we often use functions such as

x 7→ x⊕ (x[2][1][0][3] >>32 S),

which we call perm-shift. Here ⊕ means the bit-wise exclusive-or. The
permutation [2][1][0][3] may be an arbitrary permutation, and the shift
may be to the left. A function of the form

x 7→ x[i3][i2][i1][i0]⊕ (x >>32 S)

is also called a perm-shift, where i3i2i1i0 is a permutation of 3, 2, 1, 0. A
perm-shift is an F2-linear transformation, and if S ≥ 1 then it is a bijec-
tion. (Since its representation matrix is an invertible triangular matrix
times a permutation matrix, under a suitable choice of the basis.)

4

Let n be a positive integer, and x be a 32-bit integer. The n most
significant bits of x are denoted by MSBn(x). Similar notation LSBn(x)
is also used. For a 128-bit integer x, we define

MSBn
32(x) := [MSBn(x[3]),MSBn(x[2]), MSBn(x[1]), MSBn(x[0])],

which is a (n× 4)-bit integer.
A function f : Y × X → Z is bi-bijective if for any fixed x ∈ X,

the mapping Y → Z, y 7→ f(y, x) is bijective, and for any fixed y ∈ Y ,
the mapping X → Z, x 7→ f(y, x) is bijective. It is necessary that the
cardinalities coincide: #(X) = #(Y) = #(Z).

2.2 SIMD Fast MT

The Version 3 adopts the following mother generator, named SIMD-
oriented Fast Mersenne Twister (SFMT) [10].

Let N be an integer, and x0,x1, . . . ,xN−1 be N 128-bit integers given
as the initial state. A version of SFMT used here is to generate a sequence
of 128-bit integers by the following F2-linear recursion:

xN+j := (xN+j−1 & 128-bit MASK)⊕
(xM+j >>64 S)⊕ (xM+j [2][0][3][1])⊕ (xj [0][3][2][1]).

(2)

Here, & denotes the bit-wise-and operation, so the first term is the re-
sult of the bit-mask of xN+j−1 by a constant 128-bit MASK. The second
term is the concatenation of two 64-bit integers (xM+j [3][2] >> S) and
(xM+j [1][0] >> S), as explained above. The third term is a permutation
of four 32-bit integers in xM+j , and the last term is a rotation of those
in xj . Thus, the SFMT is based on the N -th order linear recursion over
the 128-dimensional vectors F2

128. Figure 2 describes the SFMT. By a
computer search, we found the parameters N = 156,M = 108, S = 3 and
MASK = ffdfafdf f5dabfff ffdbffff ef7bffff in the hexa-decimal
notation. Such a mask is necessary to break the symmetry (i.e., without
such asymmetry, if each 128-bit integer xi in the initial state array sat-
isfies xi[3] = xi[2] = xi[1] = xi[0], then this equality holds ever after).
We selected a mask with more 1’s than 0’s, so that we do not lose the
information so much.

We proved that, if x0[3] = 0x4d734e48, then the period of the gener-
ated sequence of the SFMT is a multiple of the Mersenne prime 219937−1,
and the output is 155-dimensionally equidistributed, using the method
described in [10].

5

Fig. 2. The mother generator: SIMD Fast Mersenne Twister.
permute: y 7→ y[0][3][2][1].
perm-shift: y 7→ y[2][0][3][1]⊕ (y >>64 3).
bit-mask: ffdfafdf f5dabfff ffdbffff ef7bffff

These operations are chosen to fit SIMD instructions in modern CPUs
such as Intel Core 2 Duo. We note that even for CPUs without SIMD,
computation of such a recurring formula is fast since it fits the pipeline
processing.

2.3 A new filter

The previously proposed filter (1) uses integer multiplication in the ring
Z/232Z. To avoid the degenerations, we restrict the multiplication to the
set of odd integers in Z/232Z, by setting the LSB to be 1 in (1).

In Version 3, we use the following binary operation ×̃ on Z/232Z
instead of ×: for x, y ∈ Z/232Z, we define

x×̃y := 2xy + x + y mod 232,

which is essentially the multiplication of 33-bit odd integers. Let S be the
set of odd integers in Z/233Z. By regarding Z/232Z = {0, 1, . . . , 232 − 1},
we have a bijection

ϕ : Z/232Z→ S, x 7→ 2x + 1.

6

Then, ×̃ above is defined by

x×̃y := ϕ−1(ϕ(x)× ϕ(y)),

where × denotes the multiplication in S. Thus, ×̃ is given by looking at
the upper 32 bits of multiplications in S. Consequently, ×̃ is bi-bijective.

Most of modern CPUs have 32-bit integer multiplication but not 64-
bit nor 128-bit multiplication. Thus, a simplest parallelization of (1) would
be the following: X = Y = (Z/232Z)4, and

f(y,x) := y×̃32x,

(that is, f(y,x)[i] := y[i]×̃x[i] for i = 3, 2, 1, 0), and

g(y) := MSB8
32(x)

is the output of (8× 4)-bit integers (for notations, see §2.1).
In Version 3, we adopted a modified filter (see Figure 3) as follows.

For a given pair of 128-bit integers x,y, we define

Fig. 3. Filter of CryptMT Ver.3.
perm-shift3: y 7→ y ⊕ (y[0][3][2][1] >>32 1).
perm-shift4: y 7→ y ⊕ (y >>32 16).
×̃: multiplication of 33-bit odd integers.

f(y,x) := (y ⊕ (y[0][3][2][1] >>32 1))×̃32x. (3)

7

The operation applied to y in the right hand side is a perm-shift (see §2.1),
hence is bijective. Since ×̃ is bi-bijective, so is f . The purpose to introduce
the perm-shift is to mix the information among four 32-bit memories in
the filter, and to send the information of the upper bits to the lower bits.
This supplements the multiplication, which lacks this direction of transfer
of the information.

The output function is

g(y) := LSB16
32(y ⊕ (y >>32 16)). (4)

Thus, the new filter has 128-bit of memory, receives a 128-bit integer,
and output a (16 × 4)-bit integer. The compression ratio of this filter is
(128:64), which is smaller than (32:8) in the previously proposed filter.
This change of the ratio is for the speed, but might weaken the security.
To compensate this, the output function takes the exclusive-or of the 16
MSBs and the 16 LSBs of y[i], i = 3, 2, 1, 0.

2.4 Conversion to 8-bit integers

Since the outputs of the filter are (16 × 4)-bit integers and the speci-
fication required is 8-bit integer outputs, we need to dissect them into
8-bit integers. Because of the nature of the 128-bit SIMD instructions,
the following strategy is adopted for the speed. Let

LOWER16 := (0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff)
UPPER16 := (0xffff0000, 0xffff0000, 0xffff0000, 0xffff0000)

be the 128-bit masks.
Let y0,y1, . . . ,y2i,y2i+1, . . . be the content of the memory in the fil-

ter at every step, i.e., generated by yi+1 := f(yi,xi) in (3). Then, y2i

and y2i+1 are used to generate the i-th 128-bit integer output zi, by the
formula

zi := [(y2i⊕(y2i >>32 16))&LOWER16] | [(y2i+1⊕(y2i+1 <<32 16))&UPPER16]

where | denotes the bit-wise-or. Then, zi is separated into 16 of 8-bit
integers from the lower bits to the upper bits, and used as the 8-bit
integer outputs.

2.5 A new booter for the initialization

SFMT in §2.2 requires N = 156 of 128-bit integers as the initial state. We
need to expand the key and IV to an initial state at the initialization, but

8

this is expensive when the message length is much less than N ×128 bits.
Our strategy introduced in [7] is to use a smaller PRNG called the booter.
Its role is to expand the key and IV to a sequence of 128-bit integers. The
output of the booter is passed to the filter discussed above to generate
the pseudorandom integer stream, and at the same time, used to fill the
state of SFMT. Once the state of SFMT is filled up, then the generation
is switched from the booter to SFMT.

The booter we adopted here is described in Figure 4. We choose an

Fig. 4. Booter of CryptMT Ver.3.
perm-shift1: x 7→ (x[2][1][0][3])⊕ (x >>32 13).
perm-shift2: x 7→ (x[1][0][2][3])⊕ (x >>32 11).
×̃: multiplication of (a quadruple of) 33-bit odd integers.

integer H later in §2.6 according to the sizes of the Key and IV. The state
space of the booter is a shift register consisting of H 128-bit integers. We
choose an initial state x0,x1, . . . ,xH−1 and the initial value a0 of the
accumulator (a 128-bit memory) as described in the next section. Then,
the state transition is given by the recursion

aj := (aj−1 ×̃32 perm-shift2(xH+j−1))
xH+j := perm-shift1(xj +32 xH+j−2)−32 aj ,

where
perm-shift1(x) := (x[2][1][0][3])⊕ (x >>32 13)
perm-shift2(x) := (x[1][0][2][3])⊕ (x >>32 11).

9

Similarly to the notation +32 (§2.1), −32 denotes the subtraction modulo
232 for each of the four 32-bit integers. The output of the j-th step is
xj +32 xH+j−2.

As described in Figure 4, the booter consists of an automaton with
three inputs and two outputs of 128-bit integers, with a shift register.
In the implementation, the shift register is taken in an array of 128-bit
integers with the length 2H +2+N . This redundancy of the length is for
the idling, as explained below.

2.6 Key and IV set-up

We assume that both the IV and the Key are given as arrays of 128-bit
integers, of length from 1 to 16 for each. Thus, the Key-size can flexibly
be chosen from 128 bits to 2048 bits, as well as the IV-size. We claim the
security level that is the same with the minimum of the Key-size and the
IV-size.

In the set-up of the IV and the Key, these arrays are concatenated and
copied twice to an array, as described in Figure 5. To break the symmetry,

Fig. 5. Key and IV set-up. The IV-array and Key-array are concatenated and copied
to an array twice. Then, a constant is added to the bottom of the second copy of the
key to break a possible symmetry. The automaton is described in Figure 4.

we add a constant 128-bit integer (846264, 979323, 265358, 314159) (de-
noting four 32-bit integers in a decimal notation) to the bottom row of the

10

second copy of the key (add means +32 modulo 232). Now, the size H of
the shift register in the booter is set to be 2×(IV-size + Key-size (in bits))/128,
namely, the twice of the number of 128-bit integers contained in the IV
and the Key. For example, if the IV-size and the Key-size are both 128
bits, then H = 2× (1+1) = 4. The automaton in the booter described in
Figure 4 is equipped on this array, as shown in Figure 5. The accumulator
of the booter-automaton is set to

(the top row of the key array) | (1, 1, 1, 1),

that is, the top row is copied to the accumulator and then the LSB of
each of the 32-bit integers in the accumulator is set to 1.

At the first generation, the automaton reads three 128-bit integers
from the array, and write the output 128-bit integer at the top of the
array. The feedback to the shift register is written into the (H + 1)-
st entry of the array. For the next generation, we shift the automaton
downwards by one, and proceed in the same way.

For idling, we iterate this for H + 2 times. Then, the latest modified
row in the array is the (2H + 2)-nd row, and it is copied to the 128-
bit memory in the filter. We discard the top H + 2 entries of the array.
This completes the Key and IV set-up. Figure 6 shows the state after the
set-up.

Fig. 6. After the Key and IV set-up.

11

After the set-up, the booter produces 128-bit integer outputs at most
N times. Let L be the number of 8-bit integers in the message. If L×8 ≤
N × 64, then we do not need the mother generator. We generate the
necessary number of 128-bit integers by the booter, and pass them to the
filter to obtain the required outputs. If L×8 ≥ N ×64, then, we generate
N 128-bit integers by the booter, and pass them to the filter to obtain
N 64-bit integers, which are used as the first outputs. At the same time,
these N 128-bit integers are recorded in the array, and they are passed
to SFMT as the initial state.

To eliminate the possibility of shorter period than 219937 − 1, we set
the 32 MSBs of the first row of the state array of SFMT to the magic
number 0x4d734e48 in the hexadecimal representation, as explained in
§2.2. This is illustrated in Figure 7. That is, we start the recursion (2)

Fig. 7. Initialization of the SFMT mother generator.

of SFMT with x0,x1, . . . ,xN−1 being the array of length N indicated in
Figure 7, and produces xN ,xN+1, Since xN might be easier to guess
because of the constant part in the initial state, we skip it and pass the
128-bit integers xN+1,xN+2, . . . to the filter.

12

3 Resistance of CryptMT Ver.3 to Standard Attacks

The cryptanalysis developed in §4 in [6] for CryptMT is also valid for the
Version 3. We list some properties of the SFMT (§2.2) required in the
following cryptanalysis. Algorithms to check these are described in [10].

Proposition 1. SFMT is an automaton with the state space S being an
array of 128-bit integers of the length 156 (hence having 19968 = 128×156
bits).

1. The state-transition function h of SFMT is an F2-linear bijection,
whose characteristic polynomial is factorized as

χh(t) = χ19937(t)× χ31(t),

where χ19937(t) is a primitive polynomial of degree 19937 and χ31(t)
is a polynomial of degree 31.

2. The state S is uniquely decomposed into a direct sum of h-invariant
subspaces of degrees 19937 and 31

S = V19937 + V31,

where the characteristic polynomial of h restricted to V19937 is χ19937(t).
3. From any initial state s0 not contained in V31, the period P of the

state transition is a multiple of the 24th Mersenne Prime 219937 − 1,
namely P = (219937 − 1)q holds for some 1 ≤ q ≤ 231 − 1 (q may
depend on s0). The period of the output sequence is also P .
In this case, in addition, the output sequence of 128-bit integers of
SFMT is at least 155-dimensionally equidistributed with defect q, in
the sense of [6, §4.4].

4. Let s0 be the initial state of the SFMT, i.e., an array of 128-bit integers
of length 156. If the 32 MSBs of the first 128-bit integer in s0 is
0x4d734e48, then s0 /∈ V31 (cf. §2.2). In the initialization of SFMT,
the corresponding 32 bits in s0 is set to this (cf. §2.6).

5. χh(t) has 8928 nonzero terms (which is much larger than 135 in the
case of MT19937), and χ19937(t) has 9991 nonzero terms.

3.1 Period

Proposition 2. Any bit of the 8-bit integer stream generated by CryptMT
Ver.3 has a period that is a multiple of 219937 − 1.

13

Proof. Put Q := 219937 − 1. Assume the converse, so there exists one bit
among the 8 bits whose period is not a multiple of Q, which we call a
short-period bit.

Let us denote by h0, h1, h2, . . . the output 8-bit integer sequence of
CryptMT Ver.3. If we consider CryptMT Ver.3 as a 64-bit integer gen-
erator (see §2.4), then its outputs z0, z1, z2, . . . determine h0, h1, h2, . . .
by

z0 = (h13, h12, h9, h8, h5, h4, h1, h0)
z1 = (h15, h14, h11, h10, h7, h6, h3, h2)
z2 = (h29, h28, h25, h24, h21, h20, h17, h16)
z3 = (h31, h30, h27, h26, h23, h22, h19, h18)

...

(5)

From this, we see that the bits in z0, z2, z4, . . . that corresponds to the
short-period bit (there are 8 bits for each) has a period not a multiple
of Q (since it is obtained by taking every 16-th h’s). This implies that
each of the corresponding 8 bits in z0, z1, z2, z3, . . . have a period not a
multiple of Q.

We use Theorem A.1 in [6] (or equivalently Theorem 1 in [9]) to show
that any two bits among the 64 bits in zi have a period that is a multiple of
Q (as a 2-bit integer sequence), which proves this proposition. We consider
CryptMT Ver.3 as a 64-bit integer stream generator. Then it satisfies the
conditions in the theorem, with n = 155, Q = 219937 − 1, q < 231, and
Y = F2

128. If we define the mapping g : Y → B in Theorem A.1 by
setting B := F2

2 and

g : y 7→ any fixed two bits in LSB16
32(y ⊕ (y >>32 16)),

then r = 1/4 and the inequality

r−156 = 2312 > q ×#(Y)2 (< 231 × 2256)

implies that any pair of bits in the 64 bits has period of a multiple of Q,
by Theorem A.1.

3.2 Time-memory-trade-off attack

A naive time-memory-tradeoff attack consumes the computation time of
roughly the square root of the size of the state space, which is O(

√
219968+128) =

O(210048) for the Version 3.

14

3.3 Dimension of Equidistribution

Proposition 1 shows that SFMT satisfies all conditions in §4.2–§4.3 of [6],
with period P = (219937 − 1)q (1 ≤ q < 231) and n = 155-dimensional
equidistribution with defect d = q. Proposition 4.4 in [6] implies that the
output 64-bit integer sequence of CryptMT Version 3 is 156-dimensionally
equidistributed with defect q · 2128 < 2159, and hence 1241-dimensionally
equidistributed as 8-bit integers. (The argument here appears also in §2.1
of [9].)

3.4 Correlation attacks and distinguishing attacks

By Corollary 4.7 in [6], if we consider a simple distinguishing attack to
CryptMT Ver.3 of order ≤ 155, then its security level is 219937×2, since
P/d = 219937 − 1.

Because of the 156-dimensional equidistribution property, correlation
attacks seem to be non-applicable. See §4.5 of [6] for more detail.

3.5 Algebraic degree of the filter

Proposition 4.11 in [6] is about the multiplicative filter, so it is not valid
for CryptMT Ver.3 as it is. However, since the filter of the Version 3
introduces more bit-mixing than the original multiplicative filter, we guess
that each bit of the output of CryptMT Ver.3 would have high algebraic
degree, close to the upper bound coming from the number of variables.
Algebraic attacks and Berlekamp-Massey attacks would be infeasible, by
the same reasons stated in §4.9 and §4.10 of [6].

3.6 Speed Comparison

Comparison of the speed of generation for stream ciphers is a delicate
problem: it depends on the platform, compilers, and so on. Here we com-
pare the number of cycles consumed per byte, by CryptMT3, HC256,
SOSEMANUK, Salsa20, Dragon (these are the five candidates in eS-
TREAM software cipher phase 3 permitting 256-bit Key), SNOW2.0 [3]
and AES (counter-mode), in three different CPUs: Intel Core 2 Duo,
AMD-Athlon X2, and Motorola PowerPC G4, using eSTREAM timing-
tool [2]. The data are listed in Table 1. Actually, they are copied from
Bernstein’s page [1]. The number of cycles in Key set-up and IV set-up
are also listed.

CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, re-
flecting the efficiency of SIMD operations in this newer CPU. CryptMT3

15

is slower in Motorola PowerPC. This is because AltiVec (SIMD of Pow-
erPC) lacks 32-bit integer multiplication (so we used non-SIMD multipli-
cation instead). Note that PowerPC is replaced with Intel CPUs in the
present version of Mac PCs.

Table 1. Summary from eSTREAM benchmark by Bernstein[1]

Core 2 Duo AMD Athlon 64 X2 Motorola PowerPC G4
Primitive Stream Key setup IV setup Stream Key IV Stream Key IV
CryptMT3 2.95 61.41 514.42 4.73 107.00 505.64 9.23 90.71 732.80

HC-256 3.42 61.31 83805.33 4.26 105.11 88726.20 6.17 87.71 71392.00
SOSEMANUK 3.67 848.51 624.99 4.41 1183.69 474.13 6.17 1797.03 590.47

SNOW-2.0 4.03 90.42 469.02 4.86 110.70 567.00 7.06 107.81 719.38
Salsa20 7.12 19.71 14.62 7.64 61.22 51.09 4.24 69.81 42.12
Dragon 7.61 121.42 1241.67 8.11 120.21 1469.43 8.39 134.60 1567.54

AES-CTR 19.08 625.44 18.90 20.42 905.65 50.00 34.81 305.81 34.11

4 Conclusion

We modified the mother generator, the filter, and the initialization of
CryptMT and CryptMT Ver.2 so that they fit to the parallelism of
modern CPUs, such as single-instruction-multiple-data operations and
pipeline processing.

The proposed CryptMT Ver.3 is 1.8 times faster than the first ver-
sion (faster than SNOW2.0 on Core 2 Duo and AMD Athlon platform),
while the astronomical period ≥ 219937 − 1 and the 1241-dimensional
equidistribution property (as a 8-bit integer generator) are guaranteed.
The Key-size and the IV-size can flexibly chosen from 128 bits to 2048
bits for each. The size of the state and the length of the period makes
time-memory-trade-off attacks infeasible, and the high non-linearity in-
troduced by the integer multiplication would make the algebraic attacks
and Berlekamp-Massey attacks impossible. CryptMT has no look-up ta-
bles, and hence has resistance to the cache-timing attacks.

A shortcoming of CryptMT Ver.3 might be in the size of consumed
memory (nearly 2.6KB), but it does not matter in usual computers (of
course it does matter in some applications, though).

5 Intellectual Property Status

CryptMT is patent-pending. Its property owners are Hiroshima Univer-
sity and Ochanomizu University. However, the inventors (i.e., the authors
of this manuscript) had the following permission from the owners:

16

– CryptMT is free for non-commercial use.
– If CryptMT survives in the final portfolio of the stream ciphers in

eSTREAM competition, then it is free even for commercial use.

The inventors’ wish is that this algorithm be freely and widely used
in the community, similarly to Mersenne Twister PRNG [4] invented by
the first and the third authors.

References

1. Bernstein, D.J. http://cr.yp.to/streamciphers/timings.html.
2. eSTREAM – The ECRYPT Stream Cipher Project – Phase 3.

http://www.ecrypt.eu.org/stream/index.html
3. Ekdahl, P., Johansson, T. A New Version of the Stream Cipher SNOW, Selected

Areas in Cryptography, SAC 2002, Springer Verlag, LNCS 2595, pp. 47–61, 2002.
4. Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator, ACM Transactions on Modeling
and Computer Simulation, 8 (1998) 3–30.

5. Matsumoto, M., Nishimura, T., Saito, M. and Hagita, M. Cryptographic Mersenne
Twister and Fubuki stream/block cipher, http://eprint.iacr.org/2005/165.
This is an extended version of “Mersenne Twister and Fubuki stream/block cipher”
in http://www.ecrypt.eu.org/stream/cryptmtfubuki.html.

6. Matsumoto, M. Saito, M., Nishimura, T. and Hagita, M. Cryptanalysis of CryptMT:
Effect of Huge Prime Period and Multiplicative Filter, SASC2006 Conference Vol-
ume http://www.ecrypt.eu.org/stream/cryptmtfubuki.html.

7. Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. CryptMT Version 2.0: a
large state generator with faster initialization, SASC2006 Conference Volume
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html.

8. Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. CryptMT Stream Cipher
Version 3, SASC2007 Conference Volume
http://www.ecrypt.eu.org/stream/cryptmtp3.html.

9. Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. A Fast Stream Cipher
with Huge State Space and Quasigroup Filter for Software, Proceedings of SAC2007,
LNCS4876 (2007), 245–262.

10. Saito, M. and Matsumoto, M. SIMD-Oriented Fast Mersenne Twister: a 128-
bit Pseudorandom Number Generator, to appear in Proceedings of MCQMC2006,
Springer-Verlag.

