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Abstract. Let X be a finite set of q elements, and n, K, d be integers.
A subset C ⊂ Xn is an (n, K, d) error-correcting code, if #(C) = K
and its minimum distance is d. We define an (n, K, d) error-correcting
sequence over X as a periodic sequence {ai}i=0,1,... (ai ∈ X) with period
K, such that the set of all consecutive n-tuples of this sequence form
an (n, K, d) error-correcting code over X. Under a moderate conjecture
on the existence of some type of primitive polynomials, we prove that

there is a ( qm−1
q−1

, q
qm−1
q−1 −m−1, 3) error correcting sequence, such that its

code-set is the q-ary Hamming code [ qm−1
q−1

, qm−1
q−1

−m, 3] with 0 removed,

for q > 2 being a prime power. For the case q = 2, under a similar

conjecture, we prove that there is a (2m − 2, 22m−m−2 − 1, 3) error-
correcting sequence, such that its code-set supplemented with 0 is the
subset of the binary Hamming code [2m − 1, 2m − 1−m, 3] obtained by
requiring one specified coordinate being 0.

Keywords: error-correcting code, Hamming code, m-sequence, de Bruijn
graph, projective de Bruijn graph.

1. Introduction

Let X be a q-element set. Let us consider the problem of synchronization
through a noisy channel. The sender is sending a periodic sequence S :=
a0, a1, . . . ∈ X of period K, one element per unit time. A receiver starts
to receive the sequence from some time, say, as, as+1, . . . . Assume that the
receiver received n consecutive elements. If no errors occur, then the received
word is (as, as+1, . . . , as+n−1) for some s, but through the noisy channel,
there may be some errors. The receiver wants to recover the original n-
tuple from the received n-tuple with some possible errors, similarly to the
error-correcting codes.

We use standard terminologies for the error correcting codes, see [8] [1].
Hamming distance dH(c, c′) for c, c′ ∈ Xn is defined as the number of posi-
tions for which the corresponding components of c and c′ are different. A
subset C ⊂ Xn is called an (n,K, d) error-correcting code, if #(C) = K and
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its minimum distance defined by

δ(C) := min{dH(c, c′)|c, c′ ∈ C, c 6= c′}
is d. It is convenient to define δ(C) = 0 if C is a multi-set having some
element with multiplicity. In the case of a linear code with X = Fq, the
common notation of [n, k, d] linear codes is an (n, qk, d) code in the notation
here.

For the above sequence S, we define its multi-set of consecutive n-tuples
in one period by

(1) S(n) := {(ai, ai+1, . . . , ai+n−1)|i = 0, 1, . . . , K − 1}.
Often, we consider S(n) as a cyclic sequence of elements in Xn, not merely
as a set.

Let d be δ(S(n)). We call S an (n,K, d) error-correcting sequence over
X. Thus, d ≥ 1 is equivalent to that S(n) has no multiple elements. If
d ≥ 2e + 1, then one can correct up to e errors in a k-tuple, so the sequence
is said to be e-error correcting.

Example 1. For a cyclic (v, k, λ) difference set D, the binary (i.e. X =
{0, 1}) sequence a0a1 · · · defined by

i ∈ D ⇔ aj = 1 for j = i mod v

is a binary (v, v, 2k − 2λ) error-correcting sequence.

If n′ ≥ n, then an (n,K, d) error-correcting sequence is an (n′,K, d′)
error-correcting sequence for some d′ ≥ d. We desire larger K, larger d, and
smaller n, similarly to the error-correcting codes.

2. De Bruijn graph and de Bruijn sequence

Let S be an (n,K, 1)-error-correcting sequence. This means that S(n) has
no multiplicity. The q-ary de Bruijn graph D(q, n) of degree n is a directed
graph (with loops and multiple arcs allowed) whose vertex set is Xn and a
vertex (x1, . . . , xn) is joined by an arrow to (x2, . . . , xn, y) for every y ∈ X

[2]. A sequence S of period K gives a closed walk whose vertices are S(n) in
D(q, n), by taking consecutive n tuples in S for one period. By definition,
S is an (n,K, 1) error-correcting sequence if and only if S(n) is a cycle (i.e.
no vertices appear more than once).

For fixed q and n, the period K is bounded by K ≤ qn, since the cycle
length is bounded by the number of the vertices. If the equality holds, then
S is called a q-ary de Bruijn sequence of degree n. This is equivalent to that
S(n) gives a Hamiltonian cycle of D(q, k).

The number of de Bruijn sequences is known ([2] for binary case, and [5]
for the general case).

Theorem 1. There exist (q!)qn−1
q−n de Bruijn sequences of degree k on a

q-element set.
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3. linear recurring sequence with d ≥ 3

We study when a linear recurring sequence is an error correcting sequence
with d ≥ 3. From now on, we assume that X is a finite field Fq. Let k be
an integer, and c0, c1, . . . ck−1, ck ∈ Fq are constant with ck = 1. Consider
the following linear recurrence

(2) aj+k = −
∑

0≤i≤k−1

ciai+j (j = 0, 1, . . .),

which is denoted by L(c0, c1, . . . , ck−1) or Lk(c) where c = (c0, c1, . . . , ck−1).
If c is clear from the context, we denote simply Lk. There is a unique
solution for given initial vector (a0, a1, . . . , ak−1). We always assume c0 6= 0.
Then, the sequence defined by (2) is purely periodic. The characteristic
polynomial of the recurrence (2) is

χc(t) =
∑

0≤i≤k

cit
i.

It is known that the maximum period of (2) is qk − 1. Such a sequence
exists for any prime power q and any positive integer k, and it is called
an m-sequence of degree k over Fq [3]. The characteristic polynomial of an
m-sequence is called a primitive polynomial.

Let S0, S1, . . . , Sr−1 be the set of all possible cyclic sequences generated
by the linear recursion Lk. Here, we do not distinguish the starting point of
the cyclic sequences. These give a partition of the vertices of D(q, n) into
cycles S

(n)
0 , S

(n)
1 , . . . , S

(n)
r−1. Since {0} is a solution of (2), we may assume

that S
(n)
0 = {(0, 0, . . . , 0)}. The m-sequence property is equivalent to the

condition r = 2.
Fix an integer n > k. The n-dimensional parity check matrix Pn(Lk) of

the recursion Lk = Lk(c) is an (n− k)× n matrix defined by:

Pn(Lk) :=




c0 c1 c2 . . . . . . . . . ck 0 0 . . . 0
0 c0 c1 c2 . . . . . . . . . ck 0 . . . 0
0 0 c0 c1 c2 . . . . . . . . . ck . . . 0
...

. . . . . .
. . .

...
0 0 . . . 0 c0 c1 c2 . . . . . . . . . ck




.

Its top row is c0, . . . , ck with n−k zeros added at the right. By the definition
of Si, we have

(3) kerPn(Lk(c)) =
r−1∐

i=0

S
(n)
i .

We call this the linear code of length n associated with the recursion Lk, and
denote Cn(Lk).

Lemma 2. Let Lk be a linear recursion (2). Its associated linear code
Cn(Lk) is an (n, 2k, d) code with d ≥ 3 if and only if every pair of columns
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in Pn(Lk) is linearly independent. In this case, every solution Si of the
linear recursion is an (n,#(Si), di) error correcting sequence with di ≥ 3.

Proof. It is easy to check that the condition on Pn(Lk) is equivalent to that
δ(kerPn(Lk)) ≥ 3 (see Theorem 1.31 in [1]). Thus, the lemma follows from
(3). ¤

4. Projective version of de Bruijn graph

Again consider the linear recursion Lk as in (2). We would like to show
that there is a linear recursion Lk whose associated code is a Hamming code,
by graph theoretic arguments.

For a given n > k, let Tn(Lk) be a periodic sequence with period n
obtained by repeating the bottom row (0, 0, . . . , 0, c0, c1, . . . , ck−1, 1) of Pn.
We call Tn(Lk) the associated sequence of period n to Lk. Lemma 2 says
that δ(C(Lk)) ≥ 3 holds if and only if the vectors in Tn(Lk)(n−k) are all
non-zero and distinct each other in the (n − k − 1)-dimensional projective
space Pn−k−1(Fq).

This leads us to define a projective version of de Bruijn graphs.

Definition 3. Suppose X = Fq and let m be a positive integer. The q-ary
projective de Bruijn graph PD(q, m) of degree m is a directed graph with
loops and multiple edges allowed, whose vertex set consists of the points in
the (m− 1)-dimensional projective space

Pm(Fq) := {[x1 : · · · : xm]|xi ∈ Fq, (x1, . . . , xm) 6= (0, . . . , 0)}
with a formal element Om = [0 : 0 : · · · : 0] supplemented. Here, [x1 : · · · :
Xm] denotes the ratio of m elements. The arc set Am consists of the points
of m-dimensional projective space with Om+1 = [0 : · · · : 0] supplemented.
The origin (the target) of an arc [x1 : · · · : xm+1] is the vertex [x1 : · · · : xm]
([x2 : · · · : xm+1], respectively).

The following is immediate.

Lemma 4. Let S be a sequence {ai}i=0,1,... (ai ∈ Fq) with period K. Define
a sequence of vertices of PD(q, m) by

S[m] := {[ai : ai+1 : . . . : ai+m−1] ∈ Pm−1(Fq)|i = 0, 1, . . . , P − 1}.
This gives a closed walk in PD(q, m) of length K, where [ai : ai+1 : . . . :
ai+m] are the set of arcs of this walk.

The observation at the beginning of this section now gives the following.

Theorem 5. Let Lk be a linear recurrence as in (2), with c0 6= 0, ck = 1.
Let Tn(Lk) be the sequence of period n obtained by repeating the length-n
sequence (0, 0, . . . , 0, c0, c1, . . . , ck), as above. Then, δ(Cn(Lk)) ≥ 3 holds if
and only if Tn(Lk)[n−k] is a cycle (i.e. passes every vertex at most once).

We introduce three special vertices of PD(q,m): O := [0 : · · · : 0], O1 :=
[0 : · · · : 0 : 1], and 1O := [1 : 0 : · · · : 0].
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Theorem 6. Let n, k be integers. The above correspondence (c0, . . . , ck) 7→
Tn(Lk)[n−k] gives a bijection from the set of linear recurring sequences Lk

over Fq of degree k with δ(C(Lk)) ≥ 3 to the set of length-n cycles of
PD(q, n− k) which passes 1O but avoids O.

Proof. It suffices to construct the inverse mapping. Namely, let C be such
a cycle. We form a sequence {ci} of period n from such a cycle, such that
its associated Tn satisfies T

[n−k]
n = C. By the assumption, C has the vertex

1O = [1 : 0 : 0 : · · · : 0] ∈ PD(q, n− k). The previous vertex in this directed
cycle should have the form [x : 1 : 0 : · · · : 0], for uniquely determined
x′. We define ck−1 to be x. Then, its previous vertex should have the
form [x′ : ck−1 : 1 : 0 : · · · : 0]. The unique solution x′ gives ck−1. We
can determine inductively ck−1, ck−2, . . . , c0, c−1, c−2, c−3, . . ., until we have
n− k − 1 consecutive zeroes. However, since the cycle contains one unique
1O in one period and avoids O, we will not reach to such consecutive zeroes
before one period. Since the length of the cycle is n, we notice that [c−n+k :
· · · : c−2 : c−1] = [ck : 0 : · · · : 0]. This forces c−1 = c−2 = · · · = c−n+k−1 = 0.
Since ck = 1, the solution c−n+k of this equation is an arbitrary nonzero
elements. We choose c−n+k = 1, and proceed in the same way again. Now
we have a periodic sequence Tn with T

[n−k]
n being the original cycle. ¤

Projective de Bruijn graphs have rather different properties from de Bruijn
graphs (except for the case q = 2 where they are isomorphic), as remarked
in the following.

Remark 7.

• It is not generally true that a cycle of PD(q, m) of length n is realized
as S[m] for S with period n. In the above proof, the solution c−n+k

may be different from ck if we do not start from 1O ∈ C.
• PD(q, m) is nearly regular, but not exactly, for q > 2. Every vertices

have q incoming arcs and q outgoing arcs, except that O has two
incoming arcs and two outgoing arcs (it has one loop).

• The line digraph of PD(q,m) is nearly isomorphic, but not exactly,
to PD(q, m + 1). Clearly, the arc set of the former coincides with
the vertex set of the latter. Two connecting arcs [x1 : · · · : xm],
[x2 : · · · : xm+1] in the former gives an arc [x1 : · · · : xm+1]. This
arc is unique except for the case of x2 = x3 = · · · = xm = 0. In this
exception, we have q − 1 different arcs [1 : 0 : · · · : 0 : x] (x ∈ Fq

×)
in PD(q,m + 1), for the one arc of the line digraph of PD(q,m).
Thus, PD(q,m + 1) is obtained by splitting this one arc to (q − 1)
parallel arcs in the line digraph.

However, the following holds.

Theorem 8. A circuit of PD(q, m) (i.e. a closed walk that passes any
arc at most once) is in one-to-one correspondence with the set of cycles of
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PD(q, m + 1). The correspondence is given through the identification of the
arc set of PD(q,m) and the vertex set of PD(q,m + 1).

Here, we do not distinguish two cycles with same ordering of the same
vertices, which may arise because of the multiple arcs.

Proof. Since the set of arrows of PD(q, m) is the set of arcs of PD(q, m+1),
we only need to prove that the adjacency condition as arcs in PD(q, m) is
equivalent to that of vertices in PD(q,m+1), but this was seen in Remark 7,
in the comparison with the line digraph. ¤
Theorem 9. There is a cycle of PD(q, m) that passes all the vertices of
PD(q, m) except O.

Proof. By Theorem 8, it suffices to show that there is a circuit that passes all
the arcs of PD(q,m− 1) (i.e. Eulerian circuit), because then it corresponds
to a cycle in PD(q, m) that passes all the vertices. We can skip O, by
changing the length two subpath 1O, O, O1 of the circuit into a shortcut arc
1O, O1.

Now, each vertex has the same number of the incoming arcs and the
outgoing arcs. Clearly PD(q, m − 1) is connected, so there is an Eulerian
cycle of PD(q, m− 1) by the standard theorem. ¤

5. Construction a la Hamming Code

Consider the linear recursion Lk = Lk(c) as in (2).

Theorem 10. The linear code Cn(Lk) is a q-ary [n, k, d] Hamming code if
and only if T

[n−k]
n is a cycle passing all the vertices of PD(q, n − k) except

O (and automatically, (qn−k − 1)/(q − 1) = n must hold). By using a new
parameter m = n−k, this is a q-ary [(qm−1)/(q−1), (qm−1)/(q−1)−m, 3]
Hamming code. For any Fq and m, such a linear recursion exists. The num-
ber of such recursions is the number of Hamiltonian cycles in PD(q, (qm −
1)/(q − 1)).

Proof. By the definition of the Hamming code, Cn(Lk) = kerPn(Lk) is
a Hamming code if and only if the columns of Pn(Lk) gives a complete
representing system of the points of projective space. By Theorem 5, this
is equivalent to that Tn(Lk)[n−k] is a Hamiltonian cycle of PD(q, n − k)
with O removed, which proves the first statement. Since the cycle length is
the number of points (qn−k − 1)/(q − 1) in the projective space, by putting
m := n− k, we have the second statement. The number of such recurrences
is same with the number of Hamiltonian cycles by Theorem 8 (note that for
any Hamiltonian cycle of PD(q, m), one can remove O by a short cut, as
remarked above). The existence is shown by Theorem 9. ¤
Corollary 11. The number of linear recursions satisfying the condition in
the above theorem is 22n−1−n if q = 2. It is at least ((q − 1)!)(q

m−1−1)/(q−1)

for general q.
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Proof. For the case q = 2, the projective de Bruijn graph is same with the
de Bruijn graph, and the statement follows from Theorem 1. For the general
case, the second statement follows from the next theorem. ¤

Theorem 12. Let D be a digraph with p vertices. Assume that each vertex
i (1 ≤ i ≤ p) has the same number di of incoming arcs and outgoing arcs.
Assume that D is strongly connected. Then, there are at least

∏p
i=1((di−1)!)

different Eulerian circuits in D.

Proof. We observe that, if we specify a bijection from incoming arcs to the
outgoing arcs at every vertex, then we specify a decomposition of the arc
set into disjoint circuits. Conversely, if we have such a decomposition, we
can specify a bijection at every vertex, which we call the switching specified
the circuit decomposition.

Since it is strongly connected and the incoming degree equals the outgoing
degree, there is a Eulerian circuit C. It specifies a bijection at every vertex,
as above. On the other hand, C specifies a bijection from the outgoing arcs
to the incoming arcs at every vertex: for an outgoing arc from the vertex 1,
we proceed along C, until returning to the same vertex 1 at the first time.
This specifies a bijection from the outgoing arcs to the incoming arcs. By
the Eulerian property, this bijection composed with the bijection specified
by C at 1 gives a cyclic permutation. If we change the switching of C at
the vertex 1 so that the composition is again a cyclic permutation, then it
results in another (different) Eulerian circuit.

At the vertex 1, we have (d1− 1)! different switchings that gives different
Eulerian circuits. For each of these, we have (d2 − 1)! different switching at
2, each of which gives different Eulerian circuits. By continuing this process,
we will have the desired number of distinct Eulerian circuits. ¤

Remark 13. The number of Eulerian circuits in the line digraph is studied
in [5] [4], and it is plausible that one can get a closed formula for the number
of such circuits for projective de Bruijn graphs.

6. Error-correcting m-sequence

We consider the case where the linear recursion Lk gives an m-sequence,
namely, its period is the maximum possible value qk − 1. It is well known
that the number of primitive polynomials of degree k is ϕ(qk− 1)/k (see for
example [7]).

Conjecture 1. Let Fq be a finite field with q ≥ 3, and m ≥ 2 be an integer.
Then, there exists a linear recursion Lk of degree k := (qm−1)/(q−1)−m,
whose characteristic polynomial is primitive and Tn(Lk)[n−k] is Hamiltonian
in PD(q, n− k) minus O for n := (qm − 1)/(q − 1).

This conjecture comes from our heuristic expectation that “the Hamil-
tonian property is independent of the primitivity,” so the number of such
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linear recursion is approximately the number of Hamiltonian cycles times
ϕ(qk−1)/k

qk−1 , which quickly increases by Corollary 11.
Now Theorem 10 and Lemma 2 imply the following.

Theorem 14. If Conjecture 1 is true, then there is a ( qm−1
q−1 , q

qm−1
q−1

−m−1, 3)

error correcting sequence, such that it is an m-sequence of degree qm−1
q−1 −

m and its code-set is the q-ary Hamming code [ qm−1
q−1 , qm−1

q−1 − m, 3] with 0
removed.

In the case of q = 2, the above conjecture is not true. The number of
1’s in a de Bruijn sequence is even, and this implies that if Tn(Lk)[n−k] is
a Hamiltonian cycle, then the characteristic polynomial of Lk is divisible
by t − 1, and thus it can not be primitive. Instead, we have the following
conjecture.

Conjecture 2. Let F2 be the two element field, and m ≥ 2 be an integer.
Then, there exists a linear recursion Lk of degree k := 2m − 2 −m, whose
characteristic polynomial is primitive and Tn(Lk)[n−k] is a Hamiltonian cycle
in PD(q, n− k) with O and [1 : 1 : · · · : 1] removed, for n := 2m − 2.

The motivation of this modification from Conjecture 1 is that we have to
abandon the Hamiltonian property, and a cycle which is one shorter length
can be obtained by only bypassing the vertex [1 : · · · : 1].

Now Theorem 10 and Lemma 2 imply the following.

Theorem 15. If Conjecture 2 is true, then there is a (2m−2, 22m−2−m−1, 3)
error correcting sequence, such that it is an m-sequence of degree 2m−2−m.

Note that the set of columns of its parity check matrix P2m−2 is the set
of vectors in F2

m with O and (1, 1, . . . , 1) removed. If we supplement the
transposition of this vector as a column to P2m−2, we have a Hamming
code. Thus, the code-set of such an error-correcting sequence is obtained by
taking the subset of the Hamming code where the component corresponding
to (1, . . . , 1) is zero.

Example 2 (m = 3): x3 + x + 1 is a primitive polynomial of degree
k = 23−2−3 = 3 whose coefficients give an example of Theorem 15.
This is because by supplying m − 1 zeroes at the left, 001011 gives
a Hamiltonian cycle of D(2, 3) minus O and (1, 1, 1). Consequently,
the corresponding m-sequence 0010111 is a (6, 7, 3) error-correcting
sequence.

Example 3 (m = 4) : 10011010111 is the coefficients of a primitive
polynomial of degree k = 24 − 2 − 4 = 10, and by supplying m − 1
zeroes at the left, we have an example of a Hamiltonian cycle of
D(2, 4) minus O and (1, 1, 1, 1). Consequently, the corresponding
m-sequence is a (14, 1023, 3) error-correcting sequence.

Theorem 15 gives a recipe to find a one-error-correcting m-sequence as fol-
lows. First, find a de Bruijn sequence of degree m. Then, remove the pattern
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of (0, 0, . . . , 0) consisting of m consecutive zeros, and remove one 1 from the
m consecutive 1s in the de Bruijn sequence. This results in a bit sequence of
length 2m − 1−m, started from 1 and end at 1. This gives a polynomial of
degree 2m − 2−m. If this is primitive, then the corresponding m-sequence
is one-error correcting with code length n = 2m − 2.

We have the following computational results for m = 5, 6, 7.

Theorem 16. (m = 5, 6, 7) For m = 5, there are 2048 de Bruijn sequences,
and 316 of them are primitive??? (i.e. satisfies the condition of Theo-
rem 15).

For m = 6, there are 226−1−6 = 226 de Bruijn sequences. Since it is
difficult to obtain and check all these, we randomly generated 1000 such
sequences, and checked that 34 of the first found 1000 were primitive.

For n = 7, there are 227−1−7 = 257 de Bruijn sequences. we randomly
generated 3000, and 91 of them were primitive.

7. decoding

To correct 1-error of n-tuples of m-sequences in Theorems 14 and 15, one
may use the standard method based on the parity check matrix Pn. We
compute the syndrome Pnx for the obtained word x. If it is 0 we guess that
there is no error. It it is not 0, then we need to find the column of Pn which
coincides with the syndrome, then the position of that column among the n
columns gives the place of the error. This might be non trivial if n is large,
but in software we may construct a lookup table.

It seems difficult to obtain the place of the sequence, namely, to compute
s such that (as, as+1, . . . , ss+n−1) = x, since this is nothing but the discrete
log problem. But for some application, it suffices to correct the error, such
as synchronization.
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