Simple cellular automata as pseudorandom
m-sequence generators for built-in self-test
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We propose an extremely simple and explicit construction of cellular automata (CA) generating
pseudorandom m-sequences, which consist of only one type of cells. This construction has advan-
tages over the previous researches in the following two points. (1) No need to search for primitive
polynomials. A simple sufficient number theoretic condition realizes maximal periodic CA’s with
periods 2™ — 1, m = 2,3,5,89,9689,21701,859433. (2) The configuration does not require hybrid
constructions. This makes the implementation much easier. This is a modification of the Rule-90
by Wolfram.

We list our CA’s with maximal period, up to the size 300. We also discuss the controllability
of the CA, randomness of the generated sequence, and a two-dimensional version.

Categories and Subject Descriptors: B.7.1 [Hardware|: Types and Design Styles—Standard
cells, VLST; G.3 [Mathematics of Computing]: PROBABILITY AND STATISTICS —random,
number generation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: cellular automata, finite fields, m-sequence, pseudorandom
number generation, VLSI.

1. INTRODUCTION

The Bualt-in self-test is to include a pseudorandom bit-pattern generator in a VLSI
to test the chip with randomized inputs. A common way is to use a feedbacked shift
register (FSR), but recently cellular automata (CA) have gathered considerable
interest, since CA has the advantage that they need only short wiring between
adjacent cells and no long wiring as for FSR. Note that a long wire-line in a VLSI
consumes an even larger area than a circuit, and in addition it may cause trouble
because of the impedance.

Hortensius et al. [1989a][1989Db] introduced a hybrid CA in which two different
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types of cells are arranged (thus called hybrid), and showed that some such CA
produce m-sequences. Bardell[Bardell 1990] got some examples by random search.
Tezuka and Fushimi[Tezuka and Fushimi 1994] showed that any irreducible poly-
nomial can be realized as a characteristic polynomial of such a hybrid CA, so they
gave a way to design such CA with a maximal period, for any given primitive
polynomial.

The approach here is different. We consider ounly pure CA’s, i.e., consisting of
only one type of cell. Then, we investigate the condition on the number of cells (or
size) of CA that assures the maximality of the period.

We give a simple tight necessary condition, and a simple sufficient condition,
which are purely number theoretic.

As a consequence, we have maximal-periodic CA’s whose sizes are 2, 3, 5, 89,
9689, 21701, and 859433. These numbers are from the table of 35 known Mersenne
primes[Caldwell]. These are all p in the list with the additional condition that 2p+1
is also a prime.

Our methods differ from the previous works in the following two points.

(1) We do not need to search for primitive polynomials. Even by Tezuka-Fushimi’s
result, a primitive polynomial must be randomly searched by computers. This
is a difficult task, since even in the easiest case of trinomials, ouly a list up to
the degree of 132049 is available now.

(2) Our CA has a far simpler configuration, involving only one type of cell. This
facilitates the implementation dramatically, and it seems possible to use in an
experimental stage of newly developing technology in integrated circuit desigu,
too.

The drawback of our method is a strong limitation on the size. We give a list of
the sizes < 300 that attain the maximality.

The concept of cellular automata (CA) was introduced by von Neumann|von
Neumann 1966] in 1940s. Wolfram[Wolfram 1983] classified the CA of simplest
type. Among them, CA with Rule90 and Rulel50 can be analyzed using linear
algebra, since the transition function is a linear transformation over Fy (see [Martin
et al. 1984]).

In this paper, we show that some modification of CA90 generate m-sequences of
huge length. Similar observations are also done in [Hortensius et al. 1989][Yarmolik
and Murashko 1993], but our method is more number-theoretic. We also consider
a two-dimensional version.

2. CELLULAR AUTOMATA AS M-SEQUENCE GENERATOR

One-dimensional cellular automata CA90(m). One-dimensional cellular automata
considered in this article consist of m cells concatenated as in Figure 1.

output

input o T Z2 Tm —E

Figure 1. A one-dimensional CA with input and output.
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The state set of each cell is {0, 1}, identified with the two-element field Fy. The
concatenating lines denote the exchange of information. Each cell looks at the two
neighbor cells (except for the ends, where there is only one neighbor cell), and
decides the next state. Let ¢ denote the time in integers, namely, £ = 0 is the
initial state, and ¢ = k denotes k transitions of the state. We assume the transition
function is Fy-linear; that is,

wp(t+1) = 241 (1) + cprp(t) + 241 (t) (1)

for some constants ¢ € Fy, for k = 1,2,...,m. We shall consider the ends later.
For ¢ = 0,1, the k-th cell is called Rule90, Rulel50, respectively (see [Wolfram
1983]). This transition function is Fy-linear, and the maximality of the period (i.e.,
the period coincides with 2™ —1) is equivalent to the primitivity of the characteristic
polynomial of this transformation.

Hortensius et al. and Bardell considered hybriding these two kinds of cells,
and Tezuka-Fushimi proved that any irreducible polynomial can be realized as the
characteristic polynomial of such generators.

Here we return to the pure situation considered by [Wolfram 1983], and consider
only the case of ¢ = 0 for all k. With null-boundary condition, namely, the
assumption that zo(t) = xyn11(t) = 0 in the recurrence (1), this coincides with CA
with Rule90 in [Wolfram 1983]. However, this never attains the maximal period
2™ — 1, If the CA is maximal, then all nonzero states constitute one cyclic orbit.
However, if we start from a horizontally symmetric state, it can never reach a
nonsymimetric state.

So, in this paper, we destroy this symmetry by putting a mirror at the right end
as shown in Figure 1, namely

Tt (t) = 2 (t), (2)

instead of the null boundary condition. (In other words, we put one Rulel50 cell
at the right end. But in the practical implementation, a cell of Rule90 with a loop
wire at the right end suffices.) We call this CA CA90(m)’.

We shall prove some number theoretic conditions on m to attain the maximal
period in §3.

To set au initial state, we consider an input «(t) € Fy to the left end, namely,

wo(t) = u(t). (3)

We shall prove the controllability of this automaton in §6. We shall treat a two-
dimensional version in §4.

3. CONDITIONS ON THE SIZE FOR MAXIMALITY
3.1 A condition equivalent to the irreducibility

For an odd integer k, let subord(2; k) denote the minimum positive integer s such
that 2° = +£1 mod k. This is nothing but the order of 2 in the multiplicative group
(Z/k)* J{£1}.

The following theorem gives a necessary and sufficient condition for the charac-
teristic polynomial of CA90(m) to be irreducible. Thus, it gives a strong necessary
condition for the CA to have the maximal period.
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THEOREM 3.1. The characteristic polynomial of the transition map of CA90(m)’
18 wrreductble® of and only if

m = subord(2;2m + 1).
This is a necessary condition for CA90(m)’ to have the mazimal period 2™ — 1.

A proof will be given in §3.2. I think it is very difficult to obtain a simple necessary
and sufficient condition on m to attain the maximal period.

Table 1 lists all the m, 1 < m < 300, which satisfy the necessary condition in
Theorem 3.1. For those m without %, CA90(m)’ has the maximal period. Thus
there are 55 maximal periodic CA90’s for 1 < m < 300, and there are eleven m’s
which satisfy the necessary coundition in Theorem 3.1 for which CA90(m)" is not
maximal.

*1 2 3 5 6 9] 11 14 | *18 | 23
26 29 30| 33 35 39| 41| *50 | 51| 53
65 69 74| 81 83 86 | 89 90 | 95 | *98
*99 | 105 | 113 | 119 | 131 | *134 | 135 | 146 | 155 | 158
173 | *174 | 179 | 183 | *186 | 189 | 191 | *194 | 209 | 210
221 | 230 | 231|233 | 239 | 243 | 245 | 251 | 254 | 261
*270 | 273 | *278 | 281 | 293 | 299

Table 1. List of 1 < m < 300 satisfying
the necessary condition in Theorem 3.1.
Those m not marked with * give maximal-periodic CA90(m)’.

If 2™ — 1 is a prime (a prime of this form is called Mersenne prime), then the
irreducibility and the primitivity of a polynomial of degree m are equivalent.
In this case we can prove

THEOREM 3.2. Suppose that 2™ —1is a prime. Then CA90(m)’ has the maximal
pertod if and only if 2m + 1 is prime.

This theorem shows that exactly seven Mersenne exponents among the known
35 (see [Caldwell ], the largest one presently known seems to be 1398369) yield
maximal periodic CA90(m)’. These are m = 2,3, 5,89, 9689, 21701, 859433.

3.2 Proof of Theorems 3.1 and 3.2

It is easy to see that the representation matrix of the linear transition given by (1)
with ¢ =0, (2) and (3) with null input ¢(¢) =0 is

*P. Moree at Max-Planck-Institut pointed out the following. By using Hooley’s method[Hooley
1967], one can prove that under the Generalized Rieman Hypothesis the asymptotic esti-
mate M(x) ~ 2Az/(logz) holds, where M(z) := #{m < 2 : m = subord(2;2m 4 1) and

A=1, prime(l — ﬁ) =0.39--- is Artin’s constant.
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i (t+1) (1) 11
: = Bpn, : , Bn= 1 . (4)
Tm(t+1) T (t) 1
11

Let f,.(t) be the characteristic polynomial of B,,. CA90(m)" has the maximal
period if and ouly if 3,,(t) is primitive, l.e., ¢ is a generator of the multiplicative
group (Fa[t]/Bm(t))*. In this case, each cell generates a so-called m-sequence of
characteristic polynomial 3,,(t).

Proof of Theorem 3.1. Let us obtain all eigenvalues of B,, in F,. The following
easy lemma is useful.

1 1

LemMmAa 3.3. Let p, ¢ be nonzero elements of a field. Then, p+ p~

holds if and only if p = q orp = ¢~ L.

=q+q

This is because a polynomial t* + (p + p~!)t + 1 has at most two roots.

PRroOPOSITION 3.4. Let § = &, be a primitive (2m—+1)-st root of 1 in the algebraic
closure Fy. Set n; := E 47 fori=1,2,...,m. Then, the set of the cigenvalues

of By, in Ty as {n; | i =1,2,...,m}, and they are all distinct.

ProorF. Let x be a variable, and put x :="(x + 27", 2* + 272, ..., 2™ +27™),
where ! denotes the transpose. By a straight forward calculation, we have

Box = (z+27Y)x+40,0,...,0,2™m 4 = (mFD 4 gm 4 gmm),

Thus, if 2 # 1 and 2™ =1 then  + 2! is an eigenvalue, and consequently the
elements 1; = ¢+ 7" for i = 1,2,..., m are eigenvalues of B,,, and all distinct by
Lemma 3.3. Since B, has at most m eigenvalues, these are all the eigenvalues of
By. O

LeMMA 3.5. The Galois group of the extension Fa[n|/Fa is isomorphic to the
cyclic group generated by 2 in the multiplicative group (Z/2m + 1)* /{£1}.

Proor. Let F : F; — T, be the Frobenius map defined by F(a) = o?. It is
well known that F is bijective and that the set of the conjugates of n = 7y is
{F'(n)|l € N}. Thus, the number of conjugates of 5 over F, is equal to min{l |
Fl'(y) =, 1 =1,2,...}, ie., the order of the Frobenius acting on 7. On the
other hand, F'(n) = (£ + 5’1)21 = £2l + 5’21, and the condition F'(n) = 75 is
equivalent to £2l + E‘zl = ¢+ ¢~ By Lemma 3.3, this is equivalent to §2l = ¢t
Since the multiplicative order of £ is 2m + 1, the above identity is equivalent to
2! = 41 mod (2m + 1). Thus, the order of the Frobenius map is nothing but the
order of 2 in the multiplicative group in the lemma. [

COROLLARY 3.6. Letn = £4+&71, with € as in Proposition 3.4. Then, the degree
of the minimal polynomial p,(t) of n equals subord(2;2m + 1).

Proor. The degree of p,(t) equals the number of the conjugates of n over Fy,
i.e., the order of 2 in the multiplicative group in Lemma 3.5, which is by definition
subord(2;2m +1). O
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Prorosrrion 3.7.
ity of Bm(t).

Proor. This is immediate, since 7 is one of the roots of 3,, by Proposition 3.4,
and f3,, is irreducible if and only if ¢,,, which is irreducible and dividing (,,, has
the degree m. [

The condition in Theorem 3.1 is equivalent to the wrreducibal-

Since irreducibility is a necessary condition for primitivity, this proves Theo-
rem 3.1.
We can state a purely numerical necessary condition on m.

THEOREM 3.8. If B,, s irreducible, thenm 2m 4+ 1 is praime, m is not a multiple
of 4, and m 1s not 2° — 1 for s > 3.

See also [Martin et al. 1984], where 2m + 1 is proved to be prime in a very similar
situation.

ProOF. By the note before Theorem 3.1, the condition 2! = 1 mod N is equiv-
alent to subord(2; N)|I.

Suppose that 3, is irreducible, or equivalently, that m = subord(2; 2m + 1).

Then, 2 is a generator of the cyclic group (Z/2m + 1)*/{£1} of order m, and
thus (Z/2m + 1)* is of order 2m, i.e., 2m + 1 is a prime.

Retaining the condition m = subord(2; 2m + 1), suppose that m is 45 for some s.
Then, 2m + 1 = 8s+ 1 is prime. Since 2 is a quadratic residue modulo 8s+ 1 (see,
for example, [Serre 1973]), 2** = 1 mod 8s+ 1. Since 8s+1 is a prime number, this
implies that 2?* = 1 mod 8s + 1, i.e., 4s = subord(2;8s + 1)|2s, a contradiction.
Thus, 4|m implies that 3,, is not irreducible.

Also, if m = 2% — 1 for some s, it is clear that subord(2;2m + 1) = s 4+ 1, and if
s> 3, subord(2;2m + 1) = s + 1 < m. This completes the proof. []

The test of primitivity of 3, for large m requires computers. (But if 2 — 1 is
known to be prime, it is equivalent to the primality of 2m+1.) The author does not
know a good algorithm for primitivity test of 3,, other than direct computation.

Table 1 is obtained by a computer program. For m < 300, check whether m =
subord(2;2m + 1) and then calculate t2"=1/P mod f,, for every prime factor p of
2™ — 1. If it is not 1 for any p, then 3,, is primitive. The factorization of 2™ — 1

is listed in [Brillhart et al. 1988].

Proof of Theorem 3.2. Suppose that m is a Mersenne exponent. Then every
irreducible polynomial of degree m is primitive. Thus, the condition in Theorem 3.1
is necessary and sufficient to have the maximal period. We saw in Theorem 3.8
that the primality of 2m 4 1 is necessary. We show the sufficiency. If 2m 4+ 1 is a
prime, 22™ = 1 mod 2m + 1 and 2™ = %1 mod 2m + 1. Thus subord(2;2m + 1)
divides m, and since m is a prime, m = subord(2;2m + 1). Thus irreducibility
is automatic. Thus, in this case, the primality of 2m 4+ 1 is equivalent to the
maximality of CA90(m)’. This completes the proof of Theorem 3.2. There are
only seven such m among the known 35 Mersenne exponents. These are m =
2,3,5,89,9689, 21701, 859433.

It is interesting to note the following. The irreducibility of j3,, is equivalent
to a simple numerical condition on m. On the contrary, the irreducibility of a
given trinomial of large degree is a difficult problem (see [Kurita and Matsumoto
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1991][Heringa et al. 1992]). Thus, by number theoretic investigation, we can find
explicit irreducible polynomials without using computers?.

4. TWO DIMENSIONAL ANALOGUE

As a two dimeunsional analogue, we consider the following automata called CA90(rn, m)'.

output vector
A

o—| T11 T12 Tim E

o—| 2] 22 s T2m ’E
input
vector

o—| Tnl Tn2 Tnm E

\
TTTITT] TTTTTTT TITITTT

Figure 2. CA90(n, m) with inputs and outputs.

Each cell determines the next state by

it +1) = e (B) + Teggn (B) + 2—ni(t) + 2rgi(t), (5)

1<k <n, 1<1<m,wheremirrors are put at the right ends and the bottom ends.
Thus we assume Typ(y41) = Tgm and T(,41); = Tpg- The inputs are usually zero.
They are used only for the initialization. These CA’s generate a pseudorandom
vector of size m at each step.

We have an analogue to Theorem 3.1.

THrOREM 4.1. If CA90(n,m) has the mawzimal period 2™ — 1, then
m = subord(2;2m + 1), n = subord(2;2n + 1), and gcd(n,m) = 1.

ProoF. Actually, this condition is again equivalent to the irreducibility of the
characteristic polynomial.

Let £, ¢ € Fy be elements with £27F =1, ¢ £ 1, (*™*! =1, and ¢ # 1.

"During the authors’ stay in Max Planck Institute, D. Zagier kindly informed the author of
H.W.Jr. Lenstra’s trick to prove that 2t + t 4 1 is irreducible. It is highly likely that this is
primitive, but it seems we cannot check.
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The transition function for CA90(n, m)’ is X +— B, X + X B,,, when the state X
1s identified with an n X m matrix. From this and Proposition 3.4, it is easy to see
that the (n x m)-matrix

(€ + &N+ (6)
is an eigenvector of (5) with eigenvalue
E+EHCHCT (7)

By considering the Frobenius map F', all the conjugates of (7) are again of the form
(7), where £, ¢ may be replaced by other roots of unity of the same order. The
number of different such elements is at most nm.

Assume that the characteristic polynomial is irreducible. Then, since the dimen-
sion of the state space must coincide with the number of conjugates of (7), the order
of the Frobenius map acting oun the element (7) must be nm. It is clear that this
order divides lem(subord(2;2n + 1),subord(2; 2m + 1)). Because subord(2; 2n + 1)
is the order of 2 in (Z/(2n + 1))*/{=£1}, it is at most n. Now the inequality
nm|lem(subord(2; 2n + 1), subord(2; 2m + 1)) < nmn implies n = subord(2; 2n + 1),
m = subord(2;2m + 1), and that they are coprime. This is nothing but the condi-
tion in Theorem 4.1.

For the converse, it is enough to show that the order of the Frobenius mapping
on the element (7) is nm, where ¢, ¢ is a primitive (2n + 1)-st, (2m + 1)-st root of
unity, respectively,

By the condition ged(subord(2;2n 4 1), subord(2;2m + 1)) = 1, the orbit is the
direct product of the orbits on ¢ + ¢~! and ¢ + ¢(~'. By the condition n =
subord(2;2n + 1), m = subord(2;2m + 1), every nontrivial (2n + 1)-st, (2m + 1)-
st root occurs in the orbit, respectively. Thus, all we have to do is to show that
(7) is distinct to each other for any distinct pairs (¢ + €71, ¢ + (1), where € and
¢ run over the nontrivial roots of unities. Suppose that some of them coincide.
The extension degree of Fo[¢ + £, Fo[¢ 4+ ¢(7!] over Fy is n = subord(2;2n + 1),
m = subord(2; 2m + 1), respectively, and they are coprime. Thus, the intersection
of these two fields is trivial, i.e., Fy. If (7) assumes a same value for two distinct
pairs, then

GHEHGHG =+ + e+ G
holds. This implies

G4 Ho+E =G+ G+ G e,

If this value is zero, then by Lemma 3.3, we have & = £2i1 and ¢ = CQil, con-
tradicting the assumption. Assume that this value is 1. By the condition that
n = subord(2;2n + 1), & + 52_1 is a nountrivial conjugate of & + 51_1 Let o be
an element of the Galois group of [Fa[€ + £ 1] : Fa] which realizes this conjugate.
Then,

G+ -G+
=oloG+&N) -G+ ) +oa+4 ) -G +&hH
=1+4+1=0.

Thus, o acts on & +£1_1 with order two, and thus the Galois group has an eveu order.
Thus, 2|n. Similarly, 2|m. This contradicts the assumption ged(n,m) =1. [
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Unfortunately, we don’t have a good sufficient condition in this two dimensional
case, since 2™ — 1 can never be a prime unless n or m is one. We used a computer
program to make a list of all the parameters n, m satisfying the necessary condition
in Theorem 4.1 for 1 < m < n < 64 and nm < 300. We marked * to those m which
do not yield a maximal period CA.

(2,1) 3L | (32)| (51)| *(5.2)
(5.3) | *(6.1) | (65) | (9.1) ] *(9.2)
¥9.5) | (1L1) | (1L.2) | (113) | *(115)
¥AL6) | (11.9) | (141) | *(14,3) | (14.5)
(14,9) | *(14.11) | *(18.1) | ¥(18,5) | *(18.11)
(23.1) | (23.2) | (23.3) | (23.5) | *(23.6)
(23,9) | *(23,11) | (26,1) | *(26,3) | *(26,5)
(26,9) | (29.1) | %(29.2) | (29.3) | (29.5)
(20.6) | (29,9) | *(30,1) | *(33.1) | *(33,2)
*(33,5) | (35,1) | *(35,2) | ¥(35,3) | (35.,6)
(39.1) | *(39.2) | (39.5) | (41,1)| (4L.2)
¥413) | (41,5) | *(41,6) | ¥(30,1) | *(50.3)
*BL1) | (51.2) | (51.5)

Table 2. List of (n,m), 1 <m <n <1, nm < 300,
satisfying the necessary condition in Theorem 4.1.
Those (n,m) without the mark * give maximal period CA.

In addition to this list, we applied the same computer program to some larger
values, and found that CA90(29,35)" has the maximal period 22935 — 1. This
particular value is of interest, since n and m are near 32, and many computers use
32-bit words. Another reason to select this particular value is that 22935 — 1 is
completely factorized [Brillhart et al. 1988]. We need the factorization to check the
maximality of the period.

5. RANDOMNESS

Now we discuss the randomness of the output sequence. We keep the inputs zero
in this section. CA90(n,m)’ generates a pseudorandom m-bit vector at each step.

THEOREM 5.1. Let (y1,¥2,...) be the output sequence of a CA90(n,m)" with
mazvmal period. Then, for any vectors aj,aqy,...,a, € Fy' which are not all O,
there exists exactly one l wn a period such that

(alaaQa . -7an) = (ylayl+17 L 3yl+n71>'

This is called n-distribution property, and one of the good criteria of randomness.
Thus, this theorem shows that if » is large, then the generated vectors show good
randomness from the point of view of n-distribution.

Proor. Since this CA assumes all the nonzero states, the above property is
equivalent to the fact that the mapping from the state to its n consecutive outputs
is bijective. By counting the dimension, it is enough to prove the injectivity, and
by linearity, it is enough to show the triviality of the kernel. Thus, assume that
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a state X produces n consecutive zero vectors. Then, the first row must be zero,
since it is the output at the present state. Then, the second row will be the output
at the second step, because of the recurrence (5). Thus, the second row must be
zero. By induction, up to the n-th row must be zero, i.e., X = 0 as desired. []

Note that the above proof is valid also for hybrid types of CA. In particular,
CA90(n) generates an n-distributed 1-bit stream.

6. CONTROLLABILITY

In this section we neglect the outputs and deal with only the input. An automaton
with inputs is said to be controllable with k inputs if for any state X and Y, there
exists an input sequence of length & which transforms the state X to Y.

TueoREM 6.1. The cellular automata CA90(n,m)" are controllable with m in-
puts.

The proof below is again valid for hybrid type CA’s. Also, it gives a method to
realize a desired state from the zero state.

ProoOF. By linearity, it is enough to construct a sequence of m input vectors
which moves the zero state to ¥ — X.

Assume that the state is zero. (Or reset it.) Input the sequence of column vectors
Y1,¥2,---,¥Ym € FY in this order. After this, using linearity, we see that the state
matrix becomes

( Yms 0, 0, 0, 0) +
(Bnanfla Ym—1- 0-, seey 01 0) +
(Br%ym—% BnYm—% Ym—2, 07 0) +
(32_1}’17 B:]i_?yla B%ylu Bny17 Y1)
It is clear that any matrix X can be loaded by selecting yy,¥2,...,¥m, in this

order. More precisely, y; is determined as the right most row of ¥ — X. Then
¥2,¥3, - - is determined by

v2 = B,y1 + (the second right most row of ¥ — X),

ys = B2y1 + B,,y2 + (the third right most row of ¥ — X), ...,
in this order. [J

This proof is valid for hybrid types of CA, and shows that CA90(m)’ is control-
lable with m inputs.

7. SUMMARY

In this paper, one-dimensional and two-dimensional linear cellular automata CA90(m)’
and CA90(n, m)" are introduced and analyzed using finite field theory. An easy nec-
essary condition for these CA to generate an m-sequence is provided. For the one
dimensional case, a sufficient condition is also given, which realizes a very huge
period. An algorithm determining the maximality of the period is given. Some
such CA are listed. These CA fit to VLSI implementation better than previously
studied m-sequence generators.
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As a criterion of randomness, n-distribution property of the output sequence
of CA90(n,m)" is proved. Controllability of these automata, which provides the
initialization scheme, is proved.
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