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Summary. Mersenne Twister (MT) is a widely-used fast pseudorandom number
generator (PRNG) with a long period of 219937 − 1, designed 10 years ago based
on 32-bit operations. In this decade, CPUs for personal computers have acquired
new features, such as Single Instruction Multiple Data (SIMD) operations (i.e., 128-
bit operations) and multi-stage pipelines. Here we propose a 128-bit based PRNG,
named SIMD-oriented Fast Mersenne Twister (SFMT), which is analogous to MT
but making full use of these features. Its recursion fits pipeline processing better
than MT, and it is roughly twice as fast as optimised MT using SIMD operations.
Moreover, the dimension of equidistribution of SFMT is better than MT.

We also introduce a block-generation function, which fills an array of 32-bit
integers in one call. It speeds up the generation by a factor of two. A speed com-
parison with other modern generators, such as multiplicative recursive generators,
shows an advantage of SFMT. The implemented C-codes are downloadable from
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html.

1 Introduction

Recently, the scale of simulations is getting larger, and faster pseudorandom
number generators (PRNGs) are required. The power of CPUs for usual per-
sonal computers are now sufficiently strong for such purposes, and the ne-
cessity of efficient PRNGs for CPUs on PCs is increasing. One such gener-
ator is Mersenne Twister (MT) [11], which is based on a linear recursion
modulo 2 over 32-bit words. An implementation MT19937 has the period of
219937 − 1. MT was designed 10 years ago, and the architectures of CPUs,
such as Pentium and PowerPC, have changed. They have Single Instruction
Multiple Data (SIMD) operations, which may be regarded as operations on
128-bit registers. Also, they have more registers and automatic parallelisms
by multi-stage pipelining. These are not reflected in the design of MT.
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Research No.18654021, No. 16204002, and JSPS Core-to-Core Program No.18005.
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In this article, we propose an MT-like pseudorandom number generator
that makes full use of these new features: SFMT, a SIMD-oriented Fast
Mersenne Twister. We implemented an SFMT with the period a multiple
of 219937 − 1, named SFMT19937, which has a better equidistribution prop-
erty than MT. SFMT is much faster than MT, even without using SIMD
instructions.

There is an argument that the CPU time consumed for function calls
to PRNG routines occupies a large part of the random number generation.
This is not always the case: one can avoid the function calls by (1) inline-
expansion and/or (2) generation of pseudorandom numbers in an array in
one call. Actually some demanding users re-coded MT to avoid the function
call; see the homepage of [11]. In this article, we introduce a block-generation
scheme which is much faster than using function calls.

2 SIMD-oriented Fast Mersenne Twister

We propose a SIMD-oriented Fast Mersenne Twister (SFMT) pseudorandom
number generator. It is a Linear Feedbacked Shift Register (LFSR) generator
based on a recursion over F128

2 . We identify the set of bits {0, 1} with the two
element field F2. This means that every arithmetic operation is done modulo
2. A w-bit integer is identified with a horizontal vector in Fw

2 , and + denotes
the sum as vectors (i.e., bit-wise exor), not as integers. We consider three
cases: w is 32, 64 or 128.

2.1 LFSR generators

A LFSR method is to generate a sequence x0,x1,x2, . . . of elements Fw
2 by a

recursion
xi+N := g(xi,xi+1, . . . ,xi+N−1), (1)

where xi ∈ Fw
2 and g : (Fw

2 )N → Fw
2 is an F2-linear function (i.e., the multi-

plication of a (wN × w)-matrix from the right to a wN -dimensional vector)
and use it as a pseudorandom w-bit integer sequence. In the implementation,
this recursion is computed by using an array W[0..N-1] of N integers of w-bit
size, by the simultaneous substitutions

W[0]← W[1], W[1]← W[2], . . . , W[N− 2]← W[N− 1], W[N− 1]←g(W[0], . . . , W[N− 1]).

The first N − 1 substitutions shift the content of the array, hence the name
of LFSR. Note that in the implementation we may use an indexing technique
to avoid computing these substitutions, see [5, P.28 Algorithm A]. The array
W[0..N-1] is called the state array. Before starting the generation, we need
to set some values to the state array, which is called the initialization.

Mersenne Twister (MT) [11] is an example with
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g(w0, . . . ,wN−1) = (w0|w1)A + wM ,

where (w0|w1) denotes the concatenation of the 32 − r most significant bits
(MSBs) of w0 and the r least significant bits (LSBs) of w1, A is a (32× 32)-
matrix for which the multiplication wA is computable by a few bit-operations,
and M is an integer (1 < M < N). Its period is 232N−r − 1, chosen to be a
Mersenne prime. To obtain a better equidistribution property, MT transforms
the sequence by a suitably chosen (32 × 32) matrix T , namely, MT outputs
x0T,x1T,x2T, . . . (called tempering).

2.2 New features of modern CPUs for personal computers

Modern CPUs for personal computers (e.g. Pentium and PowerPC) have new
features such as (1) fast integer multiplication instructions (2) fast floating
point operations (3) SIMD operations (4) multi-stage pipelining. These were
not common to standard PC CPUs, when MT was designed.

An advantage of F2-linear generators over integer multiplication generators
(such as Linear Congruential Generators [5] or Multiple Recursive Generators
[6]) was high-speed generation by avoiding multiplications. This advantage is
now smaller, since 32-bit integer multiplication is now quite fast.

Among the new features, (3) and (4) fit F2-linear generators. Our idea
is simple: to design a 128-bit integer PRNG, considering the benefit of such
parallelism in the recursion.

2.3 The recursion of SFMT

We choose g in the recursion (1) as

g(w0, . . . ,wN−1) = w0A + wMB + wN−2C + wN−1D, (2)

where w0,wM , . . . are w(= 128)-bit integers (= horizontal vectors in F128
2 ),

and A,B, C, D are sparse 128×128 matrices over F2 for which wA,wB,wC,wD
can be computed by a few SIMD bit-operations. The choice of the suffixes
N − 1, N − 2 is for speed: in the implementation of g, W[0] and W[M] are
read from the array W, while the copies of W[N-2] and W[N-1] are kept in two
128-bit registers in the CPU, say r1 and r2. Concretely speaking, we assign
r2← r1 and r1← “the result of (2)” at every generation, then r2 (r1) keeps
a copy of W[N-2] (W[N-1], respectively). The merit of doing this is to use the
pipeline effectively. To fetch W[0] and W[M] from memory takes some time. In
the meantime, the CPU can compute wN−2C and wN−1D, because copies of
wN−2 and wN−1 are kept in the registers. This selection was made through
experiments on the speed of generation.

By trial and error, we searched for a set of parameters of SFMT, with
the period being a multiple of 219937 − 1 and having good equidistribution
properties. The degree of recursion N is d19937/128e = 156, and the linear
transformations A,B, C, D are as follows.



4 Mutsuo Saito and Makoto Matsumoto

• wA := (w
128
<< 8) + w.

This notation means that w is regarded as a single 128-bit integer, and
wA is the result of the left-shift of w by 8 bits. There is such a SIMD
operation in both Pentium SSE2 and PowerPC AltiVec SIMD instruction
sets (SSE2 permits only a multiple of 8 as the amount of shifting). Note
that the notation + means the exclusive-or in this article.

• wB := (w
32

>> 11)&(BFFFFFF6 BFFAFFFF DDFECB7F DFFFFFEF).
This notation means that w is considered to be a quadruple of 32-bit
integers, and each 32-bit integer is shifted to the right by 11 bits, (thus
the eleven most significant bits are filled with 0s, for each 32-bit integer).
The C-like notation & means the bitwise AND with a constant 128-bit
integer, denoted in the hexadecimal form.
In the search, this constant is generated as follows. Each bit in the 128-bit
integer is independently randomly chosen, with the probability to choose 1
being 7/8. This is because we prefer to have more 1’s for a denser feedback.

• wC := (w
128
>> 8).

This is the right shift of an 128-bit integer by 8 bits, similar to the first.

• wD := (w
32

<< 18).
Similar to the second, w is cut into four pieces of 32-bit integers, and each
of these is shifted by 18 bits to the left.

All these instructions are available in both Intel Pentium’s SSE2 and Pow-
erPC’s AltiVec SIMD instruction sets. Figure 1 shows a concrete description
of SFMT19937 generator with period a multiple of 219937 − 1.

W0

W122

W154

W155

128 bit

128
 << 8

 32
 >> 11

128
 >> 8

 32
 << 18

AND
0xBFFFFFF6
0xBFFAFFFF
0xDDFECB7F
0xDFFFFFEF

+

Fig. 1. A circuit-like description of SFMT19937.

2.4 Endianness

Let x[0..3] be an array of 32-bit integers of size four. There are two natural
ways to convert the array to a 128-bit integer. One is to concatenate in the
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order of x[3]x[2]x[1]x[0], from MSBs to LSBs, which is called the little-endian
system, adopted in Pentium. The converse is the big-endian system adopted
in PowerPC, see [18].

The descriptions in this article is based on the former. To assure the
portability for both endian systems, we implemented two codes: one is for
little-endian system (SSE2 of Pentium) and the other is for big-endian system
(AltiVec of PowerPC), to assure the exactly same outputs as 32-bit integer
generators. In the latter code, the recursion (2) is considered as a recursion on
quadruples of 32-bit integers, rather than 128-bit integers, so that the content
of the state array coincides both for little and big endian systems, as an array
of 32-bit integers (not as 128-bit integers). Thus, shift-operations on 128-bit
integers in the little-endian system is different from that in the big-endian sys-
tem. PowerPC supports arbitrary permutations of 16 blocks of 8-bit integers
in a 128-bit register, which can emulate the shift in (2).

2.5 Block-generation

In the block-generation scheme, the user of the PRNG specifies an array of w-
bit integers of the length L, where w = 32, 64 or 128 and L is specified by the
user. In the case of SFMT19937, wL should be a multiple of 128 and no less
than N × 128, since the array needs to accommodate the state space (note
that N = 156). By calling the block generation function with the pointer
to this array, w, and L, the routine fills up the array with pseudorandom
integers, as follows. SFMT19937 keeps the state space S in an internal array
of 128-bit integers of length 156. We concatenate this state array with the
user-specified array, using the indexing technique. Then, the routine generates
128-bit integers in the user-specified array by recursion (2), as described in
Figure 2, until it fills up the array. The last 156 128-bit integers are copied
back to the internal array of SFMT19937. This makes the generation much
faster than sequential generation (i.e., one generation per one call) as shown
in Table 1.

3 How to select the recursion and parameters.

We wrote a code to compute the period and the dimensions of equidistribution
(DE, see §3.2). Then, we searched for a recursion with good DE admitting a
fast implementation.

3.1 Computation of the Period

An LFSR that obeys the recursion (1) may be considered as an automaton,
with the state space S = (Fw

2 )N and the state transition function f : S → S
given by (w0, . . . ,wN−1) 7→ (w1, . . . ,wN−1, g(w0, . . . ,wN−1)). As a w-bit
integer generator, the output function is o : S → Fw

2 , (w0, . . . ,wN−1) 7→ w0.
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Fig. 2. Block-generation scheme

Let χf be the characteristic polynomial of f : S → S. If χf is primitive,
then the period of the state transition takes the maximal value 2dim(S)− 1 [5,
§3.2.2]. However, to check the primitivity, we need the integer factorization
of this number, which is often hard for dim(S) = nw > 10000. On the other
hand, the primarity test is much easier than the factorization, so many huge
primes of the form 2p− 1 have been found. Such a prime is called a Mersenne
prime, and p is called the Mersenne exponent, which itself is a prime.

MT and WELL[15] discard r specific bits from the array S, so that nw−r
is a Mersenne exponent. Then, the primitivity of χf is easily checked by the
algorithm in [5, §3.2.2], avoiding the integer factorization.

SFMT adopted another method to avoid the integer factorization, the re-
ducible transition method (RTM), which uses a reducible characteristic poly-
nomial with a large primitive factor. This idea appeared in [4] [1][2], and
applications in the present context are discussed in detail in another article
[16], therefore we only briefly recall it.

Let p be the Mersenne exponent, and N := dp/we. Then, we randomly
choose parameters for the recursion of LFSR (1). By applying the Berlekamp-
Massey Algorithm to the output sequence, we obtain χf (t). (Note that a direct
computation of det(tI − f) is time-consuming because dim(S) = 19968.)

By using a sieve, we remove all factors of small degree from χf , until we
know that it has no irreducible factor of degree p, or that it has a (possibly
reducible) factor of degree p. In the latter case, the factor is passed to the
primitivity test described in [5, §3.2.2].

Suppose that we found a recursion with an irreducible factor of desired
degree p in χf (t). Then, we have a factorization
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χf = φpφr,

where φp is a primitive polynomial of degree p and φr is a polynomial of
degree r = wN − p. These are coprime, since we assume p > r. Let Ker(g)
denote the kernel of a linear transformation g. By putting Vp := Ker (φp(f))
and Vr := Ker (φr(f)), we have a decomposition into f -invariant subspaces

S = Vp ⊕ Vr (dimVp = p, dimVr = r).

Note that the characteristic polynomial of the restriction fp of f to Vp is
φp(t), and that of the restriction fr to Vr is φr(t). For any state s ∈ S, we
denote s = sp + sr for the corresponding decomposition with sp ∈ Vp and
sr ∈ Vr. Then, the k-th state fk(s) is equal to fk

p (sp) + fk
r (sr). This implies

that the automaton is equivalent to the sum of two automata fp : Vp → Vp

and fr : Vr → Vr. To combine two linear automata by sum is well-studied
as combined Tausworthe generators or combined LFSRs, see [3] [7] [8]. Their
purpose is to obtain a good PRNG from several simple generators, which is
different from ours.

The period length of the state transition is the least common multiple of
that started from sp and that started from sr. Hence, if sp 6= 0, then the
period is a nonzero multiple of 2p − 1. We checked the following.

Proposition 1. The period of SFMT19937 as a 128-bit integer generator is
a nonzero multiple of 219937 − 1, if the 32 MSBs of w0 are set to the value
6d736d6d in hexadecimal form.

This value of w0 assures that sp 6= 0, see [16] for a way to find such a value.

Remark 1. The number of non-zero terms in χf (t) is an index measuring the
amount of bit-mixing. In the case of SFMT19937, the number of nonzero
terms is 6711, which is much larger than 135 of MT, but smaller than 8585
of WELL19937c [15].

3.2 Computation of the dimension of equidistribution

We briefly recall the definition of dimension of equidistribution (cf. [3][7]).

Definition 1. A periodic sequence with period P

χ := x0,x1, . . . ,xP−1,xP = x0, . . .

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit
pattern occurs equally often as a k-tuple

(xi,xi+1, . . . ,xi+k−1)

for a period i = 0, . . . , P − 1. We allow an exception for the all-zero pat-
tern, which may occur once less often. (This last loosening of the condition
is technically necessary, because the zero state does not occur in an F2-linear
generator). The largest value of such k is called the dimension of equidistri-
bution (DE).
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We want to generalize this definition slightly. We define the k-window set
of the periodic sequence χ as

Wk(χ) := {(xi,xi+1, . . . ,xi+k−1)|i = 0, 1, . . . , P − 1},

which is considered as a multi-set, namely, the multiplicity of each element is
considered.

For a positive integer m and a multi-set T , let us denote by m·T the multi-
set where the multiplicity of each element in T is multiplied by m. Then, the
above definition of equidistribution is equivalent to

Wk(χ) = (m · Fvk
2 ) \ {0},

where m is the multiplicity of the occurrences, and the operator \ means that
the multiplicity of 0 is subtracted by one.

Definition 2. In the above setting, if there exist a positive integer m and a
multi-subset D ⊂ (m · Fvk

2 ) such that

Wk(χ) = (m · Fvk
2 ) \D,

we say that χ is k-dimensionally equidistributed with defect ratio #(D)/#(m ·
Fvk

2 ), where the cardinality is counted with multiplicity.

Thus, in Definition 1, the defect ratio up to 1/(P + 1) is allowed to claim the
dimension of equidistribution. If P = 219937− 1, then 1/(P + 1) = 2−19937. In
the following, the dimension of equidistribution allows the defect ratio up to
2−19937.

For a w-bit integer sequence, its dimension of equidistribution at v-bit ac-
curacy k(v) is defined as the DE of the v-bit sequence, obtained by extracting
the v MSBs from each of the w-bit integers. If the defect ratio is 1/(P + 1),
then there is an upper bound

k(v) ≤ blog2(P + 1)/vc.

The gap between the realized k(v) and the upper bound is called the dimension
defect at v of the sequence, and denoted by

d(v) := blog2(P + 1)/vc − k(v).

The summation of all the dimension defects at 1 ≤ v ≤ 32 is called the total
dimension defect, denoted by ∆.

There is a difficulty in computing k(v) when a 128-bit integer generator
is used as a 32-bit (or 64-bit) integer generator. SFMT generates a sequence
x0,x1,x2, . . . of 128-bit integers. Then, they are converted to a sequence of 32-
bit integers x0[0],x0[1],x0[2],x0[3],x1[0],x1[1], . . ., where x[0] is the 32 LSBs
of x, x[1] is the 33rd–64th bits, x[2] is the 65rd–96th bits, and x[3] is the 32
MSBs.
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Then, we need to modify the model automaton as follows. The state space
is S′ := S × {0, 1, 2, 3}, the state transition function f ′ : S′ → S′ is

f ′(s, i) :=
{

(s, i + 1) ( if i < 3),
(f(s), 0) ( if i = 3)

and the output function is

o′ : S′ → F32
2 , ((w0, . . . ,wN−1), i) 7→ w0[i].

We fix 1 ≤ v ≤ w, and let ok(s, i) be the k-tuple of the v MSBs of the
consecutive k-outputs from the state (s, i).

Proposition 2. Assume that f is bijective. Let k′ = k′(v) denote the maxi-
mum k such that

ok(−, i) : Vp → Fkv
2 , s 7→ ok(s, i) (3)

are surjective for all i = 0, 1, 2, 3. Take an initial state s satisfying sp 6= 0.
Then, the 32-bit output sequence is at least k′(v)-dimensionally equidistributed
with v-bit accuracy with defect ratio 2−p.

Moreover, if 4 < k′(v) + 1, then for any initial state with s = sp 6= 0
(hence sr = 0), the dimension of equidistribution with defect ratio 2−p is
exactly k′(v).

Proof. Take s ∈ S with sp 6= 0. Then, the orbit of s by f has the form of
(Vp − {0})× U ⊂ Vp × Vr, since p > r and 2p − 1 is a prime. The surjectivity
of the linear mapping ok′(−, i) implies that the image of

ok′(−, i) : Vp × U → Fkv
2

is m · Fkv
2 as a multi-set for some m. The defect comes from 0 ∈ Vp, whose

ratio in Vp is 2−p. Then the first statement follows, since Wk′(χ) is the union
of the images ok′(−, i)((Vp − {0})× U) for i = 0, 1, 2, 3.

For the latter half, we define Li as the multiset of the image of ok′+1(−, i) :
Vp → F(k′+1)v

2 . Because of sr = 0, we have U = {0}, and the union of
(Li − {0}) (i = 0, 1, 2, 3) as a multi-set is Wk′+1(χ). If the sequence is
(k′ + 1)-dimensionally equidistributed, then the multiplicity of each element
in Wk′+1(χ) is at most 2p × 4/2(k′+1)v.

On the other hand, the multiplicity of an element in Li is equal to the
cardinality of the kernel of ok′+1(−, i). Let di be its dimension. Then by
the dimension theorem, we have di ≥ p − (k′ + 1)v, and the equality holds
if and only if ok′+1(−, i) is surjective. Thus, if there is a nonzero element
x ∈ ∩3

i=0Li, then its multiplicity in Wk′+1(χ) is no less than 4 × 2p−(k′+1)v,
and since one of ok′+1(−, i) is not surjective by the definition of k′, its multi-
plicity actually exceeds 4× 2p−(k′+1)v, which implies that the sequence is not
(k′ + 1)-dimensionally equidistributed, and the proposition follows. Since the
codimension of Li is at most v, that of ∩3

i=0Li is at most 4v. The assumed
inequality on k′ implies the existence of nonzero element in the intersection.
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The dimension of equidistribution k(v) depends on the choice of the initial
state s. The above proposition implies that k′(v) coincides with k(v) for the
worst choice of s under the condition sp 6= 0. Thus, we adopt the following
definition (analogously to tl in [7]).

Definition 3. Let k be the maximum such that (3) is satisfied. We call this
the dimension of equidistribution of v-bit accuracy, and denote it simply by
k(v). We have an upper bound k(v) ≤ bp/vc.

We define the dimension defect at v by

d(v) := bp/vc − k(v) and ∆ :=
w∑

v=1

d(v).

We may compute k(v) by standard linear algebra. We used a more efficient
algorithm based on a weighted norm, generalizing [3]. This will be written
somewhere else, because of lack of space.

4 Comparison of speed

We compared two algorithms: MT19937 and SFMT19937, with implementa-
tions using and without using SIMD instructions.

We measured the speeds for four different CPUs: Pentium M 1.4GHz,
Pentium IV 3GHz, AMD Athlon 64 3800+, and PowerPC G4 1.33GHz. In
returning the random values, we used two different methods. One is sequential
generation, where one 32-bit random integer is returned for one call. The other
is block generation, where an array of random integers is generated for one
call (cf. [5]). For detail, see §2.5 below.

We measured the consumed CPU time in second, for 108 generations of
32-bit integers. More precisely, in case of the block generation, we generate
105 of 32-bit random integers by one call, and this is iterated for 103 times.
For sequential generation, the same 108 32-bit integers are generated, one per
call. We used the inline declaration inline to avoid the function call, and un-
signed 32-bit, 64-bit integer types uint32 t, uint64 t defined in INTERNA-
TIONAL STANDARD ISO/IEC 9899 : 1999(E) Programming Language-C,
Second Edition (which we shall refer to as C99 in the rest of this article). Im-
plementations without SIMD are written in C99, whereas those with SIMD
use some standard SIMD extension of C99 supported by the compilers icl
(Intel C compiler) and gcc.

Table 1 summarises the speed comparisons. The first four lines list the
CPU time (in seconds) needed to generate 108 32-bit integers, for a Pentium-
M CPU with the Intel C/C++ compiler. The first line lists the seconds for
the block-generation scheme. The second line shows the ratio of CPU time to
that of SFMT(SIMD). Thus, SFMT coded in SIMD is 2.10 times faster than
MT coded in SIMD, and 3.77 times faster than MT without SIMD. The third
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line lists the seconds for the sequential generation scheme. The fourth line
lists the ratio, with the basis taken at SFMT(SIMD) block-generation (not
sequential). Thus, the block-generation of SFMT(SIMD) is 2.00 times faster
than the sequential-generation of SFMT(SIMD).

Roughly speaking, in the block generation, SFMT(SIMD) is twice as fast
as MT(SIMD), and four times faster than MT without using SIMD. Even in
the sequential generation case, SFMT(SIMD) is still considerably faster than
MT(SIMD).

CPU/compiler return MT MT(SIMD) SFMT SFMT(SIMD)

Pentium-M block 1.122 0.627 0.689 0.298
1.4GHz (ratio) 3.77 2.10 2.31 1.00

Intel C/C++ seq 1.511 1.221 1.017 0.597
ver. 9.0 (ratio) 5.07 4.10 3.41 2.00

Pentium IV block 0.633 0.391 0.412 0.217
3GHz (ratio) 2.92 1.80 1.90 1.00

Intel C/C++ seq 1.014 0.757 0.736 0.412
ver. 9.0 (ratio) 4.67 3.49 3.39 1.90

Athlon 64 3800+ block 0.686 0.376 0.318 0.156
2.4GHz (ratio) 4.40 2.41 2.04 1.00

gcc seq 0.756 0.607 0.552 0.428
ver. 4.0.2 (ratio) 4.85 3.89 3.54 2.74

PowerPC G4 block 1.089 0.490 0.914 0.235
1.33GHz (ratio) 4.63 2.09 3.89 1.00

gcc seq 1.794 1.358 1.645 0.701
ver. 4.0.0 (ratio) 7.63 5.78 7.00 2.98

Table 1. The CPU time (sec.) for 108 generations of 32-bit integers, for four different
CPUs and two different return-value methods. The ratio to the SFMT coded in
SIMD is listed, too.

CPU return mrg rand48 rand random256g2 well xor3

Pentium M block 3.277 1.417 0.453 0.230 1.970 0.296
seq 3.255 1.417 0.527 0.610 2.266 1.018

Pentium IV block 2.295 1.285 0.416 0.121 0.919 0.328
seq 2.395 1.304 0.413 0.392 1.033 0.702

Athlon block 1.781 0.770 0.249 0.208 0.753 0.294
seq 1.798 0.591 0.250 0.277 0.874 0.496

PowerPC block 2.558 1.141 0.411 0.653 1.792 0.618
seq 2.508 1.132 0.378 1.072 1.762 1.153

Table 2. The CPU time (sec.) for 108 generations of 32-bit integers, by six other
PRNGs.
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Table 2 lists the CPU time for generating 108 32-bit integers, for four
PRNGs from the GNU Scientific Library and two recent generators. They
are re-coded with inline specification. Generators examined were: a multi-
ple recursive generator mrg [6], linear congruential generators rand48 and
rand, a lagged fibonacci generator random256g2, a WELL generator well
(WELL19937c in [15]), and a XORSHIFT generator xor3 [14] [10]. The ta-
ble shows that SFMT(SIMD) is faster than these PRNGs, except for the
outdated linear congruential generator rand, the lagged-fibonacci generator
random256g2 (which is known to have poor randomness, cf. [13]), and xor3
with a Pentium-M.

5 Dimension of equidistribution

Table 3 lists the dimension defects d(v) of SFMT19937 (as a 32-bit integer
generator) and of MT19937, for v = 1, 2, . . . , 32. SFMT has smaller values of
the defect d(v) at 26 values of v. The converse holds for 6 values of v, but the
difference is small. The total dimension defect ∆ of SFMT19937 as a 32-bit
integer generator is 4188, which is smaller than the total dimension defect
6750 of MT19937.

v MT SFMT v MT SFMT v MT SFMT v MT SFMT

d(1) 0 0 d(9) 346 1 d(17) 549 543 d(25) 174 173
d(2) 0 *2 d(10) 124 0 d(18) 484 478 d(26) 143 142
d(3) 405 1 d(11) 564 0 d(19) 426 425 d(27) 115 114
d(4) 0 *2 d(12) 415 117 d(20) 373 372 d(28) 89 88
d(5) 249 2 d(13) 287 285 d(21) 326 325 d(29) 64 63
d(6) 207 0 d(14) 178 176 d(22) 283 282 d(30) 41 40
d(7) 355 1 d(15) 83 *85 d(23) 243 242 d(31) 20 19
d(8) 0 *1 d(16) 0 *2 d(24) 207 206 d(32) 0 *1

Table 3. Dimension defects d(v) of MT19937 and SFMT19937 as a 32-bit integer
generator. The mark * means that MT has a smaller defect than SFMT at that
accuracy.

We also computed the dimension defects of SFMT19937 as a 64-bit (128-
bit) integer generator, and the total dimension defect ∆ is 14089 (28676,
respectively). In some applications, the distribution of LSBs is important. To
check them, we inverted the order of the bits (i.e. the i-th bit is exchanged
with the (w − i)-th bit) in each integer, and computed the total dimension
defect. It is 10328 (21337, 34577, respectively) as a 32-bit (64-bit, 128-bit,
respectively) integer generator. Throughout the experiments, d′(v) is very
small for v ≤ 10. We consider that these values are satisfactorily small, since
they are comparable with MT for which no statistical deviation related to the
dimension defect has been reported, as far as we know.
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6 Recovery from 0-excess states

For an LFSR with a sparse feedback function g, we observe the following
phenomenon: if the bits in the state space contain too many 0’s and few 1’s
(called a 0-excess state), then this tendency continues for many steps, since
only a small part is changed in the state array at one step, and the change is
not well-reflected to the next setp because of the sparseness.

We measure the recovery time from 0-excess states, by the method intro-
duced in [15], as follows.

1. Choose an initial state with only one bit being 1.
2. Generate k pseudorandom numbers, and discard them.
3. Compute the ratio of 1’s among the next 32000 bits of outputs (i.e., in

the next 1000 pseudorandom 32-bit integers).
4. Let γk be the average of the ratio over all such initial states.

We draw graphs of these ratio γk (1 ≤ k ≤ 20000) in Figure 3 for the follow-
ing generators: (1) WELL19937c, (2) PMT19937 [16], (3) SFMT19937, and
(4) MT19937. Because of its dense feedback, WELL19937c shows the fastest

 0

 0.1

 0.2

 0.3
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 0  5000  10000  15000  20000

WELLc
PMT
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MT

Fig. 3. γk (k = 0, . . . , 20000): Starting from extreme 0-excess states, discard the
first k outputs and then measure the ratio γk of 1’s in the next 1000 outputs. In the
order of the recovery speed: (1) WELL19937c, (2) PMT19937, (3) SFMT19937, and
(3) MT19937.

recovery among the compared generators. SFMT is better than MT, since its
recursion refers to two most recently computed words (W[N-1] and W[N-2])
that acquire new 1s, while MT refers only to the words generated long before
(W[M] and W[0]). PMT19937 shows faster recovery than SFMT19937, since
PMT19937 has two feedback loops. The speed of recovery from 0-excess states
is a trade-off with the speed of generation. Such 0-excess states will not hap-
pen practically, since the probability that 19937 random bits have less than
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19937 × 0.4 of 1’s is about 5.7 × 10−177. The only plausible case would be
that a poor initialization scheme gives a 0-excess initial state (or gives two
initial states whose Hamming distance is too small). In a typical simulation,
the number of initializations is far smaller than the number of generations,
therefore we may spend more CPU time in the initialization than the genera-
tion. Under the assumption that a good initialization scheme is provided, the
slower recovery of SFMT compared to WELL would perhaps not be a great
issue.

7 Concluding remarks

We proposed the SFMT pseudorandom number generator, which is a very fast
generator with satisfactorily high-dimensional equidistribution property.

It is difficult to measure the generation speed of a PRNG in a fair way,
since it depends heavily on the circumstances. The WELL [15] generators
have the best possible dimensions of equidistribution (i.e. ∆ = 0) for various
periods (21024 − 1 to 219937 − 1). If we use the function call to the PRNG for
each generation, then a large part of the CPU time is consumed for handling
the function call, and in the experiments in [15] or [14], WELL is not much
slower than MT. On the other hand, if we avoid the function call, WELL is
slower than MT for some CPUs, as seen in Table 1.

Since ∆ = 0, WELL has a better quality than MT or SFMT in a theoretical
sense. However, one may argue whether this difference is observable or not. In
the case of an F2-linear generator, the dimension of equidistribution k(v) of
v-bit accuracy means that there is no constant linear relation among the kv
bits, but there exists a linear relation among the (k + 1)v bits, where kv bits
((k + 1)v bits) are taken from all the consecutive k integers (k + 1 integers,
respectively) by extracting the v MSBs from each. However, the existence of
a linear relation does not necessarily mean the existence of some observable
bias. According to [12], it requires 1028 samples to detect an F2-linear relation
with 15 (or more) terms among 521 bits, by weight distribution test. If the
number of bits is increased, the necessary sample size is increased rapidly.
Thus, it seems that k(v) of SFMT19937 is sufficiently large, far beyond the
level of the observable bias. On the other hand, the speed of the generator
is observable. Thus, SFMT focuses more on the speed, for applications that
require fast generations. (Note: the referee pointed out that statistical tests
based on the rank of F2-matrix is sensitive to the linear relations [9], so the
above observation is not necessarily true.)

There is a trade-off between the speed and portability. We prepared (1)
a standard C code of SFMT, which uses functions specified in C99 only, (2)
an optimized C code for Intel Pentium SSE2, and (3) an optimized C code
for PowerPC AltiVec. The optimized codes require the icl (Intel C Compiler)
or gcc compiler with suitable options. We had put and will keep the newest
version of the codes in the homepage [17].
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