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Abstract

The generalized feedback shift register (GFSR) algorithm suggested by Lewis and Payne is a
widely used pseudorandom number generator, but has the following serious drawbacks: 1. An
initialization scheme to assure higher order equidistribution is involved and is time-consuming. 2.
Each bit of the generated words constitutes an m-sequence based on a primitive trinomial, which
shows poor randomness with respect to weight distribution. 3. Large working area is necessary.
4. The period of sequence is far shorter than the theoretical upper bound. This paper presents
the twisted GFSR (TGFSR) algorithm, a slightly but essentially modified version of the GFSR,
which solves all the above problems without loss of merit. Some practical TGFSR generators
were implemented and they passed strict empirical tests. These new generators are most suitable
for simulation of a large distributive system, which requires a number of mutually independent
pseudorandom number generators with compact size.

1 Introduction

The generalized feedback shift register (GFSR) generator[12] is a widely used pseudorandom number
generator based on the linear recurring equation

xl+n := xl+m ⊕ xl, (l = 0, 1, . . .),

where each xl is a word with components 0 or 1 of size w, and ⊕ denotes bitwise exclusive-or operation.
Thereby, this algorithm generates the same number of m-sequences as the word length in parallel.
Thus, by regarding one word as a real number between 0 and 1, the algorithm generates [0,1] uniform
pseudorandom real number sequences. This algorithm has the following merits:

(m1) The generation is very fast. Generation of one pseudorandom number requires only three
memory references and one exclusive-or operation.

(m2) The sequence has an arbitrarily long period independent of the word size of the machine.

(m3) The implementation is independent of the word size of the machine.

CR categories and Subject Descriptors: G. 2.1. [Discrete Mathematics] : Combinatorics–recurrences and
difference equations; G. 3. [Probability and Statistics]–random number generation.

General Term: Algorithms, Experimentation.
Additional Key Words and Phrases: generalized feedback shift registers, matrix linear congruential generators,

m-sequences, TLP-sequences, GF(2m)
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However, the algorithm has the following serious drawbacks:

(d1) The selection of initial seeds is very critical and influential in the randomness, and good initial-
ization is rather involved and time-consuming.

(d2) Each bit of a GFSR sequence can be regarded as an m-sequence based on the trinomial tn+tm+1,
which is known to have poor randomness [3][4][14][15] (see also the results of weight distribution
tests in Section 4.5).

(d3) The period of a GFSR sequence 2n− 1 is far smaller than the theoretical upper bound; i.e., the
number of possible states 2nw.

(d4) The algorithm requires n words of working area, which is memory-consuming if a large number
of generators are implemented simultaneously.

This paper describes a new generator named the twisted GFSR generator (TGFSR for short), which
solves the above four drawbacks. The TGFSR generator is the same as the GFSR generator, except
that it is based on the linear recurrence

xl+n := xl+m ⊕ xlA, (l = 0, 1, . . .),

where A is a w × w matrix with 0-1 components and xl is regarded as a row vector over GF(2).
With suitable choice of n, m, and A, the TGFSR generator attains the maximal period 2nw − 1; i.e.,
it assumes all possible states except the zerostate in a period.

Because of this maximality, the TGFSR generator improves on the above four drawbacks of the
GFSR generator as follows:

(Tm1) The initialization is carefree. Any initial seed except for all zero produces the identical
sequence disregarding the phase, and hence no special initialization technique, as shown in [5],
is necessary. Moreover, since the working area is far smaller, initialization is very fast.

(Tm2) Recurrence is based not on a trinomial, but on a primitive polynomial with many terms.

(Tm3) The period of the generated sequence attains the theoretical upper bound 2nw − 1.

(Tm4) The working area is one-w-th the size of that of the GFSR required to attain the same period.
For example, assume that the word size of the machine is 32. Then, the TGFSR generator
requires only 25 words for the working area to attain the period 225∗32 − 1, while the GFSR
generator requires 800 words for the working area for the same period.

(Tm5) The sequence is n-equidistributed, which is best possible.

Below, we explain the k-equidistribution property[19], which is an indispensable condition for a good
pseudorandom number sequence. For a positive integer k, a sequence X = x0,x1,x2, · · · is said to
be k-equidistributed if any nonzero k-tuple (a0,a1, . . . ,ak−1) (there are 2kw − 1 such tuples) equally
likely occurs as k-tuple (xl,xl+1, . . . ,xl+k−1) in the sequence X for l = 0, 1, 2, . . .. Now, our TGFSR
sequence is n-equidistributed as shown in Section 2.2, which is best possible.

We can choose A so that xA can be computed with a few machine instructions, as shown in Sec-
tion 2.1. Thus, the TGFSR generator is a fast algorithm generating highly equidistributed optimally
long period pseudorandom sequences consuming only a small area of memory with a very easy and
fast initialization scheme.

The TGFSR generators are most suitable for simulation of a large distributive system, which
requires a large number of mutually independent pseudorandom number generators, for the following
two reasons: (1) The TGFSR generators consume a far smaller amount of working area than do the
GFSR. (2) A large number of distinct TGFSR generators can be implemented by merely changing
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the parameters m and A. This is different from the case of the GFSR, where the basic recurrence is
determined by a primitive trinomial, which is rarely found.

In Section 2.1, the TGFSR algorithm is described, and compared with the original GFSR algorithm.
In Section 2.2, the algebraic definition and some underlying theory are investigated. In Section 2.3,
the merits and drawbacks of the GFSR and the TGFSR generators are compared. A comparison with
a recent nice algorithm is also stated. In Section 3, a method for finding suitable values for parameters
n, m, and A, is discussed. In Section 4, several TGFSR generators are listed, and intensive tests of
randomness are done for several kinds of pseudorandom number generators. Some generators having
previously been believed to provide good pseudorandom numbers are rejected. Section 5 offers our
conclusions. Appendix A contains proofs of theorems, and Appendix B supplements the detail of the
empirical tests.

2 TGFSR generators

2.1 GFSR and TGFSR algorithms

As a preliminary step, we describe the GFSR algorithm based on a primitive trinomial tn + tm + 1.
Let x[n] be an array of n integers of word size and l be an integer variable. The GFSR algorithm is
described as follows:

Step 1. l← 0

Step 2. Set x[0], x[1], . . ., x[n− 1] to some suitable initial values.

Step 3. Output x[l].

Step 4. x[l]← x[(l + m) mod n]⊕ x[l]

Step 5. l← (l + 1) mod n

Step 6. Goto Step 3.

The TGFSR algorithm is obtained by replacing Step 4 with

Step 4′. x[l]← x[(l + m) mod n]⊕ shiftright(x[l]) ⊕
{

0 if LSB of x[l]=0
a if LSB of x[l]=1,

where a is a fixed constant word and shift means the one-bit shift operation. This apparently adhoc
and minor but essential change leads to great improvements, as shown in Section 2.3. Some of the
suitable parameters are listed in Table 1 (see Section 4.1).

2.2 Theory of TGFSR generators

This section provides a definition of the TGFSR sequence and some algebraic theory. For readability,
proofs of theorems will be postponed to Appendix A. Let GF(2k) be the 2k-element field. Any algebraic
operation is regarded as being in the field GF(2k) unless stated otherwise. Other algebraic terminology
follows [13].

Hereafter, a word x is regarded as a row vector x ∈ GF(2)w with word size w.
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Definition. Let n, m, and w be positive integers with n > m, let A be a w×w matrix over GF(2),
and let x0,x1,x2, . . . ,xn−1 be vectors in GF(2)w. The TGFSR sequence is the sequence x0,x1,x2, . . .
of GF(2)w defined by the linear recurring equation

xl+n = xl+m + xlA

for l = 0, 1, 2, · · ·. The ordered-tuple (x0,x1,x2, . . . ,xn−1) is called the initial value. At least one of
these vectors is assumed to be nonzero. The generated sequence is denoted by X (n,m,A) = x0,x1, · · ·.

The next theorem provides the definition of maximal TGFSR sequences.

Theorem 1. Let ϕA(t) be the characteristic polynomial of the matrix A. The period of X (n,m,A)
is 2nw − 1 if and only if ϕA(tn + tm) is a primitive polynomial of degree nw. In this case, each bit of
the X (n,m,A) constitutes an m-sequence based on ϕA(tn + tm). We call such X (n,m,A) a maximal
TGFSR sequence (m-TGFSR sequence for short).

The m-TGFSR sequence can be regarded as producing an m-sequence over GF(2w) as follows.

Theorem 2. Let η be a root of a polynomial ϕA(t) of degree w with coefficients in GF(2). Then,
ϕA(tn + tm) is primitive if and only if the following conditions hold.

(i) The polynomial ϕA(t) is irreducible.

(ii) The polynomial tn + tm + η is primitive over GF(2w).

In this case, there is a GF(2) linear isomorphism between X (n,m,A) and an m-sequence over GF(2w)
based on tn + tm + η.

Corollary. An m-TGFSR sequence X (n,m,A) is n-equidistributed. Any initial value except for
zero provides the identical sequence disregarding the phase.

When we find a tuple (n,m,A) with ϕA(tn + tm) primitive, the implementation of the algorithm is
quite easy. It is sufficient to replace Step 4 of the original algorithm with
Step 4′′. x[l]← x[(l + m) mod n]⊕ x[l]A.

The matrix A should be chosen so that x[l]A can be calculated quickly. For example, one may
choose A of the form 

1
1

. . .
1

a0 a1 · · · · · · aw−1

 .

It is wellknown that ϕA(t) = tw +
∑w−1

i=0 ait
i(see, for example, [7]). Let x be a register with content

(x0, x1, . . . , xw−1), xi = 0 or 1. Then, x← xA can be executed by a statement

if xw−1 = 0 then x← shiftright(x),
else x← shiftright(x)⊕ a,

where a = (a0, a1, . . . , aw−1). Now we obtain Step 4′ in Section 2.1. This restriction on the form of A
does not affect the generality in the following sense. In view of Theorem 2, an m-TGFSR sequence is
determined uniquely by (n,m,ϕA) up to GF(2) linear isomorphism. Hence any m-TGFSR sequence
is essentially isomorphic to this type of TGFSR sequence.

From now on, we consider only matrices A of the above type, and denote X (m,n,a) instead of
X (m,n, A). Thus, we will not mention the matrix A but consider only ϕ or a.
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2.3 Merits of TGFSR generators

In this section we investigate how the TGFSR algorithm turns drawbacks (d1)–(d4) of the GFSR
algorithm into merits (Tm1)–(Tm5) without loss of the original merits (m1)–(m3), as stated in the
Introduction.

For (m1), the number of memory references, which has the greatest effect on the speed, is un-
changed. Only one bit operation, one conditional operation, and one exclusive-or operation are re-
quired to be added. Thus, the operation x← xA can be implemented with a few machine instructions
using an assembler language. One can also write an efficient and portable code in any language
possessing bitwise exclusive-or operation.

The merit (m2) is virtually preserved. In fact, in this paper we list some useful and practical
examples of sufficiently long periods. The merit (m3) is partially affected in the following sense. The
algorithm itself is valid for any word size, but one must find an irreducible polynomial ϕ(t) whose
degree is near to the word size, and find numbers n and m such that ϕ(tn + tm) is primitive. This
paper contains a list of such ϕ(t), n and m which provides enough examples for the implementation.

Now we investigate how the drawbacks of the GFSR algorithm stated in the Introduction are
solved. In view of the Corollary of Theorem 2, drawback (d1) is transformed into merits (Tm1) and
(Tm5). From Theorem 1, (d3) and (d4) become (Tm3) and (Tm4). Drawback (d2) becomes (Tm2) as
follows. Since the number of terms of ϕ(t) does not influence the speed of generation, we may choose
ϕ(t) of arbitrarily many terms. Primitive polynomials of the form ϕ(tn + tm) in general have many
terms. Lindholm[14] showed that if ϕ divides a trinomial of low degree, then the distribution of 0
and 1 in the m-sequence does not conform to the theoretical binomial distribution because the third
moment assumes a large negative value. Strictly speaking, there is no assurance that ϕ(tn + tm) will
not divide a trinomial of relatively low degree. However, empirical tests on the third moment, stated
in Section 4, show good randomness of the TGFSR sequences. Pentanomial versions of GFSR also
seem to be effective (see Section 4; cf [15]), but there is an objection as follows. A. Compagner[3][4]
introduced the concept of the hierarchy of correlation coefficients, which measures the randomness of
a binary sequence from the theoretical and philosophical point of view. According to his observation,
the number of terms of the characteristic polynomial should be at least the square root of the degree.
Parameters of TGFSR generators satisfying this condition are easily found. (In fact, all parameters
we could find by far satisfy this.)

The quality and performance of TGFSR are comparable to those of ADD–WITH–CARRY (AWC)
and SUBTRACT–WITH–BORROW (SWB) algorithms recently proposed by Marsaglia and Zaman[17].
The period of AWC (or SWB) is nearly maximal with respect to the memory area, hence these gen-
erators have similar properties to (Tm3)–(Tm5). Strictly saying, the period of TGFSR generators is
nearer to the maximal, hence TGFSR is a bit superior to AWC (SWB) from the view point of the easy
initialization and the uniformity, but there seems to be no significant difference. As for the generation
speed, there would be no great difference. From the view point of portability, AWC (SWB) is slightly
superior to TGFSR, since the former does not use exclusive-or.

Marsaglia rejected some of GFSR generators through his stringent tests[16]. He compared GFSR
with the other generators (such as additive generators) so that they have about the same size of
working area, and as a consequence, those GFSR have too short periods. (Of course this is one of
the fair ways of comparison.) This seems to be the main reason why those GFSR showed far poorer
randomness than the others.

TGFSR generators will not suffer from such way of comparison due to (Tm3).

3 How to find n, m, and ϕ(t)

We want to find n, m, and ϕ(t) so that the degree of ϕ is w and ϕ(tn+tm) is primitive. First, designate
w near the word size, and n as moderately large. Note that n is the order of equidistribution.
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Generate polynomials ϕ(t) of degree w, and check their irreducibility. Next, for m = 1 to n − 1,
calculate ϕ(tn + tm) and test its primitivity. The test on irreducibility and primitivity is the same
as that described in [20]. For the primitivity test, the complete factorization of 2nw − 1 is required.
This paper utilizes the list by Brillhart et al.[2]. For large nw, namely nw > 700, 2nw − 1 is often
not factorized. In fact, whether the factorization of 2nw − 1 is known or not limits n, the order of
equidistribution. This fact indicates the importance of extending such mathematical tables.

On searching for such n, m, and ϕ, the authors discovered an important phenomenon: if n ≡
±3 mod 8 and w is odd, the corresponding m and ϕ are rarely found. This phenomenon resembles
the case of usual trinomials tn + tm + 1, where Swan’s Theorem solves this question [1]. Part of the
argument in [1] holds for tn + tm + η, as shown in the following proposition.

Proposition 1. Let η be an element of GF(2w). The polynomial tn + tm + η over GF(2w) has an
even number of irreducible factors, and hence is not irreducible if one of the following holds:

1. n ≡ ±3 mod 8, w:odd, m:even, and m |/2n.

2. n ≡ ±3 mod 8, w:odd, m:odd, and n−m |/2n.

3. n:even, m:even.

4. n:even, n �= 2m, and nm ≡ 0, 2 mod 8.

5. n:even, n �= 2m, nm ≡ −2, 4 mod 8, and w is even.

Since the irreducibility of tn + tm + η is a necessary condition for X (n,m,ϕ) to be maximal, where
η is a root of ϕ, this proposition serves as a powerful sieve in searching for n and m. For example,
suppose that both w and n are even. Then, by 4 and 5 above, X (n,m,ϕ) can never be an m-TGFSR
sequence unless n = 2m.

4 Statistical Tests

4.1 Generators

In this section, several practical TGFSR generators and the results of intensive statistical tests are
given.
In the upper part of Table 1, the authors propose five m-TGFSR generators named T400, T403, T775,
T800 and T1600 (The initial T denotes “twisted”) with the values of w, n, m and a = (a0, a1, ..., aw−1)
in hexadecimal form for which ϕ(t) = tw +

∑w−1
i=0 ait

i. The first one is designed for 16-bit machines,
the middle three are for 32-bit machines, and the last one is for 64-bit machines. These generators
were found by the method described in Section 3. The other entries in Table 1 are generators for use
as comparative references for the statistical test. The L521 is the original GFSR generator based on
the trinomial m-sequence[12]. The F521 and G607 are also GFSR generators of which initialization
algorithms have been proposed by Fushimi[6] and Tootill[19], respectively. Thus, both of these are
carefully designed to have higher order equidistribution, differently from those tested by Marsaglia[16].

The PF89 and PF521 are penta-nomial versions of GFSR generators using Fushimi’s initialization
algorithm. These two primitive pentanomials on GF(2) are obtained by the authors[10]. The last
generator named LM is Lehmer’s congruential type. The multiplier of the LM was selected after
a computer search with primitive root tests, spectral tests of dimensions 2 through 6 and serial
correlation tests[9]. Our policy is to choose the known best parameters in each algorithm (except for
L521).
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4.2 Triple Kolmogorov-Smirnov test

The triple Kolmogorov-Smirnov (KS for short) test is the overall test for uniformity of random numbers
in the (0,1) interval. The double KS test which is suggested by Knuth[8, p.49] means that (i) several
KS tests for moderately large N to detect local behavior, (ii) combining r observations of (i) in another
KS test to detect global behavior. To detect overall (mean) behavior in the entire period, the triple
test adds furthermore, (iii) t repetitions of the procedures (i) and (ii), where t subsequences of length
Nr are randomly sampled. This triple KS test is performed with the following procedures.

{
Set parameters of the test; N(length of a sample), r(number of samples), and t(number of tests).
for(τ = 1; τ ≤ t; τ ++) {

Generate a sequence (x0, x1, ..), using randomly chosen initial seeds πτ (see Appendix B-1).
for(ρ = 1; ρ ≤ r; ρ ++) {

Generate the subsequence of length N ; (x(ρ−1)N , x(ρ−1)N+1, ..., xρN−1) as the ρ-th sample.
Consider these N values as N realizations of random variables X, thereby obtaining the
values X1, X2, ..,XN .
Form the empirical distribution function of X by up-sorting these N values.
Measure the difference between this empirical and the expected distribution function of
X; F0(x) = x, using KS statistics K+

N and K−
N defined as follows:

K+
N =

√
N max

1≤j≤N
(

j

N
− F0(xj)),

K−
N =

√
N max

1≤j≤N
(F0(xj)− j − 1

N
).

Denote these two statistics by (K+
N )ρ and (K−

N )ρ .
}

Form the empirical distribution function by up-sorting these r statistics (K+
N )ρ, ρ = 1, 2, .., r.

Measure the difference between the empirical and the expected distribution function: G0(x; r),
using KS statistics, where G0(x; r) is the KS probability distribution function, (see Appendix
B-2).
Denote these two statistics by (K++

r )τ and (K−+
r )τ .

Similarly, obtain two statistics (K+−
r )τ and (K−−

r )τ using (K−
N )ρ, ρ = 1, 2, .., r.

}
Form the empirical distribution function by up-sorting these t statistics (K++

r )τ , τ = 1, 2, .., t.
Measure the difference between the empirical and the expected distribution function: G0(x; t), using
KS statistics.
Denote these two statistics by K+++

t and K−++
t .

Similarly, obtain three pairs of statistics (K+−+
t , K−−+

t ), (K++−
t , K−+−

t ) and (K+−−
t , K−−−

t ) using
(K−+

r )τ , (K+−
r )τ and (K−−

r )τ , respectively, where τ = 1, 2, .., t.
As the final result, convert these eight KS statistics into the probability value Kijk, i, j and k = ±,
using G0(x; t).
}

Table 1 lists one of the results when N = 2048, r = 512, t = 64. The column K± ± ±
t indicates the

corresponding percentage value. The column 5% indicates the number of KS values with probability ≥
95% or ≤ 5% of these eight values. The number in the parenthesis corresponds to that with probability
≥ 99% or ≤ 1%. According to this result, L521 is rejected.
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4.3 Run test

The run test is the test for independency among subsequent elements of random numbers in the
(0,1) interval, by means of examining the lengths of subsequences that are increasing or decreasing.
The basic algorithm adopted here closely follows Knuth[8, pp.65-68]. Since this algorithm is rather
complicated, complete rewriting is omitted here. This test is performed with the following procedures.

{
Set parameters of the test; N(length of a sample), r(number of samples), t(number of tests), and
k(rounded length of up and down observations).
for(τ = 1; τ ≤ t; τ ++) {

Generate sequence (x0, x1, ..), using randomly chosen initial seeds πτ (see Appendix B-1).
for(ρ = 1; ρ ≤ r; ρ ++) {

Generate the subsequence of length N ; (x(ρ−1)N , x(ρ−1)N+1, ..., xρN−1) as the ρ-th sample.
Store the number of up sequences of length r(1 ≤ r < k) in u(r) and length ≥ k in u(k)
.
Calculate the following statistics V according to the empirical frequency distribution.

V =
1
N

∑
1≤p,q≤k

(u(p)−Nbp)(u(q)−Nbq) · C−1
pq ,

where bj = mean(Rj) , Rj is the number of up runs of length j exactly when all permuta-
tions of N elements are given, j = p, q; Cpq is the (p, q) element of the covariance matrix
cov(Rp, Rq).
Do the same for the down sequences.
Denote these two statistics by (Vup)ρ and (Vdn)ρ .
}

Form the empirical distribution function with these r statistics (Vup)ρ, ρ = 1, 2, .., r.
Measure the difference between Gr(x) and the expected distribution function: (χ2− distribution
with d.f. = k + 1), using KS statistics,
Denote these two statistics by (K+

r,up)τ and (K−
r,up)τ .

Similarly, obtain two statistics (K+
r,dn)τ and (K−

r,dn)τ using (Vdn)ρ, ρ = 1, 2, .., r.
}

Form the empirical distribution function with these t statistics (K+
r,up)τ , τ = 1, 2, .., t.

Measure the difference between this empirical and the expected distribution function G0(x; t), using
KS statistics (see Appendix B-2).
Denote these two statistics by K++

t,up and K−+
t,up.

Similarly, obtain three pairs of statistics (K+−
t,up, K−−

t,up), (K++
t,dn, K−+

t,dn) and (K+−
t,dn, K−−

t,dn) using (K−
r,up)τ ,

(K+
r,dn)τ , and (K−

r,dn)τ , respectively, where τ = 1, 2, .., t.
As the final result, convert these eight KS statistics into probability value Kij

l , i, j = ±, l = up, dn
using G0(x; t).
}

Table 1 lists one of the results when N = 65536, r = 128, t = 64 and k = 6. The meaning of the
columns is the same as that for the KS-test. This indicates that L521 must be rejected.
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4.4 Weight distribution test

This test was originally designed for independency of the subsequent bits of a binary random sequence.
Here, this test is applied to the most significant bit of uniform random numbers in the (0,1) interval
with the following procedures.

{
Set parameters of the test; N(length of a sample), r(number of samples), and t(number of tests).
for(τ = 1; τ ≤ t; τ ++) {

Generate a sequence (x0, x1, ..), using randomly chosen initial seeds πτ (see Appendix B-1).
for(ρ = 1; ρ ≤ r; ρ ++) {

Generate the N -tuple as the ρ-th sample; (x(ρ−1)N , x(ρ−1)N+1, ..., xρN−1).
Calculate the weight of the N -tuple, where the weight is the number of xi such that
xi ≥ 1/2.
Denote this weight by wρ.
}

Form the empirical distribution function with these r statistics wρ, ρ = 1, 2, .., r.
Consider the weight as random variable X. (Then, X is expected to conform with the binomial
distribution: prob(X = k) =

(N
k

)
(1/2)N ).

Measure the difference between the empirical and the expected distribution function using χ2

statistics.
Denote such a probability value by Wτ .
Calculate furthermore, the third and fifth moments of this empirical distribution, denoted by
(M3)τ and (M5)τ , respectively.
}

Form the empirical distribution function with Wτ , τ = 1, 2, .., t.
Measure the difference between this empirical distribution function and the expected one, using KS
statistics.
Denote these two statistics by K+

t and K−
t .

As the final result, convert these two KS statistics, to the probability value K+, K−, using G0(x; t).
Calculate also, as the other final result, the average value of (M3)τ and (M5)τ , where τ = 1, 2, .., t.
Denote these values by [M3] and [M5], respectively.
}

Table 1 lists one of the results when N = 1024, r = 8192, t = 64. The GFSR generators based on
trinomial m-sequences; namely L521, F521, and G607 are definitely rejected.

4.5 Results of test

The authors would like to stress that the extent of the capability of the statistical test, as for selecting
generators according to their quality, is limited to the rejection of “definitely bad generators”; the test
can neither positively choose the best generators nor determine the rank order of those falling between
the two extremes.

From this viewpoint, the five m-TGFSR sequences passed all tests (more exactly, cannot be re-
jected). The L521 sequence is definitely rejected in all three kinds of tests. Also, the GFSR se-
quences generated by the F521 and G607 are definitely rejected by the WD-test. In particular, these
three trinomial-based GFSR sequences indicate the highly skewed distribution through the WD-test
([M3] 	 0 and [M5] 	 0). The pentanomial-based GFSR sequences (PF521 and PF89) passed all
tests. Also the congruential sequence LM passed all tests.
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5 Conclusions

An m-sequence-based pseudorandom number generator twisted GFSR algorithm was proposed. This
algorithm retains most of the merits of the original GFSR algorithm, and shows improvements in four
area: (1) fast and carefree initialization, (2) higher order equidistribution, (3) the number of terms
of characteristic polynomial, (4) memory efficiency. Some practical TGFSR generators were imple-
mented, and they passed the intensive Kolmogorov-Smirnov test, run test, and weight-distribution
test. GFSR sequences with characteristic trinomials failed in the weight-distribution test. GFSR
sequences with characteristic pentanomials passed all three tests.

Acknowledgement. The authors would like to express their sincere gratitude to Professor P.
L’Ecuyer and Professor S. Tezuka for their invaluable comments. Thanks are also due to the anony-
mous referees for useful suggestions. The authors are indebted to Professor N. Yoneda who gave us a
key to think of the twisted GFSR generator.

A Proofs of Theorems

A.1 Proof of Theorem 1

Let B be the (nw × nw)-matrix

m-th block→

0-th block→


Iw

Iw

Iw
. . .

Iw
A

 ,

where Iw is the identity matrix of size w. It is clear that

(xl+n,xl+n−1, . . . ,xl+1) = (xl+n−1,xl+n−2, . . . ,xl)B

holds for l = 0, 1, . . ..
Thus, from the general theory of a matrix linear congruential generator [18], the period of each bit

attains 2nw − 1 if and only if its characteristic polynomial ϕB(t) of B is primitive. In this case, the
nw-dimensional vector

(xl+n−1,xl+n−2, . . . ,xl) (l = 0, 1, . . .)

runs over all the 2nw vectors except the zero vector. This implies n-equidistribution.
We now show that ϕB(t) = ϕA(tn + tm). By blockwise column transformation, it is easy to see

that

ϕB(t) = det


tIw Iw

tIw Iw

Iw
. . . . . .

tIw Iw
A tIw



= det


tIw Iw

Iw
...

. . .
Iw

A + (tn + tm)Iw


= det((tn + tm)I−A).
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(q.e.d.)

A.2 Proof of Theorem 2

Assume that ϕA(t) is irreducible, and let η be its root. Clearly (1, η, η2, . . . , ηw−1) is a basis of GF(2w)
as a vector space over GF(2). Fix a nonzero vector i ∈GF(2)w. The set {φ(t) ∈ GF(2)[t] | iφ(A) = 0}
is obviously an ideal of GF(2)[t] containing ϕA(t) and not containing 1. Since ϕA(t) is irreducible,
this ideal is (ϕA(t)), and consequently, i, iA, iA2, . . . , iAw−1 are linearly independent and form a basis
of GF(2)w. Thus, there is an isomorphism Φ between vector spaces

Φ : GF(2w) → GF(2)w

ηl �→ iAl

for l = 0, 1, . . . , w − 1. It can easily be checked that Φ(αη) = Φ(α)A holds for any α ∈ GF(2w) by
rewriting α as a polynomial of η. The sequence X (n,m,A) = (x0,x1, . . .) is defined by the recurrence

xl+n = xl+m + xlA

for l = 0, 1, 2 . . .. By applying Φ−1 on both sides, we have

Φ−1(xl+n) = Φ−1(xl+m) + Φ−1(xl)η.

The sequence Φ−1(X ) = (Φ−1(x0),Φ−1(x1), . . .) is thus a linear recurring sequence over GF(2w) with
characteristic polynomial tn + tm + η. Since the period of the sequence Φ−1(X ) is the same with X ,
we find that tn + tm + η is primitive if and only if the period of X is (2w)n − 1, namely, if and only if
the TGFSR sequence is maximal. (q.e.d.)

A.3 Proof of Proposition 1

The proof of Proposition 1 is quite similar to the proof of Swan’s Corollary 6.696 in [1]. Some
propositions in [1] are used with the same numbering as in the book. Such propositions are marked
with ∗.

Lemma 1. Let f(t) = tn +
∑n−1

i=0 fit
i be a polynomial with free variables fi as coefficients. Sup-

pose that its discriminant D(f) satisfies D(f) ≡ [ζ(f)]2 − 4ξ(f) mod 8, where D(f), ζ(f), ξ(f) are
represented as polynomials over the rational integers in the variables f0, f1, . . . fn−1. Let f̂0, . . . , f̂n−1

be arbitrary elements in GF(2w). For a polynomial g with variables t, f0, . . . fn−1, ĝ denotes the
polynomial in GF(2w)[t] obtained by substituting f̂i for fi in g. Let r be the number of irreducible
factors of f̂(t). Then, ξ̂(f) = 0 and ζ̂(f) �= 0 imply r ≡ n mod 2, and [ζ̂(f)]2 = ξ̂(f) �= 0 implies
r ≡ n + w mod 2.

Proof. Theorem 6.695∗ asserts that Tr[ρ̂(f)] = Tr{ξ̂(f)/[ζ̂(f)]2}, where Tr denotes the trace map
to GF(2) and ρ(f) is defined by

ρ(f) =
∑

1≤i<j≤n

αiαj/(αi + αj)2

for αi all roots of f with counting multiplicity. Since ρ(f) is a symmetric expression of αi, it can be
represented as a polynomial with variables t, fi. Theorem 6.69∗ proves that r ≡ n mod 2 if and only
if Tr[ρ̂(f)] = 0. Since Tr[1]≡ w mod 2, we have the above consequence. (q. e. d.)

Swan’s Theorem 6.67∗.

D(tn + atm + b) = (−1)n(n−1)/2bm−1(nNbN−M − (−1)N (n−m)N−MmMaN )d,

where d = gcd(n,m), n = Nd, and m = Md.

11



Proof of Proposition 1. Let f be tn + atm + b with a, b free variables.

Case 1. n is odd.
Suppose m is even. If M ≥ 3, then mM ≡ 0 mod 8, and hence

D(f) ≡ (−1)n(n−1)/2bm−1(nNbN−M )d mod 8
= (−1)(n−1)/2nnbn−1.

Note that if n is odd, n2 ≡ 1 mod 8. Thus, for odd n, nn ≡ n mod 8 holds.
If n ≡ ±3 mod 8,

D(f) ≡ (−1)(n−1)/2(±3)bn−1 = −3bn−1 = [b(n−1)/2]2 − 4bn−1

holds, and Lemma 1 implies that r ≡ n + w ≡ w + 1 mod 2. Thus, if n ≡ ±3 mod 8, w is odd, m is
even, and M ≥ 3, then tn + tm + η has an even number of irreducible factors. Since n is odd and m
is even, M is even, and consequently, M ≥ 3 is equivalent to M �= 2; in other words, m |/2n.

Suppose that m is odd. If N −M ≥ 3, then (n −m)N−M ≡ 0 mod 8, and the above arguments
hold again. In this case, N −M ≥ 3 is equivalent to n−m |/2n.

Case 2. n is even.
If m is also even, tn + tm + η is a square; hence we may assume that m is odd and d is odd. If N ≥ 3,
then nN ≡ 0 mod 8, and consequently,

D(f) ≡ (−1)n(n−1)/2bm−1(−(−1)N (n−m)N−MmMaN )d

≡ (−1)n/2bm−1(−1)d(n−m)n−mmman

≡ −(−1)n/2bm−1(n−m)man

≡ −(−1)nm/2(nm− 1)[an/2b(m−1)/2]2

≡
{

[an/2b(m−1)/2]2 if nm ≡ 0, 2 mod 8
−3[an/2b(m−1)/2]2 if nm ≡ −2, 4 mod 8.

Thus, again by Lemma 1, we find that if nm ≡ 0, 2 mod 8 then r ≡ n ≡ 0 mod 2, and that if
nm ≡ −2, 4 mod 8 then r ≡ n + w ≡ w mod 2. The condition N ≥ 3 is equivalent to n �= 2m, and
this completes the proof of the proposition. (q. e. d.)

B Supplements to the statistical tests

B.1 Initial seeds generator

Initial seeds πi are generated as follows:
Suppose that n words of k-bit integers are needed as initial seeds. Generate 2n random numbers by
the recurrence vl = 2100005341 vl−1 mod (231 − 1) with v0 = 314159265 (l = 1, . . . , 2n).
Obtain n words of 32-bit integers πi (i = 1, . . . , n) by πi =(1 bit logical shiftleft(v2i−1))⊕ (16 bit
logical shiftright(v2i)), i = 1, 2, . . . , n.
If k < 32, set πi = (k − 32)-bit logical shiftright(πi). If k = 64, generate 2n words of 32-bit integers
as above, and concatenate them pairwise.

12



B.2 KS statistics

The exact KS distribution is obtained by

G0(s;N) = prob(K±
N ≤ s) =

s√
N

∑
0≤k≤�√Ns�

(−1)k
(

N

k

)
(
√

Ns− k

N
)k(1 +

√
Ns− k

N
)N−k−1. (1)

For a large value of N, this can be approximated (see [8, p.48]) by

prob(K±
N ≤ s) = 1− e

−2(s+ 1

6
√

N
)2

. (2)

In this report, we calculate (1) directly when N ≤ 99, and we use (2) when N ≥ 100. The
approximation error of this asymptotic formula (2) is less than 10−3 at N ≈ 100.
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