A deviation of CURAND: standard pseudorandom number generator in CUDA for GPGPU

Mutsuo Saito¹, Makoto Matsumoto²

¹Hiroshima University, ²University of Tokyo

February 13, 2012

This study is granted in part by JSPS Grant-In-Aid #23244002, #21654004, #21654017.

February 13, 2012

CUDA, CURAND, xorwow

- CUDA is a developing environment for General Purpose computation by Graphic Processing Units (GPGPU).
- In 2010 August, CUDA released CURAND, a library for pseudorandom number generation.
- There, xorwow generator (xor-shift added with Weyl sequence, introduced by Marsaglia in 2003) was selected as the standard.

CUDA, CURAND, xorwow

- CUDA is a developing environment for General Purpose computation by Graphic Processing Units (GPGPU).
- In 2010 August, CUDA released CURAND, a library for pseudorandom number generation.
- There, xorwow generator (xor-shift added with Weyl sequence, introduced by Marsaglia in 2003) was selected as the standard.

Deviation of xorwow

- It was reported (in the web) that xorwow is rejected by one of the tests in BigCrush test-suite in TESTU01 (L'Ecuyer-Simard).
- We analyze some weakness of xorwow.
- The six dimensional distribution has an observable deviation.
- Its difference sequence is more clearly rejected by BigCrush.

xorwow = xorshift+Weyl generator.

• xorshift generator:

Let $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n, \dots$ be a sequence of 32-bit integers. xorshift generator (by Marsaglia) generate such a sequence by the following recursion formula:

$$\begin{aligned} \mathbf{x}_{n+5} &= \mathbf{x}_{n+4} \oplus (\mathbf{x}_{n+4} << 4) \oplus \\ &\mathbf{x}_n \oplus (\mathbf{x}_n << 1) \oplus ((\mathbf{x}_n >> 2) << 1) \oplus (\mathbf{x}_n >> 2). \end{aligned}$$

Here,

- \oplus denotes bit-wise XOR,
- (x << m) denotes m-bit shift-left,
- (x >> m) denotes *m*-bit shift-right.

 $\mathbb{F}_2\text{-linear generator, period } 2^{5\times 32}-1=2^{160}-1.$

xorwow generator: Weyl part

Weyl generator: (Marsaglia)
Generate a sequence of 32-bit integers y₀, y₁,..., y_n,... by

$$\mathbf{y}_{n+1} = \mathbf{y}_n + 362437 \mod 2^{32}$$

period 2³².

The output sequence z_0, z_1, \ldots of xorwow is the sum of the two sequences:

$$\mathbf{z}_n := \mathbf{x}_n + \mathbf{y}_n \mod 2^{32}.$$

Its period is $(2^{160} - 1)2^{32}$.

Three tests in TESTU01 reject xorwow

- TESTU01 statistical test suit (Simard-L'Ecuyer) clearly reject both xorshift and Weyl generators.
- Among the 106 tests in BigCrush, the following three tests systematically reject xorwow:
 - Test 7: Collision Over test on the 7-dimensional distribution (each axis is partitioned into 64 equal length interval, hence 7-dimensional unit cube is partitioned into 64⁷ small cells, and count the number of collisions among 2×10^7 points generated by overlapping 7 tuples from the generator; 30 times iterated).

p-value: around $10^{-4} \sim 10^{-6}$

- Test 27: Simplified Poker Test for the five least significant bits (on the 8 dimensional distribution). *p*-value: around $10^{-16} \sim 10^{-300}$
- Test 81: Linear Complexity Test for the three least significant bits. *p*-value: around $1 - 10^{-15}$

Three tests in TESTU01 reject xorwow

These results show that some flaw is hidden in xorwow generator. In particular, rejection by Test 7 is serious for MonteCarlo simulations, since it is about the six most significant bits (the rest two are on the least significant bits, and the latter one is on the \mathbb{F}_2 -linearity, which seems not very significant for Usual MonteCarlo).

Analysis of defects of xorwow

By mathematical analysis, we found that xorwow has a significant deviation on 6-dimensional distribution of the most significant 5 bits.

• Recall that xorwow sequence is $\mathbf{z}_n = \mathbf{x}_n + \mathbf{y}_n \mod 2^{32}$, where \mathbf{x}_n is from xorshift and \mathbf{y}_n is from Weyl generator.

Analysis of defects of xorwow (continued)

• xorshift is generated by

$$\begin{aligned} \mathbf{x}_{n+5} &= \mathbf{x}_{n+4} \oplus (\mathbf{x}_{n+4} << 4) \oplus \\ &\mathbf{x}_n \oplus (\mathbf{x}_n << 1) \oplus ((\mathbf{x}_n >> 2) << 1) \oplus (\mathbf{x}_n >> 2). \end{aligned}$$

Let x_n(i) denote the *i*-th bit from the MSB. One sees that there is a simple relation among seven bits in every consecutive 6-tuples for every i (except i = 32) :

$$\begin{aligned} \mathbf{x}_{n+5}(i) &= \mathbf{x}_{n+4}(i) \oplus \mathbf{x}_{n+4}(i+4) \\ &\mathbf{x}_n(i-2) \oplus \mathbf{x}_n(i-1) \oplus \mathbf{x}_n(i) \oplus \mathbf{x}_n(i+1). \end{aligned}$$

In particular, the 5 MSBs have a simpler relation

$$\begin{aligned} \mathbf{x}_{n+5}(1) &= \mathbf{x}_{n+4}(1) \oplus \mathbf{x}_{n+4}(5) \oplus \\ & \mathbf{x}_n(1) \oplus \mathbf{x}_n(2). \end{aligned}$$

Analysis of defects of xorwow (continued 2)

• Thus, 6-dimensional distribution of the 5 MSBs of (\mathbf{x}_n) is rather deviated.

$$\begin{aligned} \mathbf{x}_{n+5}(1) &= \mathbf{x}_{n+4}(1) \oplus \mathbf{x}_{n+4}(5) \oplus \\ & \mathbf{x}_n(1) \oplus \mathbf{x}_n(2). \end{aligned}$$

E.g. if $\mathbf{x}_n < 2^{32-2}$ and $\mathbf{x}_{n+4} < 2^{32-5}$ hold, then $\mathbf{x}_{n+5} < 2^{32-1}$. When the 32-bit integers are normalized into [0,1]-interval, $\mathbf{x}_n < 1/4$ and $\mathbf{x}_{n+4} < 1/32$ imply $\mathbf{x}_{n+5} < 1/2$.

• The choice of 362437 in the Weyl generator

$$\mathbf{y}_{n+1} = \mathbf{y}_n + 362437 \mod 2^{32},$$

is too small compared to 2^{32} . Namely, the most significant 6 bits in \mathbf{y}_n change seldomly when *n* is incremented. The change occurs once in every $2^{32-6}/362437 = 185.16$ times generation of y_n .

Analysis of defects of xorwow (continued 3)

• Thus, the value of the following formula from the output \mathbf{z}_n of xorwow

 $\mathsf{z}_{n+5}(1) \oplus \mathsf{z}_{n+4}(1) \oplus \mathsf{z}_{n+4}(5) \oplus \mathsf{z}_n(1) \oplus \mathsf{z}_n(2) \quad (***)$

is 0 when $\mathbf{y}_n, \ldots, \mathbf{y}_{n+5}$ are smaller than 2^{32-6} (Since then adding \mathbf{y}_n 's does not change the 5 MSBs).

More generally, if $\mathbf{y}_n, \ldots, \mathbf{y}_{n+5}$ share the same 6 MSBs of type ?00??0, then the value of (***) depends only the the pattern ?00??0. (Since such 32-bit integers do not cause a carry to the 1st, 2nd and 5th.) Thus, the value of (***) is 0 for a while (or 1 for a while).

The xor (***) of the five bits for 1000 generations

012345678901234567890123456789012345678901234567890 ${}_{\mathsf{Fel}} \underbrace{\mathsf{O}} \underbrace{\mathsf{O}}$

The xor (***) of the five bits for 1000 generations

012345678901234567890123456789012345678901234567890

Toy experiments: volume of a part W

We identify 32-bit integers with 2^{32} intervals in [0,1]. Define $W \subset [0,1]^6$ as the set of (z_0, z_1, \ldots, z_5) such that $z_5(1) \oplus z_4(1) \oplus z_4(5) \oplus z_0(1) \oplus z_0(2) = 0$ holds. (W for Walsh.) 6-tuples from (\mathbf{x}_n) always fall in W. 6-tuples from (\mathbf{z}_n) falls in $W \Leftrightarrow$ the value of (***) = 0.

Toy experiments: volume of a part W

This is the projection of W to the three dimensional cube by $(z_1, z_2, z_3, z_4, z_5, z_6) \mapsto (z_1, z_5, z_6)$. W is the inverse image. The above picture denotes the region where $z_6(1) \oplus z_5(1) \oplus z_5(5) \oplus z_1(1) \oplus z_1(2) = 0$. Its volume is the half of the volume of the unit cube).

February 13, 2012

Use xorwow to estimate the volume of W, by generating 100 points in $[0, 1]^6$ (use non-overlapped 6-tuples).

hit	dev	p-value	hit	dev	p-value
60	2.0	0.999968328758167	41	-1.8	0.000159108590158
51	0.2	0.655421741610324	51	0.2	0.655421741610324
45	-1.0	0.022750131948179	47	-0.6	0.115069670221708
44	-1.2	0.008197535924596	55	1.0	0.977249868051821
57	1.4	0.997444869669572	47	-0.6	0.115069670221708
44	-1.2	0.008197535924596	47	-0.6	0.115069670221708
52	0.4	0.788144601416603	52	0.4	0.788144601416603
58	1.6	0.999312862062084	36	-2.8	0.000000010717590
57	1.4	0.997444869669572	45	-1.0	0.022750131948179
49	-0.2	0.344578258389676	43	-1.4	0.002555130330428
58	1.6	0.999312862062084	52	0.4	0.788144601416603
42	-1.6	0.000687137937916	52	0.4	0.788144601416603
55	1.0	0.977249868051821	46	-0.8	0.054799291699558

Toy experiments: volume of a part W (continued)

hit	dev	p-value	hit	dev	p-value
54	0.8	0.945200708300442	50	0.0	0.5000000000000000
46	-0.8	0.054799291699558	63	2.6	0.999999900355737
44	-1.2	0.008197535924596	46	-0.8	0.054799291699558
55	1.0	0.977249868051821	49	-0.2	0.344578258389676
59	1.8	0.999840891409842	56	1.2	0.991802464075404
53	0.6	0.884930329778292	47	-0.6	0.115069670221708
45	-1.0	0.022750131948179	31	-3.8	0.00000000000015
56	1.2	0.991802464075404	62	2.4	0.999999206671848
49	-0.2	0.344578258389676	62	2.4	0.999999206671848
49	-0.2	0.344578258389676	55	1.0	0.977249868051821
52	0.4	0.788144601416603	46	-0.8	0.054799291699558
44	-1.2	0.008197535924596	57	1.4	0.997444869669572
58	1.6	0.999312862062084	45	-1.0	0.022750131948179
52	0.4	0.788144601416603	55	1.0	0.977249868051821
46	-0.8	0.054799291699558	57	1.4	0.997444869669572

In BigCrush, 7-dimensional Collision Over Test deals with the 6 MSBs. When we test the 5 MSBs in the same manner, then the p-values become far smaller: $< 10^{-60}$ (too many collisions).

Another defect: difference sequence

Let (z_n) be the output of xorwow. Define its difference sequence (d_n) by

$$d_n := z_{n+1} - z_n \mod 2^{32}.$$

The results of 106 tests in BigCrush on d_n (eps means a value $< 10^{-300}$):

Test	p-value
7 CollisionOver, $t = 7$	6.0e-74
8 CollisionOver, $t = 7$	1.6e-45
10 CollisionOver, t = 14	6.1e-36
36 Gap, $r = 0$	1.7e-13
38 Run, r = 0	1.7e-4
75 RandomWalk1 H (L=50, r=25)	eps
75 RandomWalk1 M (L=50, r=25)	eps
96 HammingIndep, L=30, r=27	2.4e-157
101 Run of bits, $r = 0$	2.6e-5
102 Run of bits, $r = 27$	7.8e-16

A reason why $d_n := z_{n+1} - z_n$ fails clearer

•
$$z_n := x_n + y_n \mod 2^{32}$$

$$d_n = (x_{n+1} + y_{n+1}) - (x_n + y_n)$$

= $(x_{n+1} - x_n) + (y_{n+1} - y_n) \mod 2^{32}$
= $x_{n+1} - x_n + 362437 \mod 2^{32}$.

y_n elliminated.

• As we saw, the output (x_n) of xorshift has obvious relations among a few number of bits in consecutive 6 tuples, and d_n inherits the deviation.

۲

Conclusion

- xorwow is not suitable for serious MonteCarlo. (Note: Panneton-L'Ecuyer analyzed xorshift and warned on its deviation in 2004).
- A choice of small value 362437 in the Weyl generator caused serious deviation in 6-dimensional distribution of the 5 MSBs.
- Deviation persist for the LSBs, when 362437 is repaced to a large number: We did not mention, but LSBs have more serious deviations. Note that k LSBs of Weyl generator has period ≤ 2^k, for any choice of d in y_{n+1} := y_n + d.
- Anyway, ad-hoc modification of xorwow seems potentially dangerous. Why not use generators having assurance on high dimensional equidistribution property?

Conclusion-Advertise

- We have Mersenne Twister for GPGPU (MTGP, 2010) with period $2^{11213} 1$ and 175-dimensional equidistribution property, passing BigCrush (except those on \mathbb{F}_2 -linearity). This MTGP and Multiplicative Recursive Generator were included in CURAND (Jan. 2012) as other choices (than the STANDARD xorwow).
- We developped and released "tiny Mersenne Twister" (tinyMT, 2011) with period $2^{127} 1$ whose MSBs and LSBs have high dimensional equidistribution property, passing all tests in BigCrush. (Some non-linearity introduced.)
- Many distinct parameters and Dynamic Creators to generate them for these generators are also released.
- Downloadable from "Mersenne Twister Homepage".

Conclusion-Advertise

- We have Mersenne Twister for GPGPU (MTGP, 2010) with period $2^{11213} 1$ and 175-dimensional equidistribution property, passing BigCrush (except those on \mathbb{F}_2 -linearity). This MTGP and Multiplicative Recursive Generator were included in CURAND (Jan. 2012) as other choices (than the STANDARD xorwow).
- We developped and released "tiny Mersenne Twister" (tinyMT, 2011) with period $2^{127} 1$ whose MSBs and LSBs have high dimensional equidistribution property, passing all tests in BigCrush. (Some non-linearity introduced.)
- Many distinct parameters and Dynamic Creators to generate them for these generators are also released.
- Downloadable from "Mersenne Twister Homepage".

Thank you for listening.