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Abstract

This paper proposes a type of pseudorandom number generator, Mersenne
Twister for Graphic Processor (MTGP), for efficient generation on graphic
processessing units (GPUs). MTGP supports large state sizes such as
11213 bits, and uses the high parallelism of GPUs in computing many
steps of the recursion in parallel. The second proposal is a parameter-set
generator for MTGP, named MTGP Dynamic Creator (MTGPDC). MT-
GPDC creates up to 232 distinct parameter sets which generate sequences
with high-dimensional uniformity. This facility is suitable for a large grid
of GPUs where each GPU requires independent random number streams.

MTGP is based on linear recursion over the two-element field, and
has better high dimensional equidistribution than the Mersenne Twister
pseudorandom number generator.

1 Random number generation for GPU

A Graphic Processing Unit (GPU) is a highly parallel processor designed for
computer graphics. GPUs are now widely used in both personal computers
and game machines, and are cheap despite their high computational power. As
a consequence, a trend in parallel computation is General-Purpose computing
on Graphics Processing Units (GPGPU) [14], namely, to utilize the high par-
allelism of GPUs for solving computing problems outside the graphics domain.
A number of recent super-computers actually consist of a large grid of GPUs,
controlled by one or several CPUs.

Pseudorandom number generators are often necessary in GPGPU, for exam-
ple, in Monte Carlo simulations, so it is useful to design pseudorandom number
generators taking advantage of the parallelism of GPUs.

We propose a class of pseudorandom number generators, Mersenne Twister
for Graphic Processors (MTGP). The algorithm is similar to that of Mersenne
Twister (MT) [16], but refined and adjusted to the hierarchical parallelism of
GPUs. The parameter sets for generators are selected by their high-dimensional
equidistribution properties. We prepared 128 different parameter sets for each
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of the periods 211213 − 1, 223209 − 1 and 244497 − 1. The gap between the theo-
retical upper bound and the realized dimensions of equidistribution of MTGPs
is smaller than those of MT.

Moreover, we designed a parameter-set generator for MTGP, named MTGP
Dynamic Creator (MTGPDC). Analogously to Dynamic Creator [17] for MT,
MTGPDC finds good parameter-sets for MTGP with high dimensions of equidis-
tribution. Users specify the number of parameter sets to be generated, Mersenne
prime period, and IDs. Then the ID is embedded in the recursion parameters, so
that generators with distinct IDs will yield independent streams. This is useful
for large grids of GPUs, where each GPU needs one or more random number
generators with different recursion parameters as independent random number
streams.

The design policies of MTGP and MTGPDC are as follows.

1. Many parallel threads operate on the state space of one large pseudoran-
dom number generator (PRNG). The large state allows a long period and
high dimensional equidistribution properties. This is in contrast to the
usual approach to PRNG parallelism, namely, one generator per thread.
In the latter case, the increase in the number of threads implies that each
generator has a small state space, since the size of fast memory in a GPU
is limited.

2. GPUs have a hierarchy in memory: some memory is fast but its access is
limited to a group of threads (called a block), and some memory is fast
but read-only. MTGP takes into account the characteristics of each class
of memory for efficient parallel generation.

2 GPGPU and CUDA

For GPGPU, a typical hardware setting is as follows. One CPU, called the host
CPU, is connected to one GPU (often to a grid of GPUs, but for simplicity of
explanation we choose the one-GPU case). Consider a computation C which
one wants to do in GPGPU. As usual, C is divided into several parts, and some
of the parts can be executed in parallel. To use the GPU effectively, one needs to
analyze which part of the program can run in parallel, in the many processing
units in the GPU. Then, one writes a program for the CPU, called the host
program, which sends some data and GPU codes (called the kernel program)
to the GPU for parallel execution. The GPU does the given computation, and
returns the result to the CPU. Usually the result of GPU computation is a
large array, so the result is written in a memory called global memory which is
accessible from the CPU.

Under this setting, the computer program must be equipped with facilities
for controling parallelism of the GPU and communication between the CPU and
the GPU. One solution is Compute Unified Device Architecture (CUDA) [20],[21],
which is a widely used software-development environment for GPGPU on NVIDIA’s
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GPUs. CUDA has a C-like language which supports these facilities. A CUDA
program consists of one host program and several kernel programs.

The host program executed on the CPU may call a kernel program. In this
call, the CPU sends some data and an instruction sequence to the GPU which
represents the kernel program. The data includes information such as how many
parallel processes should be invoked, on which address the processes operate,
etc. When the GPU completes the kernel call, then it reports the termination
and the result of computation to the CPU. Some more concrete explanation is
in § 8.

MTGP is written in and executed in the CUDA-environment. Initialization
of MTGP is done in the host program (i.e. by the CPU), and the host program
calls a kernel program (i.e. invokes the GPU) which generates a specified number
of pseudorandom numbers in the global memory (by the GPU). MTGPDC is
written in C and executed in the usual CPU (i.e. without GPU).

Another programming environment for GPGPU is the OpenCL [7]. At
present, there is no OpenCL version of MTGP/MTGPDC. We use CUDA’s
terminology, but put comments on OpenCL’s corresponding terminology when
they differ.

2.1 Hierarchical Structure: software and memory

Since the hardware architecture of a GPU is rather complicated, we explain
mainly its software-level hierarchy. When we mention concrete values as exam-
ples, we use a middle-class GPU GTX260.

In a kernel program, (namely, a program executed in the GPU), the mini-
mum execution unit is called a thread (work item in OpenCL), which is one lane
in a CUDA execution grid. A block (work group in OpenCL) consists of many
threads, with some upper bound on their number (e.g. 512 under the present
CUDA). We may think of these threads in one block as running in parallel. A
GPU can run several blocks in parallel.

To realize the high parallelism, threads and blocks have strong constraints in
accessing memory and getting instructions. There is a corresponding hierarchy
in memory. Each thread has its own set of registers, which is inaccessible from
other threads. A block has its own shared memory (local memory in OpenCL)
of size 16Kbyte (for most CUDA-enabled GPUs at present), inside the GPU
chip. Any thread in one block can access the shared memory of the block, but
can not access those of other blocks.

The tightest restriction is that any thread in a block gets the same instruction
sequence. Each thread has its own thread-ID number (consecutive) and can refer
to that. Consequently, each thread acts differently according to its ID-number.

Some memory chips, called global memory, are located outside the GPU. The
size of the memory, in the case of GTX260, is typically 896Mbyte. Data-transfer
speed between global memory and the GPU is 112Gbyte/sec, which is faster
than typical CPU-memory transfer speeds (eg. 26Gbyte/sec.) Still, the global
memory is slower to access than the shared memory inside the GPU. Unlike
the shared memory, all blocks (namely, all threads) in the GPU can access the
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global memory. Different blocks can exchange information only via the global
memory. The shared memory is grouped into 16 banks, according to the address
(as memory of 32-bit words) modulo 16. The threads in one block are grouped
in warps. A warp consists of 32 threads in the present CUDA-enabled GPUs. A
half warp (16 threads in a warp) may simultaneously access the shared memory,
only if each thread accesses to a mutually distinct bank. If two or more threads
in a half warp access the same bank (namely, the memory addresses coincide
modulo 16), then they can not access in parallel. This phenomenon is called a
bank conflict.

3 Mersenne Twister for GP (MTGP)

3.1 Pseudorandom number generators by recursion, and
parallelism

Let W be the set of w-bit (w: word size) integers, and xi ∈ W (i = 0, 1, 2, . . .)
be a sequence of w-bit integers.

For generating pseudorandom numbers, it is common to use a recursion:
Let N be a positive integer (called the degree), f : WN → W be a function,
and x0, x1, . . . , xN−1 be elements of W (called the initial values). Then, the
following recursion generates a sequence of elements in W :

xN+i := f(xN−1+i, xN−2+i, . . . , xi) (i = 0, 1, . . .). (1)

For high-speed generation, it is better to choose an f depending only on few
variables, but if the variables are too few, the generated sequence tends to show
non-randomness. As a trade-off, we consider the following type of recursion:

xN+i := f(xM+i, x1+i, xi) (i = 0, 1, . . .). (2)

We call the positive integer M (1 < M < N) the middle position.
Such a recursion can be efficiently computable (under an appropriate choice

of f) using an array X[0..L−1] of words of length L with L ≥ N (see [8][Algorithm
A, p.28]), as follows.

1. Store the initial values x0, . . . , xN−1 to X[0], X[1], . . . , X[N − 1].

2. Set an integer variable i to 0.

3. Set

X[(N + i) mod L]← f(X[(M + i) mod L], X[(1+ i) mod L], X[i mod L]).

This computes xN+i.

4. Increment i← i + 1. If i ≥ L, then i← i mod L.

5. Go (3).
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Figure 1: Strategy of MTGP: one block works on a single recursion using up to
N −M threads. At Step 1, the threads read from memory via arrows numbered
1 in parallel, then at Step 2 (respectively 3) via arrows numbered 2 (respectively
3). At Step 4, the threads write the generated numbers via arrows numbered 4.

3.2 A natural parallelism

Suppose that L is sufficiently large, namely L ≥ 2N − M . Then, one may
compute

X[N + i]← f(X[M + i], X[1 + i], X[i])

for 0 ≤ i ≤ N −M − 1 in parallel. When i = N −M , the computation of
X[N + i] requires the value of X[M + i] = X[N ], which can be obtained only
after the i = 0-th step has been done, giving the above upper bound N −M for
the number of parallel threads.

A basic strategy in our proposed MTGP is to use this parallelism for threads
in one block, as pictured in Figure 1. One block works on a single recursion
using up to N −M threads in parallel. Suppose that one block has n threads
(n ≤ N −M). Then, the i-th thread (1 ≤ i ≤ n) works as follows:

Step 1 reads X[i− 1] (1 ≤ i ≤ n).

Step 2 reads X[i] (1 ≤ i ≤ n).

Step 3 reads X[M + i− 1] (1 ≤ i ≤ n).

Step 4 computes f(X[M+i−1], X[i], X[i−1]) and writes the result to X[N+i]
(1 ≤ i ≤ n).

This idea of one block for one generator is in contrast to a more naive idea:
one thread for one generator, adopted in CUDA SDK Mersenne Twister sample,
which will be explained in §4.1.
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3.3 F2-linear generators and Mersenne Twister

We briefly recall the notion of F2-linear generators, in particular Mersenne
Twister (MT) [16] generator, since MTGP is its variant. See [12] for a gen-
eral theory on F2-linear generators.

In this article, we identify the set of bits {0, 1} with the two-element field
F2. A w-bit integer is identified with a horizontal vector in Fw

2 , and ⊕ denotes
the sum as vectors (i.e., bit-wise exor). Thus, the set of word-size integers is an
F2-linear space, as well as the set of states of a memory array, etc. We mean by
an F2-linear generator a pseudorandom number generator with F2-linear vector
state space, F2-linear transition function, and F2-linear output function.

Notation

The following notations on bit-operations on words are used. The bitwise-and
is denoted by &. Let r be an integer with 1 ≤ r ≤ w and x, y be two w-bit
words. The (w − r)-bit integer consisting of the (w − r) most significant bits
(MSBs) of x is denoted by xw−r. The r-bit integer consisting of the r least
significant bits (LSBs) of y is denoted by yr. The w-bit integer obtained by
concatenating xw−r and yr in this order is denoted by (xw−r|yr). The bold 0
means the zero word. Thus, (xw−r|0r) is a word whose most significant w − r
bits coincide with those of x and the rest r bits being 0. The logical left shift of
x by r bits is denoted by (x� r), and the right shift by (x� r). A hexadecimal
number is denoted with 0x at the head, so for example 0xf denotes the integer
15 whose binary representation is 1111. Matrices are denoted by bold letters
such as A and R, and multiplication to a row vector x is denoted by xA, and
every component is computed modulo 2, i.e., in F2.

Choose a Mersenne prime, i.e., a prime number of the form of 2p − 1; the
integer p is called a Mersenne exponent (MEXP). A basic strategy of MT is
to realize the Mersenne prime period. For this purpose, put N = dp/we, r =
wN−p. Thus, N is the least length of array of w-bit integers that accommodates
p bits, and r is the rest wN − p. MT generates a sequence of elements in Fw

2 by
a recursion

xN+i = f(xM+i,x1+i,xi
w−r) (3)

= xM+i ⊕ (xw−r
i |xr

1+i)A, (4)

where A is a (w × w)-matrix such that xA is computable by

xA =
{

(x� 1) (if x1 = 0)
(x� 1)⊕ a (if x1 = 1), (5)

where a is a constant w-dimensional row vector.
The function

(xN+i−1,xN+i−2, . . . ,xi+1,xw−r
i ) 7→ (xN+i,xN+i−1, . . . ,xi+2,xw−r

i+1 )

is a fixed F2-linear transformation F , and the recursion is simply the iteration of
F . Thus, Mersenne Twister is considered as an automaton with state transition
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function F : Fp
2 → Fp

2, where p = wN−r. The period of F attains the maximum
2p − 1 if and only if the characteristic polynomial of F is primitive, and there
is an efficient algorithm to check this when p is a Mersenne exponent [16].

3.4 k-distribution and tempering

The quality of a pseudorandom number generator is often measured by the
period, together with its high-dimensional equidistribution property, defined
below (cf. [2][11]).

Definition 3.1 A sequence of v-bit integers with period P = 2p − 1

x0,x1, . . . ,xP−1,xP = x0, . . .

is said to be k-dimensionally equidistributed if the consecutive k-tuples

(xi,xi+1, . . . ,xi+k−1), i = 0, . . . , P − 1

are uniformly distributed over all possible kv-bit patterns except the all-0 pattern
which occurs once less often, i.e., each distinct k-tuple of v-bit words appears the
same number of times in the sequence (with one exception of k-tuple of zeroes).

Definition 3.2 A periodic sequence of w-bit integers is k-dimensionally equidis-
tributed to v-bit accuracy if the most significant v-bit integer sequence is k-
dimensionally equidistributed.

The dimension of equidistribution to v-bit accuracy k(v) is the maximum
value of k such that the sequence is k-dimensionally equidistributed to v-bit
accuracy. Larger values of k(v) show higher dimensional equidistribution for
v-bit accuracy.

For P = 2p − 1, there is a bound k(v) ≤ bp/vc. The dimension defect d(v)
at v is the difference d(v) := bp/vc − k(v) ≥ 0, the total dimension defect ∆ is
their sum over v: ∆ :=

∑w
v=1 d(v). Smaller ∆ value shows that the generator is

closer to the optimum from the view point of k(v) (v = 1, . . . , w).

A possible alternative to ∆ is the maximum dimension defect max{d(v)|v =
1, 2, . . . , w}. In this article we use only ∆.

To obtain a better equidistribution property, MT chooses a (w × w) matrix
T (called the tempering matrix), and output xiT,xi+1T,xi+2T, . . .. The tem-
pering matrix T is chosen so that each k(v) (in particular for small v) is close
to its upper bound mentioned above; namely, so that the dimension defect d(v)
and their sum ∆ is small.

3.5 Design of MTGP : using threads

In designing MTGP, we utilize the parallelism explained in §3.1, namely N −M
threads can work in parallel on the state space. We chose the number of threads
for degree-N MTGP generators as the largest power of 2 no more than N − 2
(here M ≥ 2 implies N − M ≤ N − 2), which we denote by bN − 2c2 =
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2blog2(N−2)c. We choose a small M (but M ≥ 2), so that the gap N −M ≥
bN − 2c2 holds. We released MTGP for three MEXPs p = 11213, 23209, 44497.
These choices correspond to the number of threads being 256, 512, and 1024,
respectively.

3.6 Description of MTGP:recursion

Let us fix an MEXP p. Similarly to MT (see §3.3), we compute N = dp/we and
r = wN − p.

MTGP generates a sequence of elements in Fw
2 by a recursion

xN+i := g(xM+i,x1+i,xw−r
i ), (6)

where M is an integer satisfying the condition in the previous section. The F2-
linear recurring function g is determined by six integer parameters N, M, w, r, sh1, sh2
and a (4× w) matrix R.

Definition 3.3 The MTGP recursion (6) is defined as follows, using temporary
variables t and u of w-bit integer (identified with row vectors in Fw

2 ):

t← x1+i ⊕ (xw−r
i |0r)

t← t⊕ (t� sh1)
u← t⊕ (xM+i � sh2)

xN+i ← u⊕ (u4R), (7)

with the computation in this order. In the last line, u4 denotes the four-
dimensional row vector over F2 consisting of four LSBs of u, and hence the
multiplication u4R with (4 × w)-matrix R yields a w-dimensional vector (see
notations in §3.3).

The parameters (N, M, w, r, sh1, sh2,R) are called the recursion parameters
of the MTGP, and chosen to realize the period 2wN−r − 1.

For the speed, the multiplication of R is implemented as a look-up table. Since
u4 may assume only 16 values 0000, 0001, . . . , 1111 in the binary form, we may
precompute 16 w-dimensional vectors (0000)R, (0001)R, . . ., (1111)R and store
them in an array of words, say, in rectbl[0..15]. Then, u4R is rectbl[u4].

An equivalent description to the recursion (7) in C-language is as follows.
We assume that the content of the array rectbl is precomputed as above. Note
that the symbol ∧ denotes the bitwise exor in C.

t = X[1+i] ∧ (X[i] & BITMASK(w,r));
t = t ∧ (t<<sh1);
u = t ∧ (X[M+i]>>sh2);

X[N+i] = u ∧ rectbl[u & 0xf]; (8)

Here, BITMASK(w,r) is the bitmask of a w-bit integer with (w− r) MSBs being
1 and r LSBs being 0.
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Introducing such a look-up table has merit when implemented in a GPU,
because of the existence of texture memory (image object in OpenCL) for each
block of the GPU. The texture memory is intended for storing texture informa-
tion in computer graphics. The texture memory is set up when MTGP is set up,
and by a hardware restriction, it is read-only; its contents are kept until the next
set up. The texture memory can be accessed by many threads simultaneously
to the same address, differently from the shared memory where bank-conflicts
occur. Note that because the values of u4 in distinct threads (even in a warp)
may often coincide, the execution of (8) may often cause a bank-conflict if the
array rectbl is kept in the shared memory. If we keep them in registers, the
number of available registers for each thread decreases, hence the number of
parallelly executable threads decreases since there is a limitation in the total
number of registers in one block.

3.7 Description of MTGP : tempering

Analogous to MT, MTGP transforms the sequence xi by a fixed linear trans-
formation to obtain better k(v) (called tempering): the (N + i)-th output oN+i

is given by
oN+i := xN+i ⊕ h(xM−1+i) (9)

for a suitably chosen linear transformation h so that the output sequence has a
high value of k(v) (v = 1, . . . , w).

Definition 3.4 The tempering (9) of MTGP is defined as follows, using a tem-
porary variable t of w-bit integer:

t← xM−1+i ⊕ (xM−1+i � 16)
t← t⊕ (t� 8)

oN+i ← xN+i ⊕ t4T (10)

with the computation in this order. Here, T is a (4 × w)-matrix over F2. The
defining parameter is T, called the tempering parameter. The linear transfor-
mation h(xM−1+i) appearing in (9) is defined as t4T appearing in (10).

This type of tempering using another word xM−1+i in the state array came
from [5]. Use of the multiplication by a (4 × w)-matrix was obtained through
the trials to obtain a fast tempering with a large value of k(v) (1 ≤ v ≤ 32).

An equivalent description to the tempering (10) in C-language is as follows:

t = X[M-1+i] ∧ (X[i+M-1] >> 16);
t = t ∧ (t >> 8);

return (X[N+i] ∧ tmptbl[t & 0xf]); (11)

Similarly to the look-up table rectbl in the recursion (8), tmptbl is an array
of length 16 storing the values (0000)T, (0001)T, . . ., (1111)T.

Altogether, one MTGP has the recursion parameters as in Definition 3.3
and the tempering parameter as in Definition 3.4. A circuit-like description of
MTGP is shown in Figure 2.
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Figure 2: Circuit-like description of MTGP: the right circuit is for recursion,
the left circuit for the tempering.

3.8 Dimensions of equidistribution of MTGP

MTGP supports three different periods 211213− 1,223209− 1 and 244497− 1. For
each period, we searched for 128 different parameter sets with good equidistri-
bution properties, sorted in terms of the total defect ∆. So users can generate
128 distinct streams by MTGPs of different parameter sets.

Table 1 lists k(v) and d(v) of the MTGP23209 of period 223209 − 1 for the
first parameter set among the obtained 128 sets. In addition, the defect ratio
100 × d(v)/bp/vc in % is listed. For v = 1, . . . , 16, d(v) is 0 or 1, which means
that the equidistribution up to 16-bit accuracy is close to the optimal. For
comparison, Mersenne Twister MT19937 has d(1) = d(2) = d(4) = d(8) = 0,
but d(3) = 405, d(5) = 249, d(6) = 207 and d(7) = 355 for 1 ≤ v ≤ 8. The total
dimension defect ∆ = 1141 of MTGP23209 is rather better than ∆ = 6750 of
MT19937.

The WELL [22] generator has optimal ∆ = 0, but it seems difficult to run
WELL on GPUs efficiently because of the heavy dependencies among the partial
computations in the recursion.

The last (and hence worst) among the 128 parameter sets for MTGP23209
has ∆ = 2100, still much better than MT19937.
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Table 1: k(v), d(v) and the defect ratio r(v) := 100× d(v)/(k(v) + d(v)) (in %)
of MTGP23209 with first parameter set

v k(v) d(v) r(v)% v k(v) d(v) r(v)%
1 23209 0 0 17 1362 3 0.22
2 11604 0 0 18 1266 23 1.78
3 7736 0 0 19 1181 40 3.28
4 5802 0 0 20 1137 23 1.98
5 4641 0 0 21 1043 62 5.61
6 3868 0 0 22 931 123 11.67
7 3315 0 0 23 930 79 7.83
8 2900 1 0.03 24 930 37 3.83
9 2578 0 0 25 727 201 21.66

10 2320 0 0 26 726 166 18.61
11 2109 0 0 27 725 134 15.60
12 1934 0 0 28 725 103 12.44
13 1785 0 0 29 725 75 9.38
14 1657 0 0 30 725 48 6.21
15 1547 0 0 31 725 23 3.07
16 1450 0 0 32 725 0 0

Total dimension defect ∆ is 1141.

4 Comparison with other generators on GPU

4.1 SDK-MT: a naive approach

As mentioned earlier in §3.1, a more naive idea for PRNG for GPU is to use
one PRNG for one thread, unlike for one block as in MTGP. An example is
SDK Mersenne-Twister (SDK-MT) in CUDA-SDK [19] sample programs from
NVIDIA, which is a set of 4096 (small) Mersenne Twister implementations on
CUDA. SDK-MT uses 32 blocks, each block consists of 128 threads, and each
thread runs a Mersenne Twister with 607-bit state space (MT607). Each of the
32×128 = 4096 threads uses a distinct set of parameters, produced by Dynamic
Creator for MT [17] to support the independence of those streams.

Figure 3 pictures one block (128 threads) for SDK-MT. These parameters
(e.g., the coefficients in the recursion) are kept in the global memory.

4.2 Merits of MTGP over SDK-MT

The parallelization in MTGP, namely using the parallelism naturally appearing
in the recursion in the array, has been known since the 1980s (see for example
[1, §5.2.1]). Its merits compared to SDK-MT are:

• SDK-MT’s consumption of memory counted in bits is (607+parameter size)×
the number of threads.
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Figure 3: SDK-MT: PRNGs for GPU, one thread for one generator.

• MTGP’s consumption is 32× the number of threads.

• If the state spaces of SDK-MT were allocated in the shared memory
(16KByte), then the number of parallel threads was small: namely (16KByte)/(size
of working space for MT607)< 400, losing its gain in parallelism.

• The period of generated sequence: SDK-MT has period 2607 − 1, while
MTGP has period 211213−1 and higher dimensional equidistribution prop-
erty.

4.3 Other GPU-based PRNGs

We compare MTGP with some other generators implemented for GPUs. We
do not treat classical Linear Congruential Generators with modulus less than
or equal to 232, such as the Park-Miller generator implemented for GPUs [10],
since they are not recommendable for massive use (its period is ≤ 232, and the
sequence is rejected by several simple statistical tests called SmallCrush, see
[13][27]). We treat the following generators.

• The MTGP generator with period of 211213 − 1 described above. We
use 108 blocks to run 108 MTGPs whose characteristic polynomials are
mutually distinct.

• The SDK-MT generator with period of 2607 − 1 described in Section 4.1.

• The HybridTaus generator [9, Example 37-4] in GPU Gems, with period
of around 2121. This generator outputs the exor of two 32-bit integer
streams, one generated by a combined tausworthe generator taus88 [11]
and the other by a linear congruential generator “Quick and Dirty.”
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Table 2: Consumed time for 5× 107 numbers by five PRNGs and their periods

SDK-MT MTGP11213 hybrid-taus warp curand
float[0,1) 32bit int float[1,2) float[0,1) float[0,1) float[0,1) float[0,1)

GT 120 50.2ms 38.2ms 38.9ms 39.8ms 35.4 ms 13.8ms 16.5ms
GTX 260 18.6ms 4.7ms 4.8ms 5.0ms 9.3ms 3.2ms 3.0ms
Period 2607 − 1 211213 − 1 ∼ 2121 21024 − 1 ∼ 2192

• Warp Generator [27]. This generator is based on a sparse F2-linear tran-
sition matrix M : F32×32

2 → F32×32
2 . Its period is 21024 − 1. The space

F32×32
2 is identified with an array of 32-bit integers of length 32, so that

a warp computes the multiplication of M . The content of the array is
considered as 32 of 32-bit random integers. The raw output (WarpCor-
related) does not pass the BigCrush test suite, but by combining with a
non F2-linear output function (sum of two 32-bit integers modulo 232), the
output (WarpStandard) passes the BigCrush test suite. In this article, the
Warp Generator means WarpStandard.

• The CURAND generator [18]. This is the newest in the NVIDIA SDK.
This is an implementation of the xorwow generator, which is the com-
bination of an F2-linear generator xorshift and a Weyl generator (i.e., a
linear congruential generator with multiplier 1) by addition modulo 232,
proposed in [15]. Its period is 2192 − 232.

4.4 Generation Speed

Comparison of speed

We measured the consumed time in milliseconds, for generating 5 × 107 single
floating-point numbers in the range [0, 1) for MTGP11213, SDK-MT, Hybrid-
Taus, WarpStandard, and CURAND, on the GeForce GT120 GPU (4 cores)
and the GeForce GTX260 GPU (27 cores). For MTGP11213, we also mea-
sured the time for generating unsigned integers and floating-point numbers in
[1, 2) (see §6 for the reason). Table 2 shows the results. On both GT120 and
GTX260, SDK-MT is the slowest, and WarpStandard and CURAND are faster
than MTGP. On GT120, CURAND is 2.4 times faster than MTGP, while on
GTX260 the factor decreases to 1.7.

Since CPU’s and GPU’s have inherently different purposes, there may be
no fair way to compare their performance, but for a reference, we show that
MTGP is faster than a PRNG on high-spec CPUs. SFMT [24], which is one
of the fastest generators on SIMD machines, takes 25ms to generate the same
5×107 number of pseudorandom 32-bit integers on an Intel Xeon X5570 2.93GHz
4 core 2 CPU using 1 process (i.e. one core in one CPU), while MTGP takes
4.6ms as shown in the table. We also tried to use 4 cores of Xeon, but it turns
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out to be slower than using one core. This seems due to the overhead time for
thread generation and synchronization (we use pthread in POSIX to generate
four threads in the Xeon).

We mention that there are studies on hardware implementations of Mersenne
Twisters. For example, [28] implemented MT19937 on both a FPGA hardware
and on a GPU. They used the 8800 GTX GPU which is a little slower than the
GTX260. Their implementation in the GPU takes 16.9ms to generate the same
number of 32-bit integers as above, hence slower than MTGP on the GTX260.
On the other hand, their FPGA implementation is 35 times faster than their
GPU implementation and hence is much faster than MTGP on GTX260.

4.5 Statistical tests

We conducted TestU01 statistical test suits [13] to the MTGPs and those gen-
erators faster than MTGP in the previous section, namely, the CURAND and
Warp generators.

The Crush library in TestU01 contains 144 tests and the BigCrush library
contains 160 tests. See the user’s guide for details on the tests. The results
of the tests show that MTGP and Warp are not rejected, but CURAND is
systematically rejected, as explained below.

MTGP Among 160 tests in the BigCrush library, four tests based on F2-
linearity reject MTGPs. Two LinearComp tests (test number 80 and 81),
which measure linear complexity of the sequence, reject all the MTGPs.
Two MatrixRank tests (number 70 and 71), which measure the F2-linear
rank of 5000×5000 matrices generated from the output bit stream, reject
the MTGPs with a state size less than 5000 bits. This rejection is com-
mon among F2-linear generators such as Mersenne Twister (see [13]) and
WELL generators [22]. Because these statistics are based on F2-linear
relations of each bit of the outputs, the observed deviation would hardly
cause problems when the sequence is used as real numbers or integers in
a simulation. Other tests in the BigCrush library show no systematic de-
viation of MTGPs (including those generated by MTGPDC explained in
the next section).

CURAND CURAND is systematically rejected by three tests in the BigCrush:
CollisionOver (number 7), SimpPoker (number 27) and LinearComp (num-
ber 81). The p-values are outside the interval [10−15, 1 − 10−15]. This
phenomenon has been reported by Fabien [3]. Since the first test is on the
random numbers in the interval [0, 1), the observed deviation may cause
some erroneous results in a serious simulation.

The defect of CURAND becomes more serious when we examine the differ-
ences between the successive outputs: namely, from the output sequence
xn ∈ [0, 1), we make a new sequence yn := xn − xn−1 mod 1 ∈ [0, 1).
Among the BigCrush battery, three CollisionOver tests (number 7, 8, 10),
one Gap test (number 36), one RandomWalk test (number 75), and one
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Run of Bits test (number 102) show p-values outside [10−15, 1−10−15] for
yn.

Even among the Crush battery, two CollisionOver tests (number 7, 8),
one ClosePairsNJumps test (number 20), and one Gap test (number 32)
show p-values outside [10−3, 1− 10−3] systematically.

Warp WarpStandard generator passes all the tests in the BigCrush library.

5 MTGPDC

Dynamic Creation of pseudorandom number generators [17] is proposed for large
scale parallel simulations in which a number of PRNGs with distinct parameters
are desired. Dynamic Creator for Mersenne Twister (MTDC) is released online:
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/DC/dc.html.

MTDC receives a 16-bit integer called ID, and generates a parameter set for a
Mersenne twister with specified (Mersenne prime) period, with the ID embedded
in the recursion, so that distinct ID assures a distinct (hence relatively prime)
irreducible characteristic polynomial of the transition function of the generator.

One problem of MTDC is that there are some IDs where MTDC can not
find a parameter set with the specified period. This phenomenon is observed
only when w = 31. The ID is embedded as the 16 MSBs of the parameter a of
MT (see §3.3), and MTDC searches for the remaining bits of a that attain the
maximal period, but sometimes no such bit-pattern exists. Another problem is
that the 16-bit space for the ID is somewhat narrow for the recent trend of high
parallelism.

Our proposed MTGPDC receives a 32-bit integer as an ID, which is em-
bedded in the (4 × 32) matrix parameter R in Definition 3.3. Although there
is no assurance that distinct IDs give distinct characteristic polynomials, there
is a heuristic argument that with high probability they would do so, since the
32 bits are mapped to p (say, 11213) bits of the coefficients of the characteris-
tic polynomial in a complicated way. For the sake of completeness, MTGPDC
calculates the SHA1 digest of the coefficients of the characteristic polynomial,
so that users can check whether the characteristic polynomials are different (by
checking that the SHA1 digests are different) if they want.

As pointed out by a referee, there is no theoretical assurance for the inde-
pendence of the generated streams even if the characteristic polynomials are
distinct. However as far as we know, there are no reports on the deviation of
the correlations among two such F2-linear generators. We also tested a merged
sequence from the outputs of two parameter sets of MTGPs of the same period
using the BigCrush library, but no deviation is observed.

As explained in Definitions 3.3 and 3.4, MTGP has two kinds of param-
eter sets, namely recursion parameters and tempering parameters. Recursion
parameters decide the recursion and hence the period of the generator. The
tempering parameter T changes the output function and decide the dimensions
k(v) of equidistribution.
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Figure 4: A recursion parameter R. For the efficiency of the search, the four sets
of 4 LSBs in R are chosen so that the corresponding 4× 4 matrix does not have
an eigen value 1, which is equivalent to the invertibility of the transformation
on u in the last line of (7). This is a necessary condition to have the maximal
period.

MTGPDC first searches for the recursion parameter set (N, M, w, r, sh1, sh2,R)
in Definition 3.3, and then the tempering parameter set (Definition 3.4). Once
the Mersenne prime period 2p−1 and the wordsize w are fixed, then N = dp/we
and r = Nw− p are determined. MTGPDC embeds the received ID in the ma-
trix R, as follows.

Figure 4 describes the recursion parameter R, which consists of four 32-
dimensional row vectors over F2. These vectors are identified with 32-bit inte-
gers, with the MSB at the left-most component of the vector. The given 32-bit
ID is separated into the 16 MSBs and the 16 LSBs. The former are embedded
in the 16 MSBs of the first row. The latter are embedded in the 16 bits of the
second row consisting of the 12th, 13th, . . ., and 28th MSB. 4 LSBs of each
row are selected randomly so that the corresponding (4 × 4) matrix plus the
identity matrix is invertible (this is a necessary condition for the last line in (7)
being invertible, which is necessary for the irreducibility of the characteristic
polynomial). Other parts of matrix R are randomly selected.

Shift parameter sh1 and sh2 are fixed to 13 and 4 respectively, and the
middle position M is randomly selected so that 2 < M < N − bNc2. Experi-
mentally, we found that some shift parameters gave rather large defect ∆ even
after tempering, so we decided to fix these shift parameters which give good ∆
empirically. For each selection of a parameter set, the characteristic polynomial
is calculated using Berlekamp-Massey algorithm implemented in Number The-
ory Library [26]. If the polynomial is reducible, the next possible parameter set
(with ID still embedded in R) is randomly generated, until the irreducible poly-
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nomial is found. Since the degree of the irreducible polynomial is a Mersenne
exponent, the polynomial is primitive and the maximal period 2p−1 is attained.
According to our experiments, probably due to the large degree of freedom in
R, MTGPDC finds a parameter set for any given ID, unlike the case of MTDC
which fails to find one for some ID when w = 31.

Once the recursion parameter set with maximal period is found, MTGPDC
searches for a tempering parameter set. The tempering parameter is a 4 × 32
matrix (realized by a look-up table tmptbl) which consists of four 32-bit vectors
(see (10)). MTGPDC searches for tempering parameters as follows:
• prepare an array tmp[0..3] of 32-bit integers.
• set the four components of tmp[0..3] to 0.
• search for the 23 MSBs of the parameters
for i = 0 to 3 do

for j = 0 to 20 step 5 do
• e = min(j + 5, 23)
• generate all bit patterns of j-th to e-th bits of tmp[i].
• calculate k(1), k(2), . . . k(e) for each bit pattern.
• fix the bit pattern that attains the least sum of the dimension defects
d(1) + d(2) + · · ·+ d(e).

end for
end for
• modify the 9 LSBs of the parameters found above according to the distri-
bution of 9 LSBs
for i = 0 to 3 do

for j = 0 to 9 step 5 do
• e = min(j + 5, 9)
• generate all bit patterns of 31-j-th to 31-e-th bits of tmp[i]. This does
not change the 23 MSBs of the parameters.
• calculate k′(1) to k′(e), where k′(v) means the dimension of equidistri-
bution for the v LSBs.
• fix the bit pattern that attains the least sum of the dimension defects
d′(1)+d′(2)+ · · ·+d′(e), where d′(v) means the dimension defect for the
v LSBs.

end for
end for
Computing the dimension of equidistribution is a time-consuming part in

MTGPDC. We used the SIS algorithm [6] to compute these dimensions, which
reduces the computation time considerably. (Note that a faster method [4] has
recently been developed.)

Figure 5 shows the distribution of the CPU time for recursion-parameter
searches for p = 11213. The minimum and maximum ∆ among 1500 parameter
sets are 565 and 3542, respectively. Table 3 shows the minimum, maximum and
average time (sec.) to find one MTGP-parameter set for various p. The upper
three rows show CPU times to find recursion-parameter sets and the lower three
rows show CPU times to find tempering-parameter sets. Times in Figure 5 and
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Figure 5: Distribution of time (sec) for recursion parameter search (p = 11213)

Table 3: Time (sec) for recursion and tempering parameter search
p 3217 4423 11213 23209 44497
samples 3000 3000 1500 1500 750

Rec min 0 0 4 24 143
max 90 191 3318 10146 49987
average 11.2 25.0 338.1 1404.7 6529.4

Tmp min 10 15 76 379 946
max 25 40 253 1040 3893
average 21.7 34.1 213.7 910.0 3236.4
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Table 3 are measured on an Intel Xeon 5500 2.26GHz 4 core × 2 CPU, running
15 MTGPDC processes simultaneously. These timings show that MTGPDC
is too slow to use during a simulation. MTGPDC should be used to create a
sufficient number of parameter sets before the simulation, and these sets should
be reused.

MTGPDC records a set of recursion and tempering parameters in comma-
separated values format in a file, together with the following additional data:
SHA1 digest of the characteristic polynomial, number of non-zero terms of the
characteristic polynomial, and the total dimension defect.

Detectable deviations in LSBs in an older version of MT-
GPDC

[23] reported the following problem on the former version of MTGPDC. In
MTGPDC version 0.2 (released on June 8th 2009) for w = 32, several (say seven)
LSBs of 32-bit outputs are often rejected by some tests in the BigCrush library
for some parameter sets. Among these tests, tow notable tests are sknuth Gap
test for 5-bit sequences consisting of the 26th, 27th, 28th, 29th, and 30th bit
of 32-bit outputs (Test 35) and sstring HammingIndep test for the same bits
(Test 100). Test 35 rejects 1/5 of the 10000 created parameter sets, while
Test 100 rejects 1/10.

This older MTGPDC has only 23 MSBs for the tempering parameters. Af-
ter this report, the remaining 9 LSBs in the tempering parameters are supple-
mented, as described in this section.

6 Floating point generation in IEEE745

If one generates random integer sequences and transforms them into uniform real
numbers by multiplication or division, the conversion time is not negligible. For
current NVIDIA CUDA-enabled GPUs, such conversion is not heavy (equivalent
to 5 additions), but for present-day AMD GPUs, the integer-floating conversion
is rather time-consuming.

These days, most computers use IEEE 754 format for both single and double
precision floating-point numbers. Generating floating points in this format is
faster than conversion, see [25].

The same idea is used in MTGP. IEEE 754 single-precision format uses 32
bits for representing a real number. It consists of a 1-bit sign part (the MSB),
a 8-bit exponent part and a 23-bit fraction part. To generate single precision
floating point numbers, the last line of the tempering (10) is changed to:

oi = (xi � 9) ∧ sngltbl[t & 0x0f]; (C)

where sngltbl is essentially the same as tmptbl, just formatted to produce
single floating point format in IEEE754, as explained below. Every component
sngltbl[i] (0 ≤ i ≤ 15) has nine MSBs which are equal to 001111111, and its
27 LSBs are the 27 MSBs of tmptbl[i]. The above (C) amounts to producing
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a 32-bit integer sequence whose nine MSBs are 001111111 and 27 LSBs are the
27 MSBs of the 32-bit integer version of MTGP. The sign-bit and exponent-
bit imply that the represented real number is in the range [1, 2), and the 27
uniformly random LSBs imply the uniformity in that range. By subtracting 1.0,
we obtain uniform distribution in [0, 1). It is often the case that we can use [1,
2) directly, for example the Box-Muller transformation for Gaussian distribution
(see [25, §2]).

7 Concatenating outputs of several generators

Occasionally practioners ask us whether it is possible to generate a stream of a
single generator (say, of MT19937) using many processors. It would be possible
by using jumping-ahead, but it is costly. They worry that concatenating outputs
of several sequence generators may result in a poorly random sequence, since
the assurance of the dimension of equidistribution k(v) will be lost.

In our experience, concatenating the output sequences of good pseudoran-
dom number generators does not cause trouble. We think the dimension of
equidistribution k(v) is often mis-interpreted. The k(v) is the dimension of
uniformity for the whole period, and it gives no assurance for subsequences.
However, it gives assurance on nonexistence of a linear relation: among the
consecutive k-tuples of v bits, there is no F2-linear relation which holds forever.
This property is inherited by the subsequences, and is preserved when concate-
nating outputs of several generators with the same property. In addition, in
the cases of DC or MTGPDC, the generators have distinct irreducible charac-
teristic polynomials. The risk of correlations among these generators would be
negligibly small.

8 Implementation using CUDA

To use (the present version of) MTGP in a GPGPU program, one needs to write
the code in CUDA [21].

A user need to write a host program (processed in the CPU) and a kernel
program (processed in the GPU). A flow chart is in Figure 6. The left hand
side is the host program. User application program (User AP) means the code
which the user wants to run on GPGPU, using the pseudorandom numbers
generated by MTGP. In the host program, initialization (or set up) of the GPU
for the User AP kernel program is executed. Then, the initialization of the GPU
for MTGP (such as texture memory set up for look-up tables, initialization of
the state array in the global memory) is executed. Then, the host program
calls the MTGP-kernel program (processed in the GPU). In the kernel call, the
host specifies (1) number of blocks and (2) number of threads in a block, and
the following arguments are passed to the kernel program (or equivalently to
each block) (3) the number of pseudorandom numbers to be generated for each
thread (4) a pointer to global memory pointing to the state array (5) a pointer

20



to global memory pointing to the area where the generated numbers are stored.
When the GPU is called, each block reads the state from global memory to
shared memory, then each thread generates pseudorandom numbers and writes
them in the global memory. After writing a specified number of outputs, each
block stores the present state back into the global memory, so that in the next
MTGP kernel call the generation continues. To have a consecutive array of
pseudorandom numbers, we need to wait for termination of all the blocks. This
is done in the host program, using the synchronization function. Then, the User
AP kernel program is called from the host. The User AP kernel program is
executed on the GPU, using the the array of generated pseudorandom numbers
generated by MTGP.

One drawback of this scheme is that the user needs to specify the number
of pseudorandom numbers to be generated, before calling the User AP kernel.

9 Conclusions

We proposed MTGP pseudorandom number generators suitable for graphic pro-
cessing units. The strategy to raise its efficiency is to apply many parallel
threads to a single state space of a large pseudorandom number generator, to
realize a large state space (and hence a long period and high-dimensional equidis-
tribution) without loss of its generation speed. The state space is allocated in
the shared memory in the GPU, and its parallelism of memory access is suitable
for the design of the banks of the memory in the GPU. The generation speed
of MTGP is comparable to some fastest generators for the GPU. For example,
CURAND generator is faster than MTGP by a factor of 1.7, but statistical tests
show some weaknesses of CURAND. On the other hand, WarpStandard is also
faster than MTGP and passes the BigCrush statistical test suites. ¿From the
viewpoint of the period and high-dimensional equidistribution, MTGPs have
better assurance than other generators.

We also designed a parameter generator for MTGP, named MTGPDC. It
runs on CPUs, receives the period and 32-bit ID, searches for a recursion param-
eter set with the ID embedded, and then searches for a tempering parameter set
to attain high-dimensional equidistribution. This facility fits a GPGPU with
many nodes. The source code of MTGP and MTGPDC, together with their 64-
bit variants, are available from the url http://www.math.sci.hiroshima-u.
ac.jp/∼m-mat/MT/MTGP/. MTGPs passed the statistical tests in the BigCrush
library, except for those tests which measure F2-linear dependency of the output
sequence. The failure in such tests is common to the Mersenne Twister and the
WELL, which would not cause a problem in a usual stochastic simulation.
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