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great deal of floating point pseudorandom numbers.

Answer: We propose a fast and high quality uniform double precision
floating point pseudorandom number generator (PNG).

There are some methods to generate floating point pseudorandom
numbers.

1 generate an integer number and convert it into a floating point
number by dividing or multiplying a constant.

2 generate an integer number and convert it into a bit pattern
which represent a floating point number using bit operations.

We propose a new method to generate floating point pseudorandom
numbers.
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Introduction

Our idea is simple:

generate pseudorandom 52-bit patterns

supply the most significant 12-bits with a special constant,

so that they represent floating point numbers in the range [1, 2)
obeying the IEEE 754 format in memory.

We also used 128-bit SIMD (Single Instruction Multiple Data) instruction
set for faster generation. In other words, our PNG generates two floating
point numbers at one time.
We have made a new generator, double precision SIMD-oriented Fast
Mersenne Twister (dSFMT), which is much faster than

Mersenne Twister (Matsumoto and Nishimura ’98) (MT) and

SIMD-oriented Fast MT (Saito and Matsumoto ’07) (SFMT)

in generating double precision numbers.
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IEEE 754

IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985) is the most widely-used standard
for floating-point.
The standard defines

single precision (32 bit)

extended single precision (more than 43 bit)

double precision (64 bit)

extended double precision (more than 79 bit)
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IEEE 754 double precision format

exponent fraction represented number

zero 0 0 ±0

denormalized number 0 6= 0 ±0.xxxx × 2−1022

∞ 2047 0 ±∞

NaN 2047 6= 0 Not a Number

normalized number other any ±1.xxxxx × 2e−1023

xxxx shows the bit pattern of fraction part.
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IEEE 754 double precision format

exponent fraction represented number

zero 0 0 ±0

denormalized number 0 6= 0 ±0.xxxx × 2−1022

∞ 2047 0 ±∞

NaN 2047 6= 0 Not a Number

normalized number other any ±1.xxxxx × 2e−1023

xxxx shows the bit pattern of fraction part.
If s is 0 and e is 0x3ff, then the format represent a normalized number in
the range [1, 2).
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Linear Feedbacked Shift Register (LFSR)

Definition

A bit {0, 1} is identified with F2, the two element field.

b-bit integers are identified with horizontal vectors in F
b
2 .

b is 64 or 128.

We consider an array of N b-bit in computer memory
as the vector space (Fb

2)
N .

July 6-11, MCQMC’08 6/21



Linear Feedbacked Shift Register (LFSR)

Definition

A bit {0, 1} is identified with F2, the two element field.

b-bit integers are identified with horizontal vectors in F
b
2 .

b is 64 or 128.

We consider an array of N b-bit in computer memory
as the vector space (Fb

2)
N .

Definition

Linear Feedbacked Shift Register (LFSR) is defined by
a recursion formula of rank N:

wi = g(wi−N , ...,wi−1),

where g is an F2-linear map (Fb
2)

N → F
b
2 and wi ∈ F

b
2.
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Pulmonary LFSR

Definition

Pulmonary LFSR is a variant of LFSR, which is defined by
two recursion formulas:

wi = g(wi−N+1, ...,wi−1,ui−1),

ui = h(wi−N+1, ...,wi−1,ui−1).

where g and h are F2-linear maps (Fb
2)

N → F
b
2 and wi ,ui ∈ F

b
2.
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LFSR and Pulmonary LFSR

Standard LFSR (e.g. MT) and Pulmonary LFSR
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Detailed description of dSFMTv2

We released dSFMT based on this idea in 2007 from our web page.
Here we propose an improved version of dSFMT.
dSFMTv2 is a pulmonary LFSR, whose recursion formulas are:

ui = Awi−N+1 + wi−N+M+1 + Bui−1,

wi = wi−N+1 + Dui ,

where w0, ...,wN−2 ∈ F
128
2 , A,B ,D ∈ M128(F2). M is pick up position

0 < M < N − 2.
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We released dSFMT based on this idea in 2007 from our web page.
Here we propose an improved version of dSFMT.
dSFMTv2 is a pulmonary LFSR, whose recursion formulas are:

ui = Awi−N+1 + wi−N+M+1 + Bui−1,

wi = wi−N+1 + Dui ,

where w0, ...,wN−2 ∈ F
128
2 , A,B ,D ∈ M128(F2). M is pick up position

0 < M < N − 2.

1 w0, ...,wN−2 are set to the values in [1, 2) with the format IEEE 754

2 D is chosen appropriately,

so that the consecutive wis are uniformly distributed in the range [1, 2).
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Detailed description of dSFMTv2

Because 24 bits of each w is fixed, we can consider above formula as an
affine recursion formula:

yi = Fxi−N+1 + xi−N+M+1 + Gyi−1 + c

xi = xi−N+1 + Hyi ,

where yi , c ∈ F
128
2 , xi ∈ F

104
2 , F ,G ∈ M128,104(F2), H ∈ M104,128(F2).

To assure the period and distriution property, we need to develop
algorithms to compute theses for affine transforation generalized those for
linear transformation. (we ommit)
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Diagram of dSFMTv2

Diagram of dSFMTv2
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dSFMTv2-19937

dSFMTv2-19937 has following specification.

the least period: 219937 − 1

size of array N: 192

state space of affine transition: F
19992
2

shift value SL1: 19

pick up position M: 117

constant mask: 0x000ffafffffffb3f000ffdfffc90fffd
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Dimension of equidistribution

Definition

A periodic sequence with period P

x0, x1, . . . , xP−1, xP = x0, . . .

of v -bit integers is said to be k-dimensionally equidistributed if any kv -bit
pattern occurs equally often as a k-tuple

(xi , xi+1, . . . , xi+k−1)

for a period i = 0, . . . ,P − 1.
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Definition

A periodic sequence with period P

x0, x1, . . . , xP−1, xP = x0, . . .

of v -bit integers is said to be k-dimensionally equidistributed if any kv -bit
pattern occurs equally often as a k-tuple

(xi , xi+1, . . . , xi+k−1)

for a period i = 0, . . . ,P − 1.
(The all-zero pattern occurs once less often than the others.)
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Dimension of equidistribution

Definition

A periodic sequence of b-bit integers is said to be k-dimensionally
equidistributed with v -bit accuracy if the most significant v(< b) bits of
each integer are k-dimensionally equidistributed.
We denote by k(v) the maximum such k.
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Definition

A periodic sequence of b-bit integers is said to be k-dimensionally
equidistributed with v -bit accuracy if the most significant v(< b) bits of
each integer are k-dimensionally equidistributed.
We denote by k(v) the maximum such k. We have an upper bound of the
sequence with period P

k(v) ≤ ⌊log2(P + 1)/v⌋,

and define the dimension defect d(v) at v as the gap between the bound
and the realized dimension of equidistribution:

d(v) := ⌊log2(P + 1)/v⌋ − k(v),

and the total dimension defect ∆ as the sum of these gaps.
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Dimension of equidistribution

k(v) and d(v) of 52-bit fraction part of dSFMTv2-19937.
v k(v) d(v) v k(v) d(v) v k(v) d(v) v k(v) d(v)
1 19937 0 14 1423 1 27 734 4 40 383 115
2 9967 1 15 1328 1 28 702 10 41 383 103
3 6644 1 16 1245 1 29 620 67 42 383 91
4 4983 1 17 1172 0 30 538 126 43 383 80
5 3987 0 18 1107 0 31 536 107 44 383 70
6 3322 0 19 1049 0 32 535 88 45 383 60
7 2847 1 20 996 0 33 384 220 46 383 50
8 2491 1 21 949 0 34 384 202 47 383 41
9 2215 0 22 772 134 35 384 185 48 383 32

10 1993 0 23 772 94 36 384 169 49 383 23
11 1812 0 24 772 58 37 383 155 50 383 15
12 1661 0 25 772 25 38 383 141 51 383 7
13 1533 0 26 766 0 39 383 128 52 383 0

∆ is 2608.
c.f. ∆ of MT19937 is 6750.
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Comparison of speed

Generators

dSFMTv2: dSFMT ver. 2, improved dSFMT, described in this talk.

dSFMTv1: dSFMT unpublished, but the code is available
from our homepage.

MT mask: Mersenne Twister with bit mask to fit to IEEE 754.

MT 64 mask: 64-bit MT with bit mask to fit to IEEE 754.

SFMT mask: SFMT with bit mask to fit to IEEE 754.

SFMT × const: SFMT standard double generation.
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Comparison of speed

Generators

dSFMTv2: dSFMT ver. 2, improved dSFMT, described in this talk.

dSFMTv1: dSFMT unpublished, but the code is available
from our homepage.

MT mask: Mersenne Twister with bit mask to fit to IEEE 754.

MT 64 mask: 64-bit MT with bit mask to fit to IEEE 754.

SFMT mask: SFMT with bit mask to fit to IEEE 754.

SFMT × const: SFMT standard double generation.

CPUs and compilers

Pentium M 1.4GHz and Intel C compiler (ICC)

Pentium 4 3GHz and ICC

core 2 duo 1.83GHz and ICC

Athlon 64 2.4GHz and GNU C Compiler (GCC)

Power PC G4 1.33GHz and GCC
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Comparison of speed

Output

blk: Generate 50000 of double precision floating point numbers
in an array, at one call.
This is iterated for 2000 times (108 generations).

seq: Generate 108 of double precision floating point numbers
sequentially, one by one.

All outputs are formatted in the range [0, 1).
(i.e. outputs of dSFMTs are subtracted by 1.0).
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Comparison of speed

Using SIMD instruction set.
The time (sec.) required for 108 of double float generations.

dSFMTv2 dSFMTv1 MT SFMT SFMT
(new) (old) mask mask × const

Pentium M blk 0.626 0.867 1.526 0.928 2.636
1.4 Ghz seq 1.422 1.761 3.181 2.342 3.671

Pentium 4 blk 0.254 0.640 0.987 0.615 3.537
3 Ghz seq 0.692 1.148 3.339 3.040 3.746

core 2 duo blk 0.199 0.381 0.705 0.336 0.532
1.83GHz seq 0.380 0.457 1.817 1.317 2.161

Athlon 64 blk 0.362 0.637 1.117 0.623 1.278
2.4GHz seq 0.680 0.816 1.637 0.763 1.623

PowerPC G4 blk 0.887 1.151 2.175 1.657 8.897
1.33GHz seq 1.212 1.401 5.624 2.994 7.712
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Comparison of speed

without using SIMD instruction set.
The time (sec.) required for 108 of double float generations

dSFMTv2 dSFMTv1 MT64 MT SFMT SFMT
(new) (old) mask mask mask × const

Pentium M blk 1.345 2.023 2.031 3.002 2.026 3.355
1.4 Ghz seq 2.004 2.386 2.579 3.308 2.835 3.910

Pentium 4 blk 1.079 1.128 1.432 2.515 1.929 3.762
3 Ghz seq 1.431 1.673 3.137 3.534 3.485 4.331

core 2 duo blk 0.899 1.382 1.359 2.404 1.883 1.418
1.83GHz seq 0.777 1.368 1.794 1.997 1.925 2.716

Athlon 64 blk 0.334 0.765 0.820 1.896 1.157 1.677
2.4GHz seq 0.567 0.970 1.046 2.134 1.129 2.023

PowerPC G4 blk 1.834 3.567 2.297 4.326 4.521 12.685
1.33GHz seq 1.960 2.865 4.090 5.489 5.464 9.110
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Conclusion

We proposed dSFMT pseudorandom number generator.

dSFMTv2-19937 generates IEEE 754 floating point numbers directly.

It has a period at least 219937 − 1.

It has good equidistribution property.

It is much faster than MT and SFMT in double precision floating
point generation.

Remark:
Someone may think cancellation error will occur when we convert numbers
form the range [1, 2) to [0, 1).
This is negligible: The generated numbers in the range [0, 1) by our
method have the same accuracy as ones obtaind by dividing 52-bit integers
by a constant.
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Thank you for your kind attention.
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