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6 Soulé’s cocycle 25

Abstract

Let X be a geometrically connected scheme over a field K. Then,
the absolute Galois group GK of K acts on the algebraic fundamental
group πalg

1 (X ⊗ K, x).
This lecture explains the following:

1. This action is an analogy of “geometric monodromy of deforma-
tion family” in the topology.

2. Lie algebraization of the fundamental group is effective to extract
some information from this action.

1 Algebraic fundamental group

1.1 The classic-topological fundamental group

Let X be an arcwise connected topological space, and x be a point on X .
Then, the (classical) fundamental group of X with base point x is defined
by

π1(X , x) := {paths from x to x}/homotopy with x fixed.

For the ordering in composing two paths, we define γ ◦ γ′ to be the path
first going along γ′ and then γ. (Some papers adopt the converse ordering.)

It is well-known that the fundamental group of a (real two-dimensional)
sphere or a sphere minus one point is trivial, and that of the sphere minus
two points is isomorphic to the additive group Z. The fundamental group
of a sphere minus three points is a free group of two generators, and this is
a main subject of this lecture.

1.2 Unramified covering

The fundamental group is an important (homotopy) invariant of a topolog-
ical space. The importance may be justified by the following theorem.

Theorem 1.1. Let X be an arcwise connected and locally simply connected
topological scheme, and x be a point on it. Then, there is an equivalence of
categories

Fx : {unramified coverings of X} → {π1(X , x)-sets},

given by taking the inverse image of x.
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We shall give precise definitions of the above two categories.

Definition 1.2. A continuous map f : Y → X is an unramified covering, if
for every x ∈ X there is an open neighborhood U ⊂ X of x such that every
connected component of f−1(U) is isomorphic to U through f .

Morphisms between f : Y → X , f ′ : Y ′ → X are defined to be the
continuous maps from h : Y → Y ′ satisfying f = f ′ ◦ h. (By abuse of
language, we simply say that h is compatible with f .)

An important example of unramified covering of X is its universal cov-
ering X̃ . This is constructed as follows: take a point x ∈ X . Then consider
the set

X̃ := {γ : path on X starting from x}/homotopy

where the homotopy is considered with the both ends of the path fixed.
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Consider the morphism

p : X̃ → X , [γ] �→ the end point of γ.

Then, X̃ is equipped with a topology as follows. Take [γ] ∈ X̃ , and set z :=
p([γ]) to be the end point of γ. Take a simply connected open neighborhood
U of z. For each point u of U , there is a unique path (zu) (modulo homotopy)
connecting z to u in U . By mapping u �→ [(zu) ◦ γ], we have a mapping
U → X . Let Ũ denote its image. We can check that by taking Ũ as an
open neighborhood of [γ], X̃ is equipped with a topology such that p is an
unramified covering. The fundamental group π1(X , x) acts on X̃ (over X )
from right, by

X̃ × π1(X , x) → X̃ , ([γ], [β]) �→ [γ ◦ β].

We define the right hand side of Theorem 1.1.

Definition 1.3. For a group G, a G-set means a set S with a left action of
G is specified, i.e.,

ρ : G → Aut(S)

is given. A morphism between two G-sets S1 → S2 is a mapping compatible
with G-actions. (I.e. ρ1(g)(h(s)) = h(ρ2(g)(s)) holds.)

There is an obvious functor from the left category to the right one in
Theorem 1.1:

Fx : (f : Y → X ) �→ f−1(x).

The action of π1(X , x) on f−1(x) is given by the monodromy: for γ ∈
π1(X , x) and z ∈ f−1(x), there is a unique lift γ′ in Y of γ starting from z.
Then γ(z) is defined as the endpoint of γ′. 1 Clearly this gives a left action
of π1(X , x) on f−1(x). Thus, we defined

Fx : {unramified coverings of X} → {π1(X , x)-sets}, (f : Y → X ) �→ f−1(x).

1To be precise, we take open sets Uλ (λ ∈ Λ) of X whose union contains γ (here a
path and its homotopy class are both denoted as γ), and each Uλ satisfies the property in
Definition 1.2. By compactness, we may assume that U1, U2, . . . , Un cover γ and U1 ∩ γ,
U2 ∩ γ, . . . , Un ∩ γ are paths composable in this order. Then, there is a unique lift of
U1 ∩ γ in Y starting from z ∈ f−1(x) ⊂ Y. Then, there is a unique lift of U2 ∩ γ starting
from the end point of the previous lift. Thus, there is a unique lift γ′ of γ in Y starting
from z.
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In the converse direction, we can construct an unramified covering of X
from a π1(X , x)-set S as follows. For each orbit O ⊂ S of the action of
π1(X , x), we take a point o ∈ O and consider YO := X̃/Go where Go is the
stabilizer of o in π1(X , x). It follows from the construction that YO → X
corresponds to the transitive π1(X , x)-set O. By taking direct sum over all
orbits O, we have the desired covereing of X . From the above, it is seen that
the subcategory of the connected covering corresponds to the subcategory
of the transitive π1(X , x)-sets.

We may define the fundamental group without using paths, in the fol-
lowing manner. Consider the functor

Fx : {unramified coverings of X} → {sets}, (πY : Y → X ) �→ π−1
Y (x).

This is called a fiber functor. Any path γ ∈ π1(X,x) acts on Fx(Y) = π−1
Y (x)

by the monodromy. This action is compatible with any unramified maps
Y → Y ′, i.e.,

Fx(Y)
γ→ Fx(Y)

↓ ↓
Fx(X )

γ→ Fx(X )

commutes. This means that the action of γ is a natural (invertible) trans-
formation from the functor Fx to itself.

This amounts to saying that we have a group homomorphism

π1(X,x) → Aut(Fx).
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This is proved to be an isomorphism. It is injective since Fx(X̃ ) is one to
one with π1(X,x). It is surjective since any element σ of Aut(Fx) is the
image of the path ∈ π1(X,x) that lifts to a path x̃ → σ(x̃) in X̃ .

This is the way to define the algebraic fundamental group in SGA1[3]:
we consider a suitable analogue to the unramified coverings and fiber func-
tors. Then, the algebraic fundamental group is defined as the automorphism
group of a fiber functor.

The suitable analogue to the unramified coverings in the algebraic situ-
ation is étale.

1.3 Galois groups

Before stating the definition of étale morphisms, we treat another concrete
example: the absolute Galois groups. Here, we assume the reader to have
the basic knowledge on (finite) Galois theory of field extension.

Let K be a field. A good analogy of a finite connected unramified cov-
ering is a finite field extension L of K. To be precise, we consider the
following category (SpecK)et: its object is a ring R with injective homo-
morphism K → R, where R is a finite direct product of finite separable
extension field of K:

K → R =
∏

i

Li,

and morphisms are those ring homomorphisms R → R′ compatible with
K → R.

To compare with the unramified coverings, it is better to reverse the
direction of the morphism. So, to each ring (commutative with unit) R, we
associate an object SpecR (the spectrum of R) and to each ring homomor-
phism R → R′ we associate a morphism SpecR′ → SpecR. Now,

SpecR = Spec(
∏

i

Li) → SpecK

is the analogue of a finite unramifed covering. We denote by

(SpecK)et := category of SpecR as above,

where the morphisms are just ring homomorphisms R → R′ compatible with
K → R, K → R′. Why one can say that this is a good analogue? Because
the following category equivalence holds:

SpecKet
∼= {GK = π1(SpecK,x)-finite sets}, (1)
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which we shall explain soon below (but π1(SpecK,x) in the next section, in
Example 1.5).

Take an algebraically closed field Ω with injective homomorphism

K → Ω, in other words, x : SpecΩ → SpecK.

This is called a geometric point of SpecK. Let Ksep ⊂ Ω be the separable
closure of K in Ω. Then, SpecKsep → SpecK surves as the universal covering
of SpecK, with a fiber x̃ : SpecΩ → SpecKsep above x is specified.

The above GK is the absolute Galois group of K, i.e., it is the group of
automorphisms of the field Ksep with trivial actions on K:

GK := Aut(Ksep/K).

For any Galois extension L ⊂ Ksep of K, we have the restriction morphism

GK := Aut(Ksep/K) → Aut(L/K) = G(L/K),

which can be proved to be surjective. An element σ ∈ GK gives a system of
elements

σ|L ∈ G(L/K) for all sub Galois extension L,

and conversely, by giving such a system of elements compatible with re-
strictions G(L′/K) → G(L/K), we have an element of GK . Using the
terminology of projective limits, we have

GK = lim← G(L/K),

where L runs through all the finite sub Galois extension of K inside Ksep.
The symbol lim← means the set of all the systems, i.e., choosing σL ∈
G(L/K) for every L so that they are compatible with respect to G(L′/K) →
G(L/K). Such set of the systems is called the projective limit of G(L/K)’s.
2

A group which is a projective limit of finite groups is called a profinite
group. It is naturally a topological group, by equipping the weakest topology
such that every GK → G(L/K) becomes continuous.

A GK -finite set S is a (discrete) finite set with continuous GK -action.
This means that GK → AutS factors through GK → G(L/K) → AutS with
some finite Galois subextension L.

The functor from the left to the right in (1) is

SpecR �→ HomK(SpecKsep,SpecR) = HomK(SpecΩ,SpecR).
2See PP.116-121 of [2] for projective limits and profinite groups.
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The right hand side is the set of fibers of SpecR above the geometric point
x : SpecΩ → SpecK. The group GK naturally acts on this finite set from
the left, by letting it act on Ksep from the left.

To construct the inverse, we start from a finite set S on which GK

acts continuously and transitively. Take an element s ∈ S, then we have
S ∼= GK/Gs as GK -finite set, where Gs is the stabilizer of s. Now we
consider the invariant subfield

L := (Ksep)Gs .

Then SpecL is the corresponding object in the left hand side. For non-
transitive cases, we construct orbit-wise, as in the topological case.

All the basic properties of the Galois theory are included in the category
equivalence (1). For example, let L/K be a finite Galois extension. Then,
through (1) K corresponds to a one point set {∗} with trivial GK action,
and L corresponds to the transitive GK-set SL := HomK(L,Ksep), where
the action factors through G(L/K). The category equivalence amounts to
saying that an intermediate field M is one to one with a G(L/K)-set Q which
is a quotient of SL. A qutotients Q of SL is one to one with a subgroup of
G(L/K).

It is not hard to check that the correspondence is

M → G(L/M),

which is one to one from the intermidiate fields to the subgroups of G(L/K).

1.4 Galois category

There is a notion of Galois category [3, V, 4]. It is a category C with terminal
objects, fiber products, initial objects, direct sums, and quotient by finite
group actions, with a functor

F : C → {finite sets}
satisfying suitable conditions (see [3, p.118, G1-G6]). We saw two examples:
one is the category SpecKet with a fiber functor SpecR → HomK(SpecΩ,SpecR),
and the other is the category of (not necessary connected) finite unramified
coverings of X in Theorem1.1, with a fiber functor Fx.

Then, Theorem 4.1 in [3] states the following.

Theorem 1.4. Let C be a Galois category and F be a fiber functor. Define
the fundamental group of C with base point F by

π1(C,F ) := AutF.
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Then, this is a profinite group, and there is a category equivalence

C → {π1(C,F )-finite sets}
given by C �→ F (C).

Example 1.5. Suppose that C := (SpecK)et and x : SpecΩ → SpecK. Let
us define

Fx : C → {finite sets}
by

SpecR �→ HomK(SpecΩ,SpecR) = HomK(SpecKsep,SpecR).

Then, one can show that 3

π1((SpecK)et, Fx) := Aut(Fx) ∼= G(Ksep/K) = GK .

Example 1.6. Let C ′ be the category of unramified coverings of X , and
C be its full subcategory consisting of finite coverings. Then, C ′ is not a
Galois category but C is. For x ∈ X , the functor F ′x taking the fiber over x

F ′x : C ′ → {sets}
restricts to

Fx : C → {finite sets},
and this satisfies the axiom of the fiber functors. By restriction, we have

π1(X , x) ∼= AutF ′x → AutFx.

We do not prove, but it follows (from the axioms of Galois categories) that
in computing AutFx, it suffices to consider Fx(Y) where Y → X is a (finite)
normal covering, i.e. Y ∼= X̃/N where N is a normal subgroup of π1(X , x)
of finite index. Thus, we have

π1(C,Fx) := AutFx
∼= lim← π1(X , x)/N,

where N runs over all the finite index normal subgroups.
For a (discrete) group G, its profinite completion G� is the profinite

group defined by
G� := lim← G/N,

where N runs over all the finite index normal subgroups.
In sum, we have

π1(C,Fx) ∼= π1(X , x)�.
3This is almost an immediate consequence of Yoneda Lemma:

Aut(Hom(X,−)) ∼= (AutX)opposite.
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1.5 Finite etale coverings

A good generalization of both topological unramified finite coverings (§1.2)
and finite separable extension of field (§1.3) is the notion of finite etale
coverings[3, I].

First we state the definition in the language of schemes.

Definition 1.7. Let f : Y → X be a morphism of finite type between
locally noetherian schemes. Let y ∈ Y . We say that f is etale at y if the
induced morphism of local rings f∗ : Of(y) → Oy is flat, and

Of(y)/mf(y) → Oy/(f∗(mf(y))Oy)

is a finite separable extension.
We say f is etale if it is etale at every point on Y . If f is finite and etale

and X is connected, then f : Y → X is said to be a finite etale covering.
Suppose that X is connected. Let us define Xet to be the category of

the finite etale coverings of X.

Definition 1.8. (Algebraic fundamental group, See SGA1[3, V].)
Let X be a connected locally noetherian scheme, and Xet be the category

of finite etale coverings of X. Then, Xet is a Galois category. Let Ω be an
algebraic closed field, and x : SpecΩ → X is a geometric point. Then,
Fx : Y �→ π−1

Y (x) is a fiber functor. We define the algebraic fundamental
group by

π1(X,x) := π1(Xet, Fx) = AutFx.

To explain the language of schemes is beyond the scope of this lecture.
However, the following results will almost suffice for this lecture.

Example 1.9. Let K be a field. The finite etale coverings SpecR → SpecK
are the same with those defind in §1.3, i.e., the direct product of finite
separable extensions. Thus (SpecK)et in the sense of this section coincides
with that in Example 1.5.

A geometric point x : SpecΩ → SpecK gives a fiber functor Fx as in the
same example, so we have

π1(SpecK,x) = π1((SpecK)et, Fx) = Aut(Fx) ∼= GK .

Example 1.10. Let K ⊂ C be an algebraically closed field. Let X be
a scheme of finite type over K. Let Xan be the corresponding complex
analytic set. Then, a morphism f : Y → X is finite etale if and only if its
analytification fan : Y an → Xan is finite and unramified. For detail, see [3,
XII].
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Without using terminology of schemes

You don’t need to be bothered with “schemes.” The scheme we are going
to deal with is only the projective line minus three points, defined over Q,
denoted by P1

0,1,∞� .
Its definition is

P1
0,1,∞� := SpecQ[t, 1/t, 1/(1 − t)].

Its set of complex points is

P1
0,1,∞�(C) := Hom�(SpecC,SpecQ[t, 1/t, 1/(1 − t)])

= Hom(Q[t, 1/t, 1/(1 − t)],C).

By looking at the image of t, the latter set is one to one with

C − {0, 1}.
This has a natural structure as a complex manifold, which is denoted by
P1

0,1,∞
an. What Example 1.10 asserts is that Y → P1

0,1,∞ is finite and étale
if and only if the corresponding map

Y an → P1
0,1,∞

an

is finite and unramified, in the classical sense.

1.6 Comparison theorem

Theorem 1.11. Let K ⊂ C be an algebraically closed field, and let X be a
connected scheme locally of finite type over K. Let x be a C-rational point
of X. Then, there is a (canonical) isomorphism

πalg
1 (X,x) ∼= π1(Xan, x)�.

Here, the left hand side is the algebraic fundamental group of X defined
in Definition 1.8. (The alg is to stress that it is algebraic fundamental group;
it may be omitted.) The right hand side is the profinite completion of
the classical topological fundamental group, see Example 1.6. The above
theorem is an immediate consequence of this example and the following

Theorem 1.12. Let K ⊂ C be an algebraically closed field, and let X be
a connected scheme locally of finite type over K. Then, the analytification
functor

Xet → {finite unramified topological coverings of Xan}
is a category equivalence.

11



This theorem ([3, XII, Th.5.1]) is called Grothendieck’s Riemann Exis-
tence Theorem, since it asserts that any finite unramified topological cover-
ing of Xan is the analytification of an algebraic covering of X.

Both categories are Galois categories, and by choosing a fiber functor
Fx, the category equivalence implies Theorem 1.11.

2 Algebraic fundamental group as Galois groups

2.1 Rephrase by Galois theory

We may state these definitions in terms of Galois groups. Let X be a
geometrically connected normal scheme of finite type over K ⊂ C. It suffices
to imagine X to be P1

0,1,∞� with K = Q. Let K(X) be the function field of

X (cf. K(P1
0,1,∞�) = Q(t)). Let X := X × K (cf. K(P1

0,1,∞�) = Q(t)). Let
M be the maximal algebraic extension of K(X) which is unramified (in the
algebraic sense) at every point on X. Then, we have a Galois extension

K(X) ⊂ K(X) ⊂ M

and a short exact sequence

1 → G(M/K(X)) → G(M/K(X)) → G(K(X)/K(X)) → 1.

Let x be a geometric point of X. Now, it is known that there are the
following isomorphisms:

G(M/K(X))
non canon.∼= πalg

1 (X,x) = π1(Xan, x)�,

G(M/K(X))
non canon.∼= π1(X,x),

G(K(X)/K(X))
canon.∼= G(K/K)

non canon.∼= πalg
1 (SpecK,x).

Thus, we have a short exact sequence

1 → πalg
1 (X,x) → πalg

1 (X,x) → πalg
1 (SpecK,x) → 1. (2)

A proof can be found in Proposition 8.2 in SGA1[3, V, P.143], but see the
following remark.

Remark 2.1. In the above, let us consider the functor

FM : Xet → {finite sets}, Y �→ HomK(X)(K(Y ),M).
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Then this can be proved to be a fiber functor (using that X is normal), and
it holds that

AutFM = G(M/K(X)),

and hence non-canonically

πalg
1 (X,x) ∼= π1(Xet, FM ) = G(M/K(X)).

Remark 2.2. It is easy to see that πalg
1 is a functor

{(X,x) : scheme with one geometric point} → {profinite groups}.
If there is a morphism f : (X,x) → (Y, y), then the pull-back functor

f∗ : Yet → Xet

satisfies Fy = Fx ◦ f∗, and hence

f∗ : πalg
1 (X,x) := Aut(Fx) → Aut(Fy) =: πalg

1 (Y, y).

2.2 Analytic continuation

We shall proceed in a different, a more concrete manner (but a little artificial,
and restrictions to C). Let K,X be as in the previous section. Let x ∈ X
be a C-rational point of X. Let Mx be the field of germs of meromorphic
functions around x on Xan. If Y → X is a finite etale covering, then
Y an → Xan is a finite unramified covering. A meromorphic function fY on
Y an may be regarded as a (finitely) multivalued function on Xan. If we fix
y ∈ Y an in the fiber above x ∈ X, then fY |y gives a germ of meromorphic
function around x, which can be analytically continuated to whole X but
as a multivalued meromorphic function.

We construct the maximal unramified extension Mx of K(X) in Mx as
follows. Let πY : Y → X be a finite etale covering. Then, an element h of
K(Y ) can be regarded as a meromorphic function on Y an, and by choosing
one y ∈ π−1

Y (x), we can regard h|y ∈ Mx. Thus, by choosing y, we have an
embedding

K(Y ) → Mx.

Let Mx be the union of the image of these embeddings, with (Y, y) varying.
Then, Mx is a maximal unramified extension of K(X). The analytic con-
tinuation of h|y along γ ∈ π1(Xan, x) gives another function γ(h|y) ∈ Mx,
which gives

π1(Xan, x) → G(Mx/K(X)). (3)
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This is (in general) not an isomorphism, but Theorem 1.12 says that for any
finite index normal subgroup N of the left hand side there is a corresponding
finite etale cover Y → X such that

π1(Xan, x)/N ∼= G(K(Y )/K(X)).

By passing to the projective limit we have

π1(Xan, x)� ∼= G(Mx/K(X)) = πalg
1 (X,x).

To justify the canonical isomorphism

πalg
1 (X,x) ∼= G(Mx/K(X)) (4)

we need to show that

1. The functor
F ′x : Y �→ HomK(X)(K(Y ),Mx)

is a fiber functor canonically isomorphic to Fx, with the correspon-
dence

y ∈ Fx(Y ) �→ (h �→ h|y). (5)

2. AutF ′x = G(Mx/K(X)).

It is immediate that

π1(Xan, x) → π1(X,x) = AutFx
∼= AutF ′x = G(M/K(X))

is given by the analytic continuation.
We leave it to the readers to show G(K(X)/K(X)) = G(K/K).

3 Galois representation on fundamental groups, as
monodromy

The short exact sequence (2) is considered to be an analogue to the fiber-
exact sequence of homotopy groups. That is, X → SpecK is a family, and
X is a fiber above SpecK → SpecK.

In topology, there is a notion of geometric monodromy on the fundamen-
tal group. Let F → B be a locally trivial fibration, b ∈ B be a point, and
x ∈ F a point over b. Then, there is an exact sequence

π1(Fb, x) → π1(F,x) → π1(B, b) → 1. (6)
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Suppose that the left most morphism is injective, so that this is a short exact
sequence by supplying 1 → at the left hand side. (This occurs if π2(B) = 1
or π1(Fb, x) is center free.)

For an element γ ∈ π1(B, b), we can consider the deformation of the fiber
Fb along γ. Then, it induces an automorphism of Fb, hence of π1(Fb, x), but
the base point x ∈ Fb may move along the deformation. This action is
well-defined upto the move of the base point, giving the outer monodromy
representation on π1 of the fiber:

ρ : π1(B, b) → Aut(π1(Fb, x))/Inn(π1(Fb, x)) =: Out(π1(Fb, x)). (7)

This can be stated purely group theoretically: take γ ∈ π1(B, b). Let it act
on α ∈ π1(Fb, x) as follows:

ρ(γ)(α) := γ̃ ◦ α ◦ γ̃−1,

where γ̃ is a lift of γ in π1(F,x), and α is considered to be an element of
π1(F,x) by inclusion. The right hand side depends on the lift γ̃, but any
other lift is of the form of βγ̃ for some β ∈ π1(Fb, x). Thus, ρ(γ) is well-
defined after taking modulo the inner automorphism of π1(Fb, x). This gives
the outer monodromy (7).

If we have a section s : B → F to F → B, then we have a canonical
choice of x := s(b) and γ̃ := the image in π1(B, b) → π1(F,x). Thus we have
a section to the short exact sequence (6), and hence (non-outer) monodromy
representation

ρ : π1(B, b) → Aut(π1(Fb, x)).

Because of the existence of the algebraic analogue (2) of the short exact
sequence (6), we have the outer Galois representation on πalg

1 :

ρX : GK = πalg
1 (SpecK) → Out(πalg

1 (X,x)) (8)

and if x is over a K-rational point x : SpecC → SpecK → X, then we have
a section to (2) and have the Galois representation on πalg

1 :

ρX,x : GK → Aut(πalg
1 (X,x)). (9)

An interesting observation is that GK is a mysterious group arizing from
the number theory: it is even difficult to describe any element except for the
complex conjugation, while Aut(πalg

1 (X,x)) is rather a combinatorial group:
in the case of P1

0,1,∞, it is Aut(F̂2) where F2 denotes the free group with two
generators.
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Such two different groups are closely intertwinned: Belyi [1] proved that
ρ�1

0,1,∞
is injective for K = Q. This implies the possibility that use of

combinatorial group theory on F̂2 may yield some interesting structure on
G� . We shall treat such examples in the following sections.

4 Computation of Galois actions

4.1 Taking a section

As explained in §2, we have a short exact sequence (2)

1 → πalg
1 (X,x) → πalg

1 (X,x) → πalg
1 (SpecK,x) → 1,

which is canonically isomorphic to

1 → G(Mx/K(X)) → G(Mx/K(X)) → G(K(X)/K(X)) → 1. (10)

If x is on a K-rational point, we have a section

sx∗ : GK = πalg
1 (SpecK,x) → πalg

1 (X,x),

and the monodromy representation

ρX,x : GK → Aut(πalg
1 (X,x)),

where
ρX,x(σ)(γ) = sx∗(σ)γsx∗(σ)−1

for σ ∈ GK and γ ∈ πalg
1 (X,x). So we need to know what is sx∗(σ) ∈

G(Mx/K(X)). For this, we need to return to the definition of the algebraic
fundamental group by fiber functors. For the K rational point x′ : SpecK →
X, we have functors

G : Xet → (SpecK)et, Y �→ Y ×X x′,

and

H : (SpecK)et → {finite sets}, SpecR �→ HomK(SpecK,SpecR),

satisfying
Fx = H ◦ G.

The section sx∗ is by definition

GK
∼= AutH → Aut(H ◦ G) = AutFx.
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The identification given in (4)

π1(X,x) = AutFx
∼= AutF ′x = G(Mx/K(X))

is through (5), which we need to make precise. Let OX,x ⊂ K(X) be the
meromorphic functions on X with no pole at x, and let Mfin

x be the integral
closure of OX,x in Mx. If g ∈ K(Y ) is embedded in Mfin

x by g �→ g|y , then
gy has no pole at x, and gy(x) ∈ K.

The identification of two fiber functors is given through

HomK(X)(K(Y ),Mx) ∼= HomOX,x
(OY,x,Mfin

x )
∼= HomOX,x

(OY,x,K) ∼= Homx(SpecK,Y ),

where OY,x is the integral closure of OX,x in K(Y ). Take an element α :
K(Y ) → Mx. The corresponding point of Y is given by

OY,x → K,h �→ α(h)(x) ∈ K.

An element σ ∈ GK acts on this point by

σ(α) : h �→ σ(α(h)(x)).

The corresponding element in HomK(X)(K(Y ),Mx), which should be de-
noted σ(α), is h �→ h′ where h′ is a unique conjugate of h with α(h′)(x) =
σ(α(h)(x)).

Thus, for g ∈ Mfin
x , σ(g) is defined as the unique conjugate g′ of g over

K(X) with g′(x) = σ(g(x)). This gives

sx∗ : GK → G(Mx/K(X)).

One way to compute sx∗ is by Taylor expansion. For this, choose a
set of local coordinate t1, . . . , tn ∈ mX,x. Then, any g ∈ Mfin

x can be
expanded as a convergent power series with coefficients in K. Let σ acts on
the coefficents of g, then we get a conjugate σ(g) of g over K(X). Because
g is a meromorphic function on Y , σ(g) is a meromorphic function on Y σ,
and since σ(x) = x we have σ(g) ∈ Mx. This gives the GK action on Mx,
and hence the section sx∗.

Tangential base point and Puiseux series

There is a notion of tangential base point. For simplicity, assume that X is
a curve, and X := X ′ − {z} where z is a K-rational point of X ′. Choose a
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local coordinate function t ∈ K(X), i.e., z is the zero of t with multplicity
one.

Choosing t is regarded as choosing a tangent vector at z. Consider t as a
meromorphic function on Xan. Then, the tangent vector is the one given by
an infinitesimal move of t from zero to positive real number ε. We denote by
(0, ε) the open line segment on X starting from t = 0 and ending at t = ε.
This inifinitesimally small line is called a tangential base point, which we
donote by 	t.

We define M�t as the germ of meromorphic functions around this in-
finitesimally small vector, i.e., meromorphic functions defined at an open
neibourhood of some (0, ε). Let M�t be the maximal unramified extension
of K(X) in M�t. (It coincides with those finitely multivalued meromorphic
functions on whole X, algebraic over K(X).)

Similarly to the previous case, we have by analytic continuation

π1(Xan, (0, ε)) → G(M�t/K(X))

and thus we define

π1(X,	t) := G(M�t/K(X)) ∼= π1(Xan, (0, ε))�,

and
π1(X,	t) := G(M�t/K(X)).

Then, we define the section

s�t∗ : G(K/K) → π1(X,	t) := G(M�t/K(X))
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as follows. Take an f ∈ M�t. Since f is finitely multivalued, for some N ∈ N

γN (f) = f holds for the path γ circling z counter clockwise. Let t1/N denotes
the function in M�t, whose N -th power is t and takes positive real values
on (0, ε). Then, f((t1/N)N ) is a monovalued function with variable t1/N ,
around z. This implies that there is a unique expansion

f((t1/N)N ) =
∞∑

i=−m

ai(ti/N ).

Let G(K/K) act on the coefficients ai:

s�t(σ)(f) =
∞∑

i=−m

σ(ai)(ti/N ).

This gives
s�t∗ : G(K/K) → π1(X,	t).

Note that this section depends on the choice of t: for example, 	t and 	2t are
different.

To justify this computation, we need to define a functor

	t : Xet → (SpecK)et.

I don’t know a good reference for this. A concrete description is given in [5].

Cyclotomic character

Here we explain one of the merits of tangential base points. Let γ ∈ π1(X,	t)
as above. We shall compute explicitly the Galois action

ρX,�t(σ)(γ)

for σ ∈ G(K/K), in the sense of (9). Since

ρX,�t(σ)(γ) = s�t(σ)(γ)s�t(σ)−1,

it suffices to let it act on f ∈ M�t. We see that

f =
∑

ait
i/N γ�→ γ(f) =

∑
aiζ

i
N ti/N ,

where ζN = exp(1πi/N) is one of the roots of unity. Now ρX,�t(σ)(γ) maps

f =
∑

ait
i/N σ−1�→

∑
σ−1(ai)ti/N

γ�→
∑

σ−1(ai)ζi
N ti/N

σ�→
∑

(ai)σ(ζi
N )ti/N .

19



Thus, the action of σ on γ is determined by the action on ζN .
Since the conjugates of ζN over K are (some of) ζmN

N , mN ∈ (Z/N)×,
we have

σ(ζN ) = ζ
χN (σ)
N

for some χN (σ) ∈ (Z/N)×. Thus, we have

χ : G(K/K) �→ Ẑ× = lim← (Z/N)×, σ �→ (χN (σ))(N ∈ N).

The χ is called the cyclotomic character. It is a surjection if K = Q, which
is equivalent to the irreducibility of cyclotomic polynomials.

Now we can write

ρX,�t(σ)(γ) = γχ(σ) (11)

The meaning of the right hand side is as follows. Let G = lim←Gλ be a
profinite group. Then, for any γ = (γλ) ∈ G and n̂ ∈ Ẑ, we can define γn̂ as
a system of (γnλ

λ ), where nλ is the image of n̂ in Z/Nλ with Nλ being the
order of γλ.

It is left to the readers to verify the equality (11). It suffices to let the
both sides act on various f .

4.2 Case of P1
0,1,∞

We consider the case where X = P1
0,1,∞, and t is the standard coordinate of

P1
0,1,∞. We denote

	01 := 	t.

So far we have used the letter x for the base point, but from now on we
use x, y, z to denote the elements in π1(P1

0,1,∞
an

, 	01) with x being a path
circling 0 counter-clockwise, y being a path going from 	01 to 1, circling 1
counter-clockwise, then return to 	01. We put z = (yx)−1, so that zyx = 1
holds.

We have

ρ �01 : G(Q/Q) → Aut(π1(P1
0,1,∞, 	01)) = Aut(F̂2),

and as seen in the previous section we have

ρ �01(σ)(x) = xχ(σ).

Since F̂2 is generated by x, y, it suffices to compute

ρ �01(σ)(y),
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but this is very difficult. One can show that

ρ �01(σ)(y) = fσ(x, y)−1yχ(σ)fσ(x, y)

for a (unique) element in the commutator subgroup of F̂2, fσ(x, y) ∈ [F̂2, F̂2].
This can be proved rather group theoretically, but in a more intrinsic

way in terms of groupoids.
Let Xan be a connected topological space, and let x, x′ be two points.

Then we define

π1(Xan;x, x′) := {paths from x to x′}/homotopy.

Such system is called a groupoid: a groupoid is a category, where every
objects are isomorphic and every arrows are invertible.

In the Galois category C, for two fiber functors Fx, Fx′ , we define

π1(X;Fx, F ′x) := Isom(Fx, F ′x).

In the example of P1
0,1,∞, let 	10 be another tangential basepoint specified

by 1 − t.
Then, the corresponding fiber functor F �10 is

Y �→ HomK(X)(K(Y ),M �10),

where M �10 is the germ of meromorphic functions around (1− ε, 1) similarly
to 	01. Then we have

π1(X; 	01, 	10) := IsomX(F �01, F �10) ∼= IsomK(X)(M �01,M �10).
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By analytic continuation, we have

π1(Xan; 	01, 	10) → IsomK(X)(M �01,M �10),

which becomes an isomorphism after taking the profinite completion of the
left hand side. The right hand side is denoted by π1(X; 	01, 	10).

Now, there is a unique path p from 	01 to 	10 on the real (0, 1) interval.
We identify it with the mapping

p ∈ IsomK(X)(M �01,M �10) = π1(X; 	01, 	10).

Now, there are two sections

s �01 : G(K/K) → Aut(M �10), s �10 : G(K/K) → Aut(M �01).

We define the action of σ ∈ G(K/K) on p by

σ(p) = s �10(σ) ◦ p ◦ s �01(σ)−1 ∈ π1(X; 	01, 	10).

Now, we put
fσ(x, y) := p−1 ◦ σ(p) ∈ π1(X, 	01).

Let γ10 be the path circling 1, starting from and ending at (1, 1 − ε). Then
since y = p−1 ◦ γ10 ◦ p, we have

ρ �01(σ)(y) = (s �01(σ)p−1s �10(σ)−1)(s �10(σ)γ10s �10(σ)−1)(s �10(σ)ps �01(σ)−1).

By
s �10(σ)ps �01(σ)−1 = pfσ(x, y)

and the symmetry
s �10(σ)γ10s �10(σ)−1 = γχ

10(σ),

we obtain
ρ �01(σ)(y) = fσ(x, y)−1yχ(σ)fσ(x, y).

To show fσ(x, y) ∈ [F̂2, F̂2], it is enough to show that fσ(x, y) trivially acts
on t1/N and (1 − t)1/N , since

F̂2/[F̂2, F̂2] ∼= G(M �01/K(X))ab = G(Q(t1/N , (1 − t)1/N |N ∈ N)/Q(t)).

This is easy:
p : t1/N ∈ M �01 �→ (1 − (1 − t))1/N ∈ M �10,

where the right hand side is expanded with respect to (1 − t). The key
is that the coefficients in the expansion are all in Q, and hence G� acts
trivially. Thus, s �10(σ)ps �01(σ)−1 acts in the same way with p on t1/N . Similar
conclusion can be deduced for (1 − t)1/N , so fσ(x, y) = p−1σpσ−1 trivially
acts on t1/N , (1 − t)1/N .
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5 Lie algebraization

Nonabelian groups such as the free profinite groups F̂2 are hard to deal with.
So, we try to approximate such groups by “linear algebra.” For a Lie group,
its linearization is its Lie algebra. There is a similar notion for arbitrary
groups, which is called Malcev completion. Roughly saying, we embed a
group G in a suitably completed ring K[G]�, and then take log(g) for g ∈ G
to obtain a Lie algebra.

5.1 Group rings (discrete case)

Let K be a field of characteristic zero (mostly K = Q or Q�, where l is a
fixed prime). We consider the group ring K[G], namely, the set of (finite)
linear combination of elements of G over K. There is an augumentation
map

ε : K[G] → K

obtained by summing the coefficients. Its kernel is called the augumentation
ideal

I := Ker(ε) = the ideal generated by g − 1, g ∈ G.

We consider
K[G]� := lim←,n

K[G]/In.

The closure of the image of I in K[G]� is denoted by I�. By taking I�
n as

a neighborhood of 0, K[G]� is a topological ring.
Let us define the so-called coproduct

∆ : K[G] → K[G] ⊗K K[G], g �→ g ⊗ g

by the linear extension, and then extend it continuously to

∆ : K[G]� → K[G]�⊗̂KK[G]�.

We define the set of group-like elements

G := {x ∈ K[G]�|∆(x) = x ⊗ x, x ≡ 1 mod I�}.
It cotains the image of G in K[G]̂ , and is called the Malcev completion of
G over K.

There is the logarithm map

log : (1 + I) → I, 1 + u �→
∞∑

n=1

(−1)n−1

n
un
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and the exponential map

exp : I → (1 + I), u �→
∞∑

n=0

1
n!

un,

which are mutually inverse. Then, the image of the group-like elements by
the logaritmic map satisfies

L := log(G) = {x ∈ I|∆(x) = 1 ⊗ x + x ⊗ 1, }
which are called the Lie-like elements. (These follow from the theory of Hopf
algebras.)

It is not difficult to show that G is a group (by the product of the
group algebra) and L is a Lie algebra (by the commutator product [X,Y ] :=
XY − Y X). They have natural filterations

In(G) = G ∩ (1 + In), In(L) = L ∩ In

preserved by log, exp.
This construction is functorial. In particular, an automorphism of G

induces an automorphism of G as group and an automorphism of L as a Lie
algebra.

The functor G �→ G may lose a lot of information, depending on G.
However, if G is a free group Fn with generators x1, . . . , xn, then

K[Fn]� ∼= K << u1, u2, . . . , un >>

(non-commutative associative formal power series ring, where ui = log(xi))
and

L ∼= completed free Lie algebra with generators ui.

5.2 Group rings (pro-� case)

Let � be a fixed prime number. A finite group is an � group if its order is a
power of �, and a pro-� group is a profinite group that is a projective limit
of �-groups. Pro-� completion of a discrete group G is defined by

G(�) := lim← G/N,

where N runs over normal subgroups with finite index of an �-power. There
is a surjective homomorphism

G� → G(�),
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which is functorial. Hence, we have a pro-� version of (9):

ρ
(�)
X,x : GK → Aut(π(�)

1 (X,x)).

Let G be a pro-� group. A good pro-� analogue of K[G]� in the previous
section is the completed group algebra

Z�[[G]] := lim← Z�[G/N ],

where N runs over open normal (hence index being � power) subgroups.
We have the augumentation

ε : Z�[[G]] → Z�,

and if G = F
(�)
n then

Z� << ξ1, . . . , ξn >>∼= Z�[[G]]

where ξi �→ xi − 1.
We can define Q�[[G]] and ∆ in the same way, and we have continuous

Malcev completion of G and its Lie algebra

G → G ⊂ Q�[[G]]×, L ⊂ Q�[[G]].

If G is free pro-� group of rank n, then L is a completed free Lie algebra
with n generators.

5.3 Lie Algebraization of Galois representation

Apply the above to the pro-� completion F
(�)
2 of F�

2 = π1(P1
0,1,∞, 	01). Then

we have
ρ : G� → AutQ� << ξ, η >>→ AutL

where x, y ∈ F̂2 are mapped to exp(ξ), exp(η) in Q� << ξ, η >>, and L is
the free Lie algebra of two generators ξ, η.

6 Soulé’s cocycle

Let G be a group, K a field, and

0 → A → E → K → 0
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be a short exact sequence of K-vector spaces with G-actions (the right K
has trivial G-action). To this short exact sequence, we have a corresponding
cohomology class

[E] ∈ H1(G,A),

as follows. Let take an arbitrary section as K-vector space, i.e., an element
e ∈ E which is mapped to 1 ∈ K, then define the function

f : G → A, σ �→ f(σ) = σ(e) − e.

This satisfies the cocycle condition

f(στ) = f(σ) + σf(τ),

and hence defines a class [E] in H1(G,A). The ambiguity of the choice of e
is absorbed in coboundary.

There is a topological version of this: if G is a topological group, K a
topological field and G-actions are continuous, then we consider the contin-
uous cocycles to define H1(G,A).

Let G� := G(Qur,�/Q) be the Galois group of the maximal extension
Qur,� of Q unramified outside the prime �. It is proved by Ihara [4] (but it
also follows from the smooth and proper base change theorem in [3]) that
the pro-� representation obtained from P1

0,1,∞

ρ(�) : G� → AutF (�)
2

is unramified outside �, so F
(�)
2 is a G�-module. The �-part of the cyclotomic

character χ:
χ� : G� → Ẑ× → Z�

×

factors through G�. This is called the �-adic cyclotomic character χ� : G� →
Z�
×.
Soulé [7] proved that

H1(G�, Z�(m)) ∼= Z�( if m > 0 is odd),∼= 0( if m > 0 is even).

Here, Z�(m) is so-called Tate twist: it is isomorphic to Z� as an abelian
group, but σ ∈ G� acts by multiplication by the m-th power of �-adic cyclo-
tomic character, χ�(σ)m.

Soulé gave a concrete construction of a cocycle

χm : G� → Z�(m)
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for every odd m, which we omit here. Anyway, this implies that there exists
a nontrivial extension

0 → Z�(m) → Em → Z� → 0,

and any other such extension is obtained by multiplying an elment of Z�.
Returning to the Galois representation, we have an extension of G�-

modules

0 → L′/[L′,L′] → L/[L′,L′] → L/[L,L] → 0, (12)

where L is completed free Lie algebra with two generators ξ, η and L′ is its
commutator. By a direct computation, we have

L/[L,L] = Q�ξ̄ ⊕ Q�η̄ ∼= Q�(1) ⊕ Q�(1),

and

L′/[L′,L′] = Q�[ξ, η]⊕Q�[ξ, [ξ, η]]⊕Q�[η, [ξ, η]]⊕ · · · ,∼= Q�[[ξ, η]]⊗��
Q�(2),

where Q�(2) is the module generated by [ξ, η] and Q�[[ξ, η]] ∼= ⊕
n Q�(n)n+1.

Now (12) is an extension of the form

0 → (
⊕

n

Q�(n)n+1) ⊗ Q�(2) → E → Q�(1) ⊕ Q�(1) → 0,

but we have a sub G�-module Q�ξ ∈ E which we can be divided out. Then
we have

0 → (
⊕

n

Q�(n)n+1) ⊗ Q�(2) → E/(Q�ξ) → Q�(1) → 0

where the right Q�(1) is spanned by η̄. By tensoring Q�(−1), we have an
extension

0 → (
⊕

n

Q�(n)n+1) ⊗ Q�(1) → E/(Q�ξ)(−1) → Q�(0) → 0, (13)

hence a cohomology class

Π ∈ H1(G�,
⊕

n

Q�(n + 1)n+1) ∼=
⊕

n

H1(G�, Q�(n + 1))n+1.

Here, the right Q�(0) in (13) is spanned by

η̄ ⊗ 1(−1) ∈ L/L′ ⊗ Q�(−1),
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where 1(−1) denotes the 1 in Q�(−1).
Anderson, Coleman, and Ihara proved that this cohomology class is a

nonzero constant multiple of Soulé’s cocycle χn+1 for n ≥ 2 is even, which
means that the pro-� fundamental group F

(�)
2 has a rich structure as a G�-

module.
More precise statement is as follows. For σ ∈ G� , the Galois action on

F
(�)
2 is given by

x �→ xχ�(σ), y �→ f−1
σ yχ�(σ)fσ,

as in the previous sections (here fσ denotes its image in F
(�)
2 , by abuse of

the notation: it should have been written as f
(�)
σ ). By taking log, the action

of σ on the Lie algebra L is given by

ξ = log x �→ χ�(σ)ξ, η �→ χ�(σ)f−1
σ ηfσ.

If we denote
Fσ := − log(fσ),

then by Baker-Campel-Hausdorff formula we have

f−1
σ ηfσ = η + [Fσ , η] + 1/2[Fσ , [Fσ , η]] + · · ·

= exp(ad(Fσ))(η).

Now, the cocycle corresponding to the section η̄ ⊗ 1(−1) �→ η ⊗ 1(−1) in (13)
is σ(η ⊗ 1(−1)) − η ⊗ 1(−1). In this extension, we took modulo [L′,L′], so
[Fσ , [Fσ , η]] etc. is neglected.

Thus, the corresponding cocycle Π to (13) is given by

σ �→ [Fσ , η]⊗1(−1) ≡
∑
n

∑
i+j=n+1

ci,j(σ)ad(ξ)iad(η)j [ξ, η]⊗1(−1) mod [L′,L′]⊗1(−1),

where ci,j is a cocycle whose class consequently lies in

[ci,j(σ)] ∈ H1(G�, Q�(i + j)).

Anderson, Coleman and Ihara proved that

ci,j(σ) =
1

(i!j!)(�i+j−1 − 1)
χi+j(σ),

where χi+j is Soulé’s cocycle.
The original proofs by Anderson, Coleman, or Ihara are not so straight

forward. However, at least for ci,0(σ), Nakamura and Wojtkowiak [6] gave
a direct computational proof of the above formula.
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Open questions

A moderate open question: is it possible to obtain ci,j(σ) for j �= 0, in terms
of a direct computation?

A little more ambitious: is it possible to obtain some formulae for other
coefficients of Fσ not taking modulo [L′,L′]?
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