Differences between Galois representations in outer-automorphisms of π_1 and those in automorphisms, implied by topology of moduli spaces

Makoto Matsumoto, Université de Tokyo

2010/5/12, au Séminaire de Géométrie Arithmétique PARIS-TOKYO.

email: matumoto "marque 'at' "ms.u-tokyo.ac.jp

This study is supported in part by JSPS Grant-In-Aid #19204002, and JSPS Core-to-Core Program No.18005. Thanks to Richard Hain for essential mathematical ingredient.

- Recall the monodromy representation on π_1 of curves.
- Galois monodromy often contains geometric monodromy.
- Using this connection, obtain implications from topology to Galois monodromy.

- **1. Monodromy on** π_1 **.**
- K: a field $\subset \overline{K} \subset \mathbb{C}$.
- A family of (g, n)-curves $C \to B$: $\stackrel{def}{\Leftrightarrow}$
 - B: smooth noetherian geometrically connected scheme/ K. $F^{cpt}: C^{cpt} \to B$: proper smooth family of genus g curves (with geometrically connected fibers).
 - $s_i: B \to C^{cpt} \ (1 \le i \le n)$ disjoint sections,
 - $F: C \to B$: complement $C^{cpt} \setminus \cup s_i(B) \to B$.
- We assume hyperbolicity 2g 2 + n > 0.
- $\Pi_{g,n}$: (classical) fundamental group of *n*-punctured genus gRiemann surface (referred to as *surface group*)
- $\Pi_{g,n}^{\wedge}$, $\Pi_{g,n}^{(\ell)}$: its profinite, resp. pro- ℓ , completion.

$$\begin{array}{c} \bar{x} \\ \downarrow \\ C_{\bar{b}} \rightarrow C \\ \downarrow \Box \downarrow \\ \bar{b} \rightarrow B \end{array}$$

 \bar{b}, \bar{x} : (geometric) base points.

Gives a short exact sequence of arithmetic(=etale) π_1 :

$$1 \to \pi_1(C_{\overline{b}}, \overline{x}) \to \pi_1(C, \overline{x}) \to \pi_1(B, \overline{b}) \to 1$$

$$1 \to \pi_1(C_{\bar{b}}, \bar{x}) \to \pi_1(C, \bar{x}) \to \pi_1(B, \bar{b}) \to 1$$

$$||_{GAGA}$$

$$\Pi_{g,n}^{\wedge}$$

$$1 \to \pi_1(C_{\overline{b}}, \overline{x}) \to \pi_1(C, \overline{x}) \to \pi_1(B, \overline{b}) \to 1$$
$$||_{\Pi_{g,n}^{\wedge}}$$

$$1 \to \pi_1(C_{\bar{b}}, \bar{x}) \to \pi_1(C, \bar{x}) \to \pi_1(B, \bar{b}) \to 1$$
$$||_{\Pi_{g,n}^{\wedge}}$$

$$1 \to \pi_1(C_{\overline{b}}, \overline{x}) \to \pi_1(C, \overline{x}) \to \pi_1(B, \overline{b}) \to 1$$
$$||_{\Pi_{g,n}^{\wedge}}$$

- 2. Universal monodromy. Grothendieck, Takayuki Oda, ...
 - $\mathcal{M}_{g,n}$: the moduli stack of (g, n)-curves over \mathbb{Q} .

• $\mathcal{C}_{g,n} \to \mathcal{M}_{g,n}$ be the universal family of (g, n)-curves.

Applying the previous construction, we have:

This representation is universal, since any (g, n)-family $C \to B$ has classifying morphism,

$$\begin{array}{ccc} C \to & \mathcal{C}_{g,n} \\ \downarrow & \Box & \downarrow \\ B \to & \mathcal{M}_{g,n}, \end{array}$$

- 2. Universal monodromy. Grothendieck, Takayuki Oda, \dots
 - $\mathcal{M}_{g,n}$: the moduli stack of (g, n)-curves over \mathbb{Q} .

• $\mathcal{C}_{g,n} \to \mathcal{M}_{g,n}$ be the universal family of (g, n)-curves.

Applying the previous construction, we have:

This representation is universal, since any (g, n)-family $C \to B$ has classifying morphism, choose \overline{b} ,

$$\begin{array}{cccc} C_{\overline{b}} \to C \to & \mathcal{C}_{g,n} \\ \downarrow & \Box & \downarrow & \Box & \downarrow \\ \overline{b} \to B \to & \mathcal{M}_{g,n}, \end{array}$$

then universality as follows.

where the vertical composition is $\rho_{A,C,x}$ (middle), $\rho_{O,C}$ (right). In particular, if $C \to B = b = \operatorname{Spec} K$, we have

$$\rho_{O,C}: G_K = \pi_1(b, \overline{b}) \to \pi_1(\mathcal{M}_{g,n}/K, \overline{b}) \stackrel{\rho_{O,univ}}{\to} \operatorname{Out} \Pi_{g,n}^{(\ell)}$$

and hence

$$\rho_{O,C}(G_K) \subset \rho_{O,univ}(\pi_1(\mathcal{M}_{g,n}/K)) \subset \operatorname{Out} \Pi_{g,n}^{(\ell)}.$$

Definition If the equality holds for the left inclusion, the curve $C \rightarrow b$ is called *monodromically full*.

Theorem (Tamagawa-M, 2000) The set of closed points in $\mathcal{M}_{g,n}$ corresponding to monodromically full curves is infinite, and dense in $\mathcal{M}_{q,n}(\mathbb{C})$ with respect to the complex topology.

Remark As usual, the π_1 of $\mathcal{M}_{g,n}$ is an extension

$$1 \to \pi_1(\mathcal{M}_{g,n} \otimes \overline{\mathbb{Q}}) \to \pi_1(\mathcal{M}_{g,n}) \to G_{\mathbb{Q}} \to 1.$$

The left hand side is isomorphic to the profinite completion of the mapping class group $\Gamma_{g,n}$. (Topologists studied a lot.) Monodromically full \Leftrightarrow Galois image contains $\Gamma_{g,n}$.

Scketch of Proof of Theorem goes back to Serre, Terasoma, ... Hilbert's irreducibility + almost pro- ℓ ness.

Proposition If P is a finitely generated pro- ℓ group, then take $H := [P, P]P^{\ell} \triangleleft P$. Then P/H is a finite group (flattini quotient).

If a morphism of profinite groups $\Gamma \to P$ is surjective modulo H, namely

$$\Gamma \to P \to P/H$$

is surjective, then $\Gamma \to P$ is surjective.

Definition A profinite group G is almost $pro-\ell$ if it has a pro- ℓ open subgroup P.

Corollary Suppose in addition G is finitely generated. Put $H := [P, P]P^{\ell}$. Then $[G : H] < \infty$. If $\Gamma \to G \to G/H$ is surjective, so is $\Gamma \to G$. **Claim** $C \to B$ be a family of (g, n)-curves over a smooth variety B over a NF K. Then the image of

$$\pi_1(B) \to \operatorname{Out} \Pi_{g,n}^{(\ell)}$$

is a finitely generated almost pro- ℓ group.

- $Out(fin.gen.pro-\ell)$ is almost $pro-\ell$.
- \bullet a closed subgroup of almost pro- ℓ group is again so.
- finitely generatedness: $\pi_1(B \otimes \overline{K})$ is finitely generated. G_K not. But take $L \supset K$ so that $C(L) \neq \emptyset$ and $G_L \rightarrow \text{Out } \Pi^{(\ell)}$ has pro- ℓ image. Only finite number of places of O_L ramifies, and class field theory tells that $\text{Im}(G_L)$ has finite flattini quotient.

Corollary $\exists H < \operatorname{Im}(\pi_1(B))$ such that $\Gamma \twoheadrightarrow \operatorname{Im}(\pi_1(B))/H$ implies $\Gamma \twoheadrightarrow \operatorname{Im}(\pi_1(B)).$ **Corollary** Take a subgroup the above H for the image of $\pi_1(B)$. H' the inverse image in $\pi_1(B)$. Let $B' \to B$ be the etale cover corresponding to H'. If $b \in B$ has a connected fiber (i.e. one point) in B', Then the composition

$$G_{k(b)} \to \operatorname{Im}(\pi_1(B)) \to \operatorname{Im}(\pi_1(B))/H$$

is surjective, hence the left arrow is surjective.

Last Claim

Existence of many such b follows from Hilbertian property: Take a quasi finite dominating rath map $B \to \mathbb{P}_K^{\dim B}$. Apply Hilbertian property to $B' \to B \to \mathbb{P}_K^{\dim B}$. **3.** Aut and Out. Again consider $C \to b = \operatorname{Spec} K$. Take a closed point x in C, and \overline{x} a geometric point. This yields

Vertical composition gives

$$\rho_{A,x}: G_{k(x)} \to \operatorname{Aut} \Pi_{g,n}^{(\ell)}$$

$$\cap \qquad \downarrow$$

$$\rho_{O}: \quad G_{K} \to \operatorname{Out} \Pi_{g,n}^{(\ell)}$$

Question: Is the map $AO(C, x) : \rho_{A,x}(G_{k(x)}) \to \rho_O(G_K)$ injective? (Do we lose information in Aut \to Out?)

Definition

I(C, x) := the statement "AO(C, x) is injective."

Remark If $C = \mathbb{P}^1 - \{0, 1, \infty\}/\mathbb{Q}$ and x is a canonical tangential base point, then AO(C, x) is an isom (hence I(C, x) holds: Belyi, Ihara, Deligne, 80's).

Main Theorem (M, 2009) Suppose $g \geq 3$ and ℓ divides 2g-2. Let $C \to \operatorname{Spec} K$ be a monodromically full (g, 0)-curve $([K:\mathbb{Q}] < \infty)$.

Then, for every closed point x in C such that $\ell \not| [k(x) : K]$, I(C, x) does not hold.

In this case, the kernel of AO(C, x) is infinite.

A topological result.

Proof reduces to a topological result.

 $\Gamma_{g,n} := \pi_1^{orb}(\mathcal{M}_{g,n}^{an}).$ $\Gamma_g := \Gamma_{g,0}, \ \Pi_{g,0} = \Pi_g.$ Topological version of universal family yields

$$1 \to \Pi_g \to \Gamma_{g,1} \to \Gamma_g \to 1$$

and by putting $H := \Pi_g^{ab} =: \Pi_g / \Pi'_g$
$$1 \to H \to \Gamma_{g,1} / \Pi'_g \to \Gamma_g \to 1$$

Theorem (S. Morita 98, Hain-Reed 00). Let $g \geq 3$. The cohomology class of the above extension

$$[e] \in H^2(\Gamma_g, H)$$

has the order 2g - 2.

Proof of Main Theorem. Suppose $\ell | (2g - 2), x \in C$ with $\ell \not| [k(x) : K]$. Suppose I(C, x), namely the image of $G_{k(x)}$ in the middle

$$G_{k(x)} \to \operatorname{Aut} \Pi_g^{(\ell)} \to \operatorname{Out} \Pi_g^{(\ell)}$$

is same with the image in the third. Let S be this image. This gives a restricted section from S to the middle group:

By taking the quotient by the commutator $\Pi_g^{(\ell)'}$, we have the top short exact sequence in the following:

The middle row is the pullback along $\Gamma_g \to \text{Im}(\rho_{O,univ})$. The bottom row is the classic topological one.

Let $[e_{univ}] \mapsto [e_{\ell}] \leftarrow [e]$ be the corresponding elements in

$$H^2(\operatorname{Im} \rho_{O,univ}, H^{(\ell)}) \to H^2(\Gamma_g, H^{(\ell)}) \leftarrow H^2(\Gamma_g, H).$$

order: (a multiple of ℓ^{ν} or ∞), ℓ^{ν} , 2g-2, resp., where $\ell^{\nu}||2g-2$.

By assuming I(C, x), a section restricted to S exists for

$$1 \to H^{(\ell)} \to \operatorname{Im} \rho_{A,univ,x} / \Pi^{(\ell)\prime} \to \operatorname{Im} \rho_{O,univ} \to 1.$$

 \mathcal{O}

Now monodromically fullness implies

$$\operatorname{Im} \rho_{O,univ} = \rho_{O,C}(G_K),$$

and $S = \rho_{O,C}(G_{k(x)})$ is a finite index subgroup with index dividing [k(x) : K], hence coprime to ℓ . This implies that the restriction of $[e_{univ}]$ by

$$H^2(\operatorname{Im} \rho_{O,univ}, H^{(\ell)}) \to H^2(S, H^{(\ell)})$$

does not vanish, hence there should be no restricted section from S, a contradiction.

Remark Recently Yuichiro Hoshi (RIMS) proved

- For any (g, n)-curve C over number field, $\exists \infty$ -many closed points x such that I(C, x) does not hold.
- There are examples where I(C, x) holds for (not tangential, usual) closed point x for proper / affine curves.

THIS IS THE END : Thank you for listening