Non-free-periodicity of Amphicheiral Hyperbolic Knots

Makoto Sakuma

A knot K in the 3-sphere S^3 is said to have free period n if there is an orientation-preserving homeomorphism f on S^3 such that

1. $f(K)=K$,
2. f is a periodic map of period n,
3. $\text{Fix}(f^i)=\emptyset$ ($1 \leq i \leq n-1$).

Hartley [3] has given very effective methods for determining the free periods of a knot, and has identified the free periods of all prime knots with 10 crossings or less with eight exceptions. Since then, Boileau [1] has calculated the symmetry groups of the "large" Montesinos knots, and has shown that four of the rest have no free periods. The remaining knots are 8_{10}, 8_{23}, 10_{98} and 10_{123} (cf. [5]). By Hartley-Kawauchi [4], 10_{98} and 10_{123} are the only prime knots with 10 crossings or less which are strongly positive amphicheiral. Moreover, it follows from the Theorem of [4] that the polynomial condition given by [3] (Theorem 1.2) does not work for determining whether a strongly positive amphicheiral knot has free period 2 or not.

The purpose of this paper is to prove the following theorem:

Theorem. Any amphicheiral hyperbolic knot has no free periods.

In particular, 10_{98} and 10_{123} have no free periods. A circumstantial evidence for this theorem is given by the non-trivial torus knots, which have infinitely many free periods and are not amphicheiral.

§ 1. Some lemmas

Let K be a knot in S^3 which has free period n, and f be a periodic map on S^3 realizing the free period n. Let N be an equivariant tubular neighbourhood of K and put $E=S^3-N$.

Lemma 1. K does not have an f-invariant longitude curve. That is, $f(l) \neq l$, for any simple loop l in ∂N such that $l \sim K$ in $H_1(N)$ and $l \sim 0$ in $H_1(E)$.

Received January 7, 1985.
Proof. See [2] p. 180, where this lemma is proved for the case \(n = 2 \). The same argument works even if \(n \geq 3 \).

Lemma 2. Suppose that \(K \) is a hyperbolic knot. Then the restriction of \(f \) to \(\hat{E} \) is equivalent to an isometry.

Proof. Put \(E' = E/f \). Then \(E' \) is a compact manifold with \(\partial E' \cong T^2 \), and \(E' \) is irreducible since \(E \) is so. We show that \(E' \) is homotopically atroidal (cf. [6, 14]). Suppose that \(E' \) is not homotopically atroidal. Then, by the torus theorem (see [6] p. 156), either \(E' \) is a special Seifert fibered space or there is an essential embedding of \(T^2 \) in \(E' \). Since \(E \) is hyperbolic, \(E' \) cannot be a Seifert fibered space. So there is an essential torus \(T \) in \(E' \). Then the lift \(\hat{T} \) of \(T \) in \(E \) is an incompressible torus in \(E \). Since \(E \) is hyperbolic, \(\hat{T} \) is boundary parallel, that is, there is a submanifold \(Q \) of \(E \), such that \(Q \cong T^2 \times I \) and \(\partial Q = \partial E' \cup \hat{T} \). \(Q \) is \(f \)-invariant, and \(Q/f \) forms a submanifold of \(E' \) which is homeomorphic to \(T^2 \times I \) with \(\partial(Q/f) = \partial E' \cup T \); this is a contradiction. Hence \(E' \) is homotopically atroidal. Thus, by Thurston [14], \(\hat{E}' \) admits a hyperbolic structure, and therefore, \(\hat{E} \) admits a hyperbolic structure with respect to which \(f \) is an isometry.

Lemma 3. Suppose that \((S^3, K) \) admits an action of \(Z_2 + Z_2 \cong \langle f \mid f^2 = 1 \rangle + \langle \tau \mid \tau^2 = 1 \rangle \), such that

1. \(f \) is an orientation-preserving free involution,
2. \(\tau \) reverses the orientation of \(S^3 \).

Then \(K \) is a trivial knot or a composite knot.

Proof. By Livesay [8], \(S^3/f \) is homeomorphic to the 3-dimensional projective space \(P^1 \). Since \(f \) and \(\tau \) are commutative, \(\tau \) induces an orientation reversing involution \(\hat{\tau} \) on \(P^3 \). Then, by Kwon [7], \(\text{Fix}(\hat{\tau}) \) is a disjoint union of \(P^2 \) and \(P^0 \). Let \(x \) be a point of \(P^2 \subset \text{Fix}(\hat{\tau}) \) and let \(\hat{x} \) be a lift of \(x \) in \(S^3 \). Let \(\hat{\tau}' : S^3 \to S^3 \) be the lift of \(\hat{\tau} \) such that \(\hat{\tau}'(\hat{x}) = \hat{x} \). Then \(\text{Fix}(\hat{\tau}') \) contains the inverse image of \(P^3 \), which is homeomorphic to a 2-sphere. Thus \(\hat{\tau}' \) is a reflection along a 2-sphere. Since \(\hat{\tau}' \) is equal to \(\hat{\tau} \) or \(f\hat{\tau}, \hat{\tau}' \) preserves the knot \(K \). Hence \(K \) must be a trivial knot or a composite knot.

§ 2. Proof of Theorem

Let \(K \) be a hyperbolic knot. Then the knot group \(G = \pi_1(E) \) is identified with a discrete subgroup of Isom \(H^3 \), the isometry group of the 3-dimensional hyperbolic space \(H^3 \), and \(\hat{E} \) is identified with \(H^3/G \). We use the upper-half space model \(H^3 = \mathbb{C} \times (0, +\infty) \), and identify Isom \(H^3 \)
with \(P\Gamma L(C) \), the group of all conformal or anti-conformal mappings of the Riemann sphere \(C \cup \{\infty\} \), which is identified with the sphere at infinity of \(H^3 \). Then the orientation-preserving isometry group \(\text{Isom}^+ H^3 \) is identified with \(PSL(C) \), the group of all Möbius transformations. Let \(A \) be the normalizer of \(G \) in \(P\Gamma L(C) \). Then, by Mostow's rigidity theorem (cf. [14]), the automorphism group \(\text{Aut}(G) \) of \(G \) is identified with \(A \), and \(\text{Isom} \hat{E} \cong \text{Out}(G) \) is identified with \(A/G \). Here, an element \(\alpha \in A \) represents the element of \(\text{Aut}(G) \) which sends \(x (\in G) \) to \(\alpha x \alpha^{-1} \). Let \(P \) be the peripheral subgroup of \(G \) generated by a longitude \(l \) and a meridian \(m \). Since \(P \cong \mathbb{Z} + \mathbb{Z} \), we may assume that \(l \) and \(m \) are identified with the Möbius transformations \(l(z) = z + \lambda \) and \(m(z) = z + 1 \) respectively, where \(\lambda \) is a complex number with \(\text{Im}(\lambda) \neq 0 \). Then, as isometries of \(H^3 \), we have \(l(z, t) = (z + \lambda, t) \) and \(m(z, t) = (z + 1, t) \), and an end of \(\hat{E} \) is obtained from \(C \times [t_0, +\infty) \) by identifying each set \((z + Z\lambda + Z1, t) \) with a point, where \(t_0 \) is a sufficiently large number. Let \(A_\omega \) be the subgroup of \(A (= \text{Aut}(G)) \) consisting of those elements which preserve \(P \). Noting that any automorphism of \(G \) preserves the subgroups \(P \) and \(\langle l \rangle \) up to a conjugation, Riley observed the following (see Section 1 of [11]).

Lemma 4.
1. \(\text{Isom} \hat{E} \cong A_\omega/P \).
2. Any element \(\psi \) of \(A_\omega \) is of one of the following types.
 1. \(\psi(z) = z + c \ (c \in C) \),
 2. \(\psi(z) = -z + c \ (c \in C) \),
 3. \(\psi(z) = \epsilon z + c \ (|\epsilon| = 1, c \in C) \).
3. \(K \) is amphicheiral, iff there is an element of \(A_\omega \) which is of type (ii) with \(\epsilon = \pm 1 \), and \(\lambda \) is a purely imaginary number.

Remark 5. Let \(A_\omega^* \) be the subgroup of \(A_\omega \) which consists of type (i) elements. Then \(A_\omega^* \) is a normal subgroup of \(A_\omega \); in particular, if \(\psi(z) = z + c \) and \(\xi(z) = \epsilon z + c' \ (\epsilon = \pm 1) \), then \(\xi \psi \xi^{-1}(z) = z + \epsilon c \).

Put \(\text{Isom}^* \hat{E} = A_\omega^*/P \). Then, by Smith conjecture [9], we have the following (cf. [10] p. 124, [12] Lemma 3.3).

Lemma 6. \(\text{Isom}^* \hat{E} \) is a normal subgroup of \(\text{Isom} \hat{E} \) (of index at most 4), and is isomorphic to a finite cyclic group.

The proof of the Theorem is divided into two assertions.

Assertion I. The Theorem is true for free period \(n \geq 3 \).

Proof. Suppose that \(K \) is hyperbolic, amphicheiral, and has free period \(n \geq 3 \). By Lemma 2, there is an isometry \(f \) of \(\hat{E} \) which realizes the free period \(n \). Let \(\psi \) be an element of \(A_\omega \) representing \(f \) (cf. Lemma 4).
Since \(f \) preserves a longitude and a meridian homologically, \(\psi \) is of type (i); so \(\psi(z) = z + c \) for some \(c \in \mathbb{C} \). Since \(f \) has period \(n \), \(c = (p\lambda + qI)/n \) for some integers \(p \) and \(q \).

Lemma 7. The greatest common divisors \((p, n)\) and \((q, n)\) are equal to 1.

Proof. Put \(r = n/(p, n) \). Then

\[
\psi^r(z) = z + (p\lambda + qI)/(p, n)
= l^r(p, n)(z) + qI/(p, n).
\]

Thus the isometry \(f^r \) has an invariant meridian curve. (Recall the structure of an end of \(E \).) By Smith conjecture \([9]\), we have \(f^r = \text{id} \) and therefore \((p, n) = 1\). Put \(s = n/(q, n) \). Then

\[
\psi^s(z) = z + (p\lambda + qI)/(q, n)
= m^s/(q, n)(z) + p\lambda/(q, n).
\]

Thus the isometry \(f^s \) has an invariant longitude curve. So, by Lemma 1, we have \(f^s = \text{id} \), and therefore \((q, n) = 1\).

Since \(K \) is amphicheiral, \(\lambda \) is a purely imaginary number, and \(\hat{E} \) admits an orientation-reversing isometry \(\tau \), which is represented by an element \(\xi \) of \(A_\infty \) such that \(\xi(z) = \varepsilon z + b \) (\(\varepsilon = \pm 1 \), \(b \in \mathbb{C} \)) (see Lemma 4). By remark 5,

\[
\xi \psi \xi^{-1}(z) = z + \varepsilon(p\lambda + qI)/n
= z + \varepsilon(-p\lambda + qI)/n.
\]

By Lemma 6, there is an integer \(r \) (\(0 \leq r \leq n - 1 \)) such that \(\tau f \tau^{-1} = f^r \), that is, \(\xi \psi \xi^{-1} \equiv \psi^r \text{ mod } P \). Hence we have

\[
e(-p\lambda + qI)/n \equiv r(p\lambda + qI)/n \text{ mod } \{\lambda, 1\}.
\]

This is equivalent to

\[
\begin{cases}
-ep \equiv rp \mod n \\
eq \equiv rq \mod n.
\end{cases}
\]

Since \((p, n) = (q, n) = 1\) by Lemma 7, we have

\[-\varepsilon \equiv r \equiv \varepsilon \mod n.
\]

This is a contradiction, since \(n \geq 3 \). Thus Assertion I is proved.
Amphicheiral Hyperbolic Knots

Assertion II. *The Theorem is true for free period 2.*

Proof. Assume that K is hyperbolic, amphicheiral, and has free period 2. Then $\text{Isom}^*\hat{E}$ is a cyclic group of order $2n$ ($n \in \mathbb{N}$), and the free period 2 is realized by the isometry $f = f_0^\varepsilon$, where f_0 is a generator of $\text{Isom}^*\hat{E}$. Let ψ_0 be an element of A_∞ representing f_0. Then by an argument similar to the proof of Lemma 7, we can see that $\psi_0(z) = z + (p\lambda + q1)/2n$, where p is an integer such that $(p, 2n) = 1$ and q is an odd integer. Let ξ be an element of A_∞ representing an orientation-reversing isometry τ of \hat{E}. Then $\xi(z) = \varepsilon z + b$ ($\varepsilon = \pm 1$, $b \in \mathbb{C}$). Note that $\xi^2(z) = z + (\varepsilon b + b)$.

Case 1. $\varepsilon = +1$. Then $\xi^2(z) = z + 2\text{Re}(b)$. Thus τ^2 has an invariant meridian curve, and therefore $\tau^2 = \text{id}$ by Smith conjecture. Since f is the order 2 element of the cyclic normal subgroup $\text{Isom}^*\hat{E} \cong \mathbb{Z}_{2n}$, we have $\tau^2 f \tau^{-1} = f$. So f and τ generate a $\mathbb{Z}_2 + \mathbb{Z}_2$ action on (S^3, K) which satisfies the condition of Lemma 3. This is a contradiction, since a hyperbolic knot is non-trivial and prime.

Case 2. $\varepsilon = -1$. Then $\tau^2(z) = z + 2\text{Im}(b)i$. By an argument similar to the final step of the proof of Assertion I, we have $\tau^2 f \tau^{-1} = f_0$. Let u be an integer such that $\tau^2 = f_0^u \in \text{Isom}^*\hat{E}$.

Subcase 1. u is even. Put $\tau' = \tau f_0^{v}$, where $v = u/2$. Then $(\tau')^2 = \text{id}$. So τ' and f generate a $\mathbb{Z}_2 + \mathbb{Z}_2$ action on (S^3, K) satisfying the condition of Lemma 3; a contradiction.

Subcase 2. u is odd. Note that $\xi^2(z) = \psi_0^2(z) = z + (up\lambda + uq1)/2n \text{ mod } \{\lambda, 1\}$. Since q is odd, $uq/2n \equiv 0 \text{ mod } 1$, and therefore $(up\lambda + uq1)/2n \equiv a$ purely imaginary number mod $\{\lambda, 1\}$.

This contradicts the fact that $\xi^2(z) = z + 2\text{Im}(b)i$. This completes the proof of the Theorem.

§ 3. Further discussion

The Theorem does not hold for composite knots. In fact, the connected some of n-copies of an amphicheiral knot is amphicheiral, but has free period n. However, as shown in [13], the free periods of a composite knot are completely determined by the free periods of its prime factors,
and the Theorem holds for prime knots except free period 2; that is, any amphicheiral prime knot does not have free periods greater than 2. It remains open whether there is an amphicheiral prime knot which has free period 2.

I also calculated the symmetry groups of the "small" Montesinos knots by using the results of Thurston [15]. In particular, it follows that 8_{6} and 8_{10} have no free periods.* This completes the enumeration of the free periods of the prime knots with 10 crossings or less.

* Boileau informed me that he proved the non-free-periodicity of the small Montesinos knots without using [15].

References

Department of Mathematics
Osaka City University
Sumiyoshi, Osaka, 558
Japan