LECTURES ON ZARISKI VAN-KAMPEN THEOREM

ICHIRO SHIMADA

1. INTRODUCTION

Zariski van-Kampen Theorem is a tool for computing fundamental groups of
complements to curves (germs of curve singularities, affine plane curves and pro-
jective plane curves). It gives you the fundamental groups in terms of generators
and relations.

2. THE FUNDAMENTAL GROUP

2.1. Homotopy between continuous maps. We denote by I the closed interval
[0,1] of R. Let X and Y be two topological spaces, and let f, : X — Y and
f1: X =Y be two continuous maps. A continuous map F': X x I — Y is called a
homotopy from fy to fi if it satisfies

F(z,0) = fo(x), F(z,1)= fi(x) foral zelX.
We say that fy and f; are homotopic and write fy ~ fi if there exists a homotopy
from fo to f1. The relation ~ is an equivalence relation as is seen below.

e Reflexive law. For any continuous map f: X — Y define F: X x I — Y by
F(z,s):= f(zx) forall sel.

Thus f ~ f follows.
e Symmetric law. Let F': X x I — Y be a homotopy from fy to fi;. Define

F:XxI—Y by

F(z,s):= F(x,1—s),

which is a homotopy from f1 to fy. Hence fy ~ f1 implies f1 ~ fo.
e Transitive law. Let F' : X x I — Y be a homotopy from fy to fi, and
F’: X x I —Y ahomotopy from f; to fy. Define G: X x I — Y by

F(z,2 ifo0<s<1/2
Glo,s)= 28 HH0Ss<1/
F'(z,2s—1) if1/2<s<1,
which is a homotopy from fy to fo. Hence fy ~ f; and f1 ~ fo imply fo ~ fo.
We call the equivalence class under the relation ~ the homotopy class.
If there are continuous maps f : X — Y and g : ¥ — X such that go f is

homotopic to the identity of X, and f o g is homotopic to the identity of Y, then
X and Y are said to be homotopically equivalent.

Let A be a subspace of X. A homotopy F' : X x I — Y from fj to f; is said to
be stationary on A if
F(a,s) = fola) forall (a,s)e AxI.
1
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FIGURE 2.1. [u] # [v] = [V'] # [w]

If there exists a homotopy stationary on A from fy to fi, we say that fo and f;
are homotopic relative to A, and write fo ~4 f1. It is easy to see that ~4 is an
equivalence relation.

2.2. Definition of the fundamental group. Let p and ¢ be points of a topolog-
ical space X. A continuous map u : I — X satisfying

u©0)=p, u(l)=gq
is called a path from p to q. We denote by [u] the homotopy class relative to
0I = {0, 1} containing u. We define a path @ : I — X from ¢ to p by
a(t) :=u(l —1),

and call @ the inverse path of u. A constant map to the point p is a path with both
of the initial point and the terminal point being p. This path is denoted by 0,. Let
P, q, 7 be three points of X. Let u be a path from p to ¢, and v a path from ¢ to
r. We define a path uv : I — X from p to r by

o Juen ro<e<iy
W= p@e—1) if12<t<t.

and call it the concatenation of u and v.

Lemma 2.2.1. Let p, q, r, s be points of X. Let u and v’ be paths from p to q, v
and v' paths from q to r, and w a path from r to s.

Proof. (1) Let F : I x I — X be a homotopy stationary on 9 from u to u’, and
let G: I xI— X bea homotopy stationary on 9I from v to v’. We can construct



LECTURES ON ZARISKI VAN-KAMPEN THEOREM 3

s s s s
v u 0q bu v w
F | G
u v t 0p u Tt U u t v v ow t
(1) (2) (3) (4)

FIGURE 2.2. Proof of Lemma 2.2.1.

a homotopy H : I x I — X stationary on 9I from uv to u'v’ by
F(2t if0<t<1/2
Hts) = | L 3hs) - if0st</
G2t—-1,s) if1/2<t<1.

(2) We can construct a homotopy F' : I x I — X stationary on 01 from 0,u to
u by

w(l—2(1—1)/(s+1)) if (1—s)/2<t<1.

A homotopy stationary on 91 from 0, to u can be constructed in a similar way.
(3) We can construct a homotopy F : I x I — X stationary on 9 from @u to
04 by

F(t,s) — {p ifOStS(l—s)/Q

a(2t) if0<t<(1—s)/2
F(t,s):=qu(l—s)=u(s) if(l—s)/2<t<(1+s)/2
u(2t — 1) if(1+s)/2<t<L

A homotopy stationary on 01 from u# to 0, can be constructed in a similar way.
(4) We can construct a homotopy F': I x I — X stationary on 9 from u(vw)
to u(vw) by
u(4t/(2 — s)) ifo<t<(2-s9)/4
F(t,s) = qv(dt+s—2) if(2—-9)/4<t<(3—3s)/4
w((dt+s—3)/(s+1)) f(B3—9)/4<t<1.

The following is obvious from the definition:

Lemma 2.2.2. Let u and v be paths on X with uw(1) = v(0), and ¢ : X - Y a
continuous map. Then ¢ owu and ¢ ov are paths on'Y with (¢ ou)(1) = (¢ o v)(0)
and they satisfy ¢ o (uv) = (pou)(pow). d

We fix a point b of X, and call it a base point of X. A path from b to b is
called a loop with the base point b. Let 71 (X, ) denote the set of homotopy classes
(relative to OI) of loops with the base point b. We define a structure of the group
on m (X, b) by

[u] - [v] == [uv].
From Lemma 2.2.1 (1), this product is well-defined; that is, [uv] does not depend
on the choice of the representatives u of [u] and v of [v]. By Lemma 2.2.1 (4), this
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product satisfies the associative law. By Lemma 2.2.1 (3), [0,] yields the neutral
element 1. By Lemma 2.2.1 (2), [i] gives the inverse [u] ™! of [u]. Therefore (X, b)
is a group.

Definition 2.2.3. The group m(X,b) is called the fundamental group of X with
the base point b.

Definition 2.2.4. On the set of points of X, we can introduce an equivalence
relation by

p ~ q < there exists a path from p to q.
An equivalence class of this relation is called a path-connected component of X.
When X has only one path-connected component, we say that X is path-connected.

Lemma 2.2.5. Let by and by be two base points of X. Suppose that w: I — X is
a path from by to by. The map [wly([u]) := [wuw] defines an isomorphism

[w]y : m1 (X, bo)——m1 (X, by)

of groups. The inverse is given by [w]y. This isomorphism depends only on the
homotopy class [w] of w; that is, if w and w' are homotopic with respect to OI, then
[w]y = [w']y holds. O

Corollary 2.2.6. If X is path-connected, then, for any two points by and by, the
fundamental group 71(X,by1) is isomorphic to w1 (X, by) O

The following theorem is well-known.

Theorem 2.2.7. If X is path-connected, then the abelianization m /[m1, 7] of 71 1=
m1 (X, b) is isomorphic to Hy(X;Z). O

Definition 2.2.8. A topological space X is said to be simply connected if X is
path-connected and 71 (X, b) is trivial for any base point b.

Example 2.2.9. If n > 2, then S™ is simply connected. The circle S' is path-
connected, but 71 (S') = Z.

2.3. Homotopy invariance. Let ¢ : X — Y be a continuous map. We choose
a base point b of X, and let b’ := ¢(b) be a base point of Y. Suppose that an
element [u] € w1 (X,b) is represented by a loop u : I — X with the base point
b. Then ¢owu : I — Y is a loop on Y with the base point o'. If [u] = [«/], then
[pou] =[pou']. Indeed, let F: I x I — X be a homotopy (stationary on 9I) from
wtou. Then ¢po F : I x I — Y is a homotopy (stationary on 9I) from ¢ o u to
¢ ou'. Accordingly, we can define a well-defined map ¢, : 71(X,b) — m (Y, V') by

P« ([u]) := [ o u].
For [u], [v] € m(X,b), we have
¢ o (uw) = (pou)(dov).

Hence ¢, is a homomorphism, which is called the the homomorphism induced from
p: X —>Y.

Let Z be another topological space, and let ¢ : Y — Z be a continuous map.
We put b := ¢(b'). Then we have

(Yo d)s =Y 0 by
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F1GURE 2.3. The homotopy G in the proof of Proposition 2.3.1

Let w : I — X be a path from b; € X to by € X. The following diagram is
commutative:

m(Xb) 5 m(Y,6(b2)
[wls |2 |2 [gouls (2.1)
m1(X, b1) I) m (Y, ¢(b1)).
Indeed, for a loop w : I — X with the base point b, we have
(@« 0 [w]g)([u]) = ¢ o (wuw) = (¢ o w)(pou)(pow) = ([¢ 0wl o ¢u)([u])-

Proposition 2.3.1. Let F: X x I — Y be a homotopy from a continuous map ¢ :
X —Y to a continuous map ¢ : X —Y. Letv: I —Y be apath on'Y from ¢(b)
to ¢'(b) defined by t — F(b,t). Then the composite of ¢, : (X, b) — w1 (Y, ¢’ (b))
and [v]g : (Y, ¢ (b)) — w1 (Y, ¢(b)) coincides with ¢, : m1(X,b) — w1 (Y, ¢(b)).

Proof. Let u: I — X be aloop with the base point b. We can construct a homotopy
G : I x I —Y stationary on 91 from ¢ o u to v(¢’ o u)v by

v(4t) ifo<t<s/4
G(t,s) = F(u((4t —s)/(4 —3s)),s) ifs/4<t<(2-3)/2
(2t —1) if (2—s)/2<t<1.

O

Proposition 2.3.2. Suppose that X and Y are homotopically equivalent, and that
X is path-connected. Then'Y is also path-connected, and, for any base points b € X
and b €Y, the fundamental group m1(X,b) and 71(Y,b') are isomorphic.

Proof. By the assumption, there are continuous maps ¢ : X — Y and ¢ : ¥ —
X, and homotopies F' : X x I — X from the identity map of X to ¢ o ¢, and
G :Y x I — X from the identity map of Y to @ o ¢. For any y € Y, the map
t — G(y,t) defines a path v, : I — Y from y to (¢ o ¢)(y). Let b} and by € Y
be chosen arbitrary. Since X is path-connected, there is a path v : I — X from
P(b}) to P(by). Then vy (¢ o u)vy, is a path on Y from b} to by. Therefore YV is
path-connected.

Since 9 o ¢ is homotopic to the identity map of X, 1, o ¢, is an isomorphism
of m1(X). Hence ¢, is surjective. Since ¢ o ¢ is homotopic to the identity map
of Y, ¢, o4, is an isomorphism of 71(Y). Hence ¢. is injective. Therefore ¢, :
m1(X,0) — m (Y, ¢(b)) is an isomorphism. O
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Corollary 2.3.3. Suppose that X and Y are homotopically equivalent, and that X
is simply connected. Then Y 1is also simply connected. ]

3. PRESENTATION OF GROUPS

We review the theory of presentation of groups briefly. For the details, see [8] or
[10].

3.1. Amalgam. First we introduce a notion of amalgam. This notion has been
used to construct various interesting examples in group theory.

Proposition 3.1.1. Let A, G1,Gs be groups, and let f1: A — Gy, fo: A — Gs be
homomorphisms. Then there exists a triple (G, g1,92), unique up to isomorphism,
where G is a group and g, : G, — G are homomorphisms, with the following
properties:

(i) gr10 fi=g20 fo.

(ii) Suppose we are given a group H with homomorphisms h, : G, — H for
v = 1,2 satisfying hi o fi = ho o fo. Then there exists a unique homomorphism
h:G — H such that hy = ho gy, and ho = ho g;.

B
\
A G ; H
f\Q‘ G2 % /hQ'
F1cUre 3.1. Universality of the amalgam
Proof. We call a finite sequence (aq,...,a;) of elements of Gy or G2 a word. The

empty sequence () is also regarded as a word. We define a product on the set W
of words by the conjunction:

(ah...,al) . (bl,...,bm> = (ah...,al,bl,...,bm).
This product satisfies the associative rule. We then introduce a relation > on W by

the following rule. Let w,w’ € W. Then w > w’ if and only if one of the following
holds:

(1) Successive two elements a;, a;11 of w belong to a same G,,, and w’ is obtained
from w by replacing these two with a single element a;a;4+1 € G,.
(2) An element of w is the neutral element of G, and w’ is obtained from w by
deleting this element.
(3) An element a; of w is an image f,(a) of some a € A, and w’ is obtained from
w by replacing a; with f,(a) where p # v.
We introduce a relation ~ on W by the following. Let w and w’ be two words.
Then w ~ w’ if and only if there exists a sequence wy, . .., wy of words with wy = w
and wy = w’ such that Wj = Wjy1 OF Wj < Wjq1 OF wj = w;41 holds for each j. It
is easy to check that ~ is an equivalence relation, and that

!/ !/ / /
w1 ~ Wy, W2 ~ Wy — w1 - W2 ~ Wy * Woy.
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The equivalence class containing w € W is denoted by [w]. We can define a product
on G := W/ ~ by [w] - [w] := [w-w']. This product is well-defined, and G
becomes a group under this product. Moreover, the map a — [(a)] gives a group
homomorphism g, : G, — G. This triple (G, ¢1,92) possesses the properties (i)
and (ii) above. Hence the proof of the existence part is completed.

The uniqueness follows from the universal property. Suppose that both of
(G,q1,92) and (G, g1, g5) enjoy the properties (i) and (ii). Then there exist homo-
morphisms ¢ : G — G’ and ¥’ : G’ — G such that Y og, =g, and ¥ og], = g,
hold for v = 1,2. The composite ¢’ o9 : G — G satisfies (¢’ o) 0 g, = g, for
v = 1,2, and the identity map idg also satisfies idg 0 g, = g, for v = 1,2. From
the uniqueness of h in (ii), it follows idg = ¥’ 0 4. By the same way, we can show
idgr =9 o9)'. Hence (G, g1,92) and (G', g1, g5) are isomorphic. O

Definition 3.1.2. The triple (G, g1, g2) is called the amalgam of f; : A — Gy
and fs : A — G, and G is denoted by G x4 G2 (with the homomorphisms being
understood).

When A is the trivial group, then G x4 G is simply denoted by G * G, and
called the free product of G1 and Gs.

Example 3.1.3. Let G be a group, and let N; and Ny be two normal subgroups
of G. Let N be the smallest normal subgroup of G containing N; and N5. Then
the amalgam of the natural homomorphisms G — G/N; and G — G/N3 is G/N.

Definition 3.1.4. We define free groups F,, generated by n alphabets by induction
on n. We put Fy := Z (the infinite cyclic group), and F,, 41 := F}, x F}.

By definition, Fj, is constructed as follows. Let a word mean a sequence of n
alphabets ay, ..., a, and their inverse a; Lo a, L. If successive two alphabets of
a word w is of the form a;, ai_1 or ai_l, a;, and w’ is obtained from w by removing
these two letters, then we write w = w’. Let w and w’ be two words. We define an
equivalence relation = on the set of words by the following: w = w’ if and only if

there exists a sequence wo, ...,wy of words with wg = w and wy = w’ such that
wj = Wiy OF wj < wjy1 or wy = w;y1 holds for each j. We can define a product
on the set of equivalence classes of words by [w] - [w'] := [w - w'], where w - w' is the

conjunction of words. Then this set becomes a group, which is F,.

3.2. Van Kampen Theorem.

Theorem 3.2.1 (van Kampen). Let X be a path-connected topological space, and
b € X a base point. Let Uy and Uy be two open subsets of X such that the following
hold:

o U1UU2:X, Ui NUy 0.
e Uy, Us and Ui := Uy NUsy are path-connected.
Let iy : Uz — U, and j, : U, — X be the inclusions. Then (m1(X,b), j1x, j2x) s
the amalgam of i1x : 71 (U12,b) — w1 (U1, b) and igs : w1 (Ui2,b) — 71 (Us,b). That
m (U127 b) \ / m (X7 b)
i2a m1(Uz, b) o

is, the above diagram is a diagram of the amalgam. O
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For the proof, see [2].

Corollary 3.2.2. Let X,, be the bouquet of n circles: X,, = S' Vv ---v S'. Then
m1(X,) is isomorphic to F,. O

Corollary 3.2.3. (1) Let Z be a set of distinct n points on the complex plane C.
Then m(C\ Z) is isomorphic to F,,.

(2) Let Z be a set of distinct n points on the complex projective line P1. Then
1 (PY\ Z) is isomorphic to Fy,_1. O

Here is a simple topological proof of the following classical theorem.

Proposition 3.2.4. Let G be a subgroup of F,, with [F,, : G] =r < co. Then G is
isomorphic to Frp_r11.

Proof. The euler number of X,, is 1—n. Let Yo — X, be the covering corresponding
to G; that is, Y is the quotient of the universal covering of X,, by G. Then Yg
is an r-fold covering of X,,, and hence its euler number is 7(1 — n). On the other
hand, Y5 is homotopically equivalent to a bouquet of S, and the number circles is
1—7(1 —n). Hence G = m1(Yg) is isomorphic to Frp—pi1. O

3.3. Presentation.

Definition 3.3.1. Let R := {Rx}rea be a subset of F,,, and let N(R) be the
smallest normal subgroup of F;, containing R. We denote the group F, /N(R) by

(a1,...,an | Rx=¢e (A€A)),
and call it the group generated by as,...,a, with defining relations Ry (A € A).
Example 3.3.2. The group ( a | a” = e ) is isomorphic to Z/(n).

Example 3.3.3. (a,b|aba='b~! = e) is isomorphic to Z x Z. We write this
group sometimes as ( a,b | ab = ba ).

Example 3.3.4. Let n be an integer > 2. Then the group generated by a1, ...,a,_1
with defining relations

ai=ec fori=1,...,n—1,
a;a; = a;a; if |Z *]| > 1,
A;Ai4+10 = Q;410;Q547 for i = 1, ey — 1,

is isomorphic to the full symmetric group &,,. The isomorphism is given by a; —
(4,1 +1).

Example 3.3.5. Let p, g be positive integers, f1 : Z — Z and fy : Z — 7Z the
multiplications by p and ¢, respectively. Then the amalgam of these two homomor-
phisms is isomorphic to { a,b | a? = b9 ).

Remark 3.3.6. In general, it is very difficult to see the structure of a group from
its presentation. For example, it is proved that there are no universal algorithms
for determining whether a finitely presented group is finite or not (abelian or not).
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FIGURE 4.1. A braid

4. BRAID GROUPS

We put
M, := C"\ (the big diagonal) = { (z1,...,2,) € C" | z; #2z;(i #j) }.

The symmetric group &,, acts on M,, by interchanging the coordinates. We then
put M,, := M,,/&,,. This space M,, is the space parameterizing non-ordered sets of
distinct n points on the complex plane C (sometimes called the configuration space
of non-ordered sets of distinct n points on C). By associating to a non-ordered set
of distinct n points {a1,...,a,} the coefficients ay, ..., a, of

a2 an 1zt an=(z—a1)--- (2 — ay),

we obtain an isomorphism from M, to the complement to the discriminant hyper-
surface of monic polynomials of degree n in C". For example, M 4 is the complement
in an affine space C* with the affine parameter a;, as, as, a4 to the hypersurface de-
fined by

—27 a42a14 + 18 a4 az as CL13 —4day a23a12 — 4a33a13 + a32a22a12
+144 as%as a1 — 6 ag as’ar? — 80 ay as as’ay + 16 ag as* + 18 as®as a; — 4 as®as’®

—192 a4%a3 a1 — 128 ay’as® + 144 ay az’as — 27 az* + 256 a4® = 0.

We put
P, :=m(M,), By, = m(M,),

where the base points are chosen in a suitable way. The group P, is called the pure
braid group on n strings, and the group B, is called the braid group on n strings.
By definition, we have a short exact sequence

corresponding to the Galois covering M,, — M, with Galois group &,,. The point
of the configuration space M, is a set of distinct n points on the complex plane
C. Hence a loop in M,, is a movement of these distinct points on C, which can be
expresses by a braid as in Figure 4.1, whence the name the braid group.

The product in B, is defined by the conjunction of the braids. In particular, the
inverse is represented by the braid upside-down. For i =1,...,n — 1, let o; be the
element of B,, represented by the braid given in Figure 4.4.
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FIGURE 4.2. The product in a braid group

s
L
N

! homotopic

FIGURE 4.3. The inverse in a braid group

i—1 i i+1 i+2
i—1 i i+1 i+2

FIGURE 4.4. The element o;

Theorem 4.0.7 (Artin). The braid group B,, is generated by the elements o1, . ..

on_1, and defined by the following relations:
oio; =005 if [i—j| > 1,

0;0i4+10; = 0;410;0;41 fO?” = 1, e — 1.
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FIGURE 4.5. 0;0i+10; = 0;4+10i0;4+1

O

The fact that B, is generated by o1, ..., 0,_1 is easy to see. The relations
actually hold can be checked easily by drawing braids. The difficult part is that
any other relations among the generators can be derived from these relations. See
[1] for the proof.

We can define an action from right of the braid group B,, on the free group F),
by the following

aj ifj#di+1
aj = aiaipra;t if =i (4.1)
a; i =i+ 1.

Check that this definition is compatible with the defining relation of the braid
group. In the next section, we will explain the geometric meaning of this action.
5. MONODROMY ON FUNDAMENTAL GROUPS

We denote the conjunction of paths a: I — X and 8 : I — X on the topological
space X in such a way that af is defined if and only if a(1) = 3(0).

5.1. Fundamental groups and locally trivial fiber spaces. Let p: F — B be
a locally trivial fiber space. Suppose that p: £ — B has a section

s:B— FE;

that is, s is a continuous map satisfying p o s = idp. We choose a base point b of
E and b of B in such a way that b = s(b) holds. We then put

Fy:=p 1(b).
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We can regard b as a base point of the fiber Fy. Then (B, b) acts on w1 (Fj,b)
from right. This action is called the monodromy action on the fundamental group
of the fiber.

Indeed, suppose that we are given a loop u : I — B with the base point b, and
a loop w : I — F, with the base point b = s(u(0)). The pointed fibers

(P~ (u(t)), s(u(t))) (tel)
form a trivial fiber space over I. We can deform the loop w into a loop
wi = T —p~H(u(t))

with the base point s(u(t)) continuously. The loop wy : I — p~!(u(1)) with the base
point s(u(1)) = b represents [w]l*) € 71 (F,,b). We have to check that [w]* = [w,]
is independent of the choice of the representing loops u : I — B and w : I — Fp,
and of the choice of the deformation w; : I — p~!(u(t)). This checking is carried
out straightforwardly by means of Serre’s lifting property of the locally trivial fiber

space.

Example 5.1.1. Suppose that E is B x F' and p : F — B is the projection. For
a point a € F, the map z — (z,a) defines a section of p : E — B. In this case,
m1(B,b) acts on 71 (F, a) trivially.

Example 5.1.2. Let p: E — B be as above. For a continuous map o« : B — F,
the map = — (x,a(z)) defines a section of p : E — B. In this case, the pointed
fibers are (F,a(u(t))). Let A : [0,t] — F be the path defined on F' from a(b) to
a(u(t)) by Ay(s) := afu(s)). Then w; := A;'wA; is a deformation of w. Hence
m1(B,b) acts on 1 (F, a(b)) by

[w]™ = (aufu) ™" [w] - (aulu]).

5.2. Monodromy action of the braid group B, on the free group F,,. Let
R be a sufficiently large positive real number, and let A C C be the open unit
disc with the radius R. We define a open subset M/ of the configuration space M,
of ordered distinct n points on C by

M :={(21,...,20) €E M, | |zi] <Rfori=1,...,n} =A%)\ (the big diagonal),

and put
M, = M,/&,.
We choose a base point b of M:L to be a point corresponding to a set Sy of distinct
n points on the closed interval [—1,1] C C. The inclusion M; < M,, induces an
isomorphism
T (HI b) = 71 (M,,,b) = B,.

n?
Indeed, there is a homeomorphism C — Apg that is a homotopy inverse to the
inclusion map Ag < C. From this homeomorphism, we can construct a homotopy
inverse M, — M/n of the inclusion M; — M,,.
We consider the universal family of the complements on M,,;

C:={(Sy)eM,xC |y¢S}

where a point S € M, is regarded as a subset of C. The projection C — M, is
a locally trivial fiber space. A fiber over S € M,, is the complement C \ S to S.
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FI1GURE 5.1. The braid monodromy

In particular, the fundamental group of a fiber is the free group generated by n

elements. We put
—

¢ :=pY(M,),
and let p’ : C' — M; be the restriction of p to C’. We can construct a section of
p:C - M; by

S +— (S, 2Ri),

because, if S € M/n, then 2Ri ¢ S. Then the monodromy action of the braid
group wl(M;,Sb) = B, on the free group 7 (C \ Sy, 2Ri) = F, is just the one
described in the previous section. Indeed, m (C\ Sy, 2Ri) is the free group generated
by the homotopy classes of the loops /1,...,¥¢, indicated in the upper part of
Figure 5.1. By the movement of the points in Sy that represents o; € B,,, the i-th
and (¢ + 1)-st points interchange their positions by going around their mid-point
counter-clockwise, while the other points remain still. Hence the loops ¢; and ¢;14
are dragged, and deform into the new loops /; and ng indicated in the lower part
of Figure 5.1, while other loops does not change. The homotopy classes of loops l;
and lZ—H are written as a word of the homotopy classes of original loops:

] = (6], (6] = [G][i]l6] !
Therefore we get the action (4.1).
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5.3. Monodromy around a curve singularity. Let A, denote the open disc
{z € C| |z| < r}. We consider the curve C' on Ay, X Ay, defined by

zP —yl =0,

where p, ¢ are integers > 2. Let p : Ao, X Ag. — As. be the first projection
(z,y) — x. We assume that r is large enough compared with . We put

Y i=p HAL) N ((Age x Ag,) \ O).
Then the restriction
p:Y — AJ
of p is locally trivial. The fiber over € AJ is Ay, minus the g-th roots of 2P. We
choose the base point of AJ at
b:=c¢.
Let a be a positive real number such that
126[P/7 < a < 7.

Then the map x — (z,«) gives us a section of p : Y — AJ, because a does not
overlap any deleted point. We put
F,:=p t(b), and b:=s(b) = (c,0).

How does 71 (A, b) act on m; (Fy,b)?

The group 71 (AJ,b) is an infinite cyclic group generated by the homotopy class
v = [g] of the loop

g(t) = e exp(2mit).

On the other hand, the fiber [ is homotopic to the bouquet of ¢ circles, and hence
its fundamental group w1 (Fy, b) is a free group generated by ¢ elements £y, ..., 1,
which are represented by the lassos given in Figure 5.2. (We draw figures for the
case p =2 and ¢ =5.) The loop of the type in Figure 5.3 is called a lasso.

How does the fiber p~1(g(t)) with the base point s(g(t)) deform when t goes
from 0 to 17 The base point s(g(t)) is constantly at «. The deleted points move
around the origin with angular speed 27p/q, because g(t)? moves around the origin
with angular speed 27p, and hence the angular speed of its ¢-th roots is 27wp/q.
Therefore the lassos around the deleted points are dragged around the origin, and
when g¢(t) comes back to the starting point, the lasso ¢; in Figure 5.2 is deformed
into the lasso /; in Figure 5.4. Therefore the monodromy action of 71 (A, b) = (v)
on the free group B

7T1(Fb, b) = <£0, “ee 7£(1_1>
is given by
0 =1
The homotopy classes l; em (Fy, l~)) should be written as words of ¢y, ..., ¢;_;. For
this purpose, we use the following notation:
m = Eq_léq_g e élfo,

U = Lagqr = mm™ .

for 7 < 0 or j > q, where r is the remainder of j devided by r

The homotopy class m is represented by the big loop around the origin. Then we
have

&- == £i+p .
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FIGURE 5.2. The generators of m(Fy,b)

the deleted point

the base point

F1GURE 5.3. A lasso around a deleted point

Hence the monodromy action of 71 (AJ,b) on 71 (Fp,b) is given by
g;y == &-_,_p.
We will return to this example when we calculate the local fundamental group of

the curve singularity C'.

5.4. Semi-direct product. In order to use the monodromy action in the calcula-
tion of the fundamental group of the total space, we need the concept of semi-direct
product of groups. Hence let us recall briefly the definition.

Suppose that a group H acts on a group N from right. We denote this action
by
n — n (ne NJhe H)
We can define a product on the set N x H by

_ (hi")
(n1,h1)(n2,h2) = (mng ,h1h2)~
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FIGURE 5.4. The dragged generators

FIGURE 5.5. The loops representing m and l;

It is easy to see that, under this product, N x H becomes a group, which is called
the semi-direct product of N and H, and denoted by N x H. The map n — (n,eq)
defines an injective homomorphism ¢ : N — N x H, whose image is a normal
subgroup of N x H. By ¢, we can regard N as a normal subgroup of N x H. The
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map (n,h) — h defines a surjective homomorphism p : N x H — H whose kernel
is N. Hence H can be identified with (N x H)/N. The map h — (en,h) defines
an injective homomorphism ¢ : H — N x H such that po o = idy. By o, we can
regard H as a subgroup (not normal in general) of N x H. We have thus obtain a
splitting short exact sequence
1 — N — NxH = H — 1.
¢ P

Example 5.4.1. Suppose that H acts on N trivially. Then N x H is the direct
product N x H.

Example 5.4.2. Suppose that Z/(2) acts on Z/(n) by x — —xz. Then N x H is
the dihedral group of order 2n.

Let G be a group, N a normal subgroup of G, and ¢ : N < G the inclusion map.
We denote G/N by H, and let p : G — H be the natural surjective homomorphism.
An injective homomorphism ¢ : H — G such that poo = idy is called a section of
p. Suppose that a section ¢ : H — G of p exists.

o

1N -G g —1.
L p

We can define an action of H from right by
n i o(h)"tno(h) (ne N,he H).

Then the semi-direct product N x H constructed from this action is isomorphic to
G. The isomorphism from G to N x H is given by

g (g-a(p(9)~", p(9))

and its inverse is given by

(n, h) = 1(n)o(h)
5.5. The fundamental group of the total space.

Proposition 5.5.1. Let p : E — B be a locally trivial fiber space with a section
s : B — E. Suppose that E is path-connected. Let b be a base point of B, and
put b:= s(b), Fy := p~(b). Then 7y (E,b) is isomorphic to the semi-direct product

71 (Fy, b) xm1(B,b) constructed from the monodromy action of w1 (B,b) on 71 (Fp,b).

Proof. First note that F, and B are path-connected, because F is path-connected
and there is a section s. (The union of the path-connected components of fibers
that contain the point of the image of s form a path-connected component of E,
and hence it coincides with E.) Let i : F, — FE be the inclusion. We have the
homotopy exact sequence

s (B, b) 25 ma(B,b) — m(Fy, b) —= w1 (B, b) 25 mi(B,b) — 1.

Note that mo(Fy,b) = 1. There is a homomorphism s, : m2(B,b) — w3 (E,b) such
that

WQ(Bab) L WQ(Evg) & 7T2(B7b)
is the identity. Therefore p, : mo(F, 5) — mo(B, b) is surjective, and hence we obtain
a short exact sequence

1 — m(Fy, b) —5 7 (B, b) 25 m(B,b) — 1.
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There is a section s, : m1(B,b) — m (E,lé) of p. : m(E,b) — m(B,b). We regard

71 (Fy, 5) as a normal subgroup of w1 (F,b) by i,.. Then 71 (E, l~)) is isomorphic to
the semi-direct product

(m1(Fy,b) x w1 (B, b))

constructed from the action of w1 (B,b) on m (Fp,b) given by

v = sa(a) Tty sa(@) (o € m(B,b),y € m1(Fy,b) C m1(E,Db)).

Hence it is enough to show that this group-theoretic action of 71 (B, b) on 1 (Fp, b)
coincides with the monodromy action of m1(B,b) on m(Fp,b). Let a : I — B
be a loop on B representing a € m1(B,b), co : I — F} a loop in Fy representing
v € m1(Fp,b), and ¢; : I — Fp a loop in Fy, representing v € w1 (Fp,b). Then the
conjunction
su(@)-c1-s.(a)™ eyt

is null-homotopic in the total space E by the definition of the monodromy. Indeed,
let

ct o I —p~Ha(t)) (tel)

be the loops in the fiber p~!(a(t)) with the base point s(a(t)) that appear in the
process of the deformation (dragging) of ¢g into ¢;. Then the above conjunction is
the boundary of the map I2 — E given by

(s,t) — ci(s).

Sow
o ct c1
50
Hence we have v* = s,(a) ™! - v - s.(a). O

As can be seen from the construction above, the isomorphism
m1(Fy,b) x m1(B,b) — m1(E,b)
is given by
(u,v) = ix ()54 (v),

where ¢ : I}, — FE is the inclusion.
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5.6. Fundamental groups of complements to subvarieties. Let M be a con-
nected complex manifold, and V a proper closed analytic subspace of M. Let
t: M\ V < M be the inclusion. We choose a base point b of M \ V. We will
investigate the homomorphism ¢, : 7 (M \ V,b) — 71 (M, b).

Proposition 5.6.1. (1) The homomorphism v, : w1 (M \ V,b) — 71 (M,b) is sur-
jective. (2) If the codimension of V' in M is at least 2, then v, is an isomorphism.

Proof. (1) Let f: I — M be an arbitrary loop in M with the base point b. Since
V' is of real codimension > 2 and [ is of real dimension 1, we can perturb f into
a new loop f’ with the base point fixed so that the image of f’ is disjoint from V.
Since [f] = [f] in 1 (M,b) and f’ is a loop of M \ V, the homotopy class [f] is in
the image of ¢,.

(2) Suppose that the homotopy class [g] € 1 (M \V,b) of aloop g: I — M\V is
contained in Ker¢,. Then g is null-homotopic in M; that is, there exists a homotopy
G : I xI — M stationary on the boundary from G|I x {0} = g to the constant loop
G|I x {1} = 0p. Since V is of real codimension > 4 by the assumption and I x [
is of real dimension 2, we can perturb G to a new homotopy G’ : I x I — M from
g to 0, such that the image of G’ is disjoint from V. Then G’ is a homotopy in
M\ V. Therefore g is actually null-homotopic in M \ V. Hence ¢, is injective. O

Now let us consider the case when V is a hypersurface D of M; that is, suppose
that every irreducible component of V' = D is of codimension 1 in M. Suppose
also that D has only finitely many irreducible components. Let D,..., Dy be the
irreducible components of D. We put

Df = D,L' \ (Dl N SlngD)

Note that D7 is a connected complex manifold. Let p be an arbitrary point of Dy .
We take a sufficiently small open disc A in M in such a way that A intersects D at
only one point p and that the intersection is transverse. Let z be a local coordinate
on A with the center p. Then, for a small positive real number ¢, the map

t — z = e exp(2mit)

isaloopin M\ D. Let v : I — M\ D be a path from the base point b to u(0) = u(1).
Then vuv~! is a loop in M \ D with the base point b. We call a loop of this type
a lasso around D;.

Proposition 5.6.2. Homotopy classes of lassos around an irreducible component
D; of D constitute a conjugacy class of w1 (M \ D,b).

Proof. Let vuv~! be a lasso around D;. Then any element of 7y (M \ D, b) conjugate
to [vuv~!] is represented by a loop of the type w(vuv~1)w™!, where w : I — M\ D
is a loop with the base point b. Since w(vuv™Hw™! = (wv)u(wv)™! is also a
lasso around D;, the conjugacy class of 71 (M \ D, b) containing [vuv~!] consists of
homotopy classes of lassos around D;.

Next we show that any two lassos vougvy 1 and VULV, L around D; represents
homotopy classes conjugate to each other. Since D; is connected, there is a homo-
topy

U:IxI—M\D
from U|I x {0} = ug to U|I x {1} = uy such that U(0,s) = U(1,s) holds for any
s€l. Let w:I — M\ D be the path from uo(0) = ug(1) to u1(0) = u1(1) given
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the base point

FIGURE 5.6. A lasso around D;

the base point

F1GURE 5.7. The path w

by w(s) := U(s,0). Then we have
[vouoval] = [vowulw_lval] = [avlulvfla_l],

where a = vowvy ' is a loop in M \ D with the base point b. Hence [vgugvy '] and
[viuiv;!] are conjugate to each other in 7 (M \ D,b). O

Definition 5.6.3. We will denote by X(D;) C 71 (M \ D,b) the conjugacy class
consisting of homotopy classes of lassos around an irreducible component D;.

Proposition 5.6.4. The kernel of v, : m (M \ D,b) — m(M,b) is the smallest
subgroup of w1 (M \ D,b) containing X(D1)U---UX(Dy).
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Proof. Any lasso around an irreducible component of D is null-homotopic in M.
Hence X(D;) is contained in the kernel of ¢,.

Suppose that a loop f : I — M\ D with the base point b represents an element of
Kert,. Then f is null-homotopic in M, and hence there is a homotopy F : I x I —
M from F|I x {0} = f to F|I x {1} = 0, that is stationary on the boundary
0I. Noting that dim Sing D < dim M — 1, we can perturb F into a new homotopy
G:IxI— M from f to 0, such that the following hold:

e The image of G is disjoint from Sing D.
e The image G(O(I x I)) of (I x I) by G is disjoint from D.
e The map G intersects D transversely; that is, if ¢ € I x I satisfies G(q) € D,

then Im(dG)q ® T¢5y D = T¢5(, M holds, where T™ is the real tangent space.

Let {q1,...,qr} be the inverse image G~ (D). We choose a lasso v; in I x I around
each point ¢; of G~1(D) with the base point (0,0). Let o : I — I x I be the loop
with the base point (0, 0) that goes along the boundary of the square in the counter
clockwise direction. Then « is homotopically equivalent to a product of lassos v;
in (I x I)\ G7Y(D). On the other hand, the image G o v; of this lasso v; by G is a
lasso around an irreducible component of D, or its inverse. Since f is homotopically
equivalent in M \ D to G o (o~ 1), it is also homotopically equivalent in M \ D to
the product of these loops G o v;. Hence [f] is contained in the smallest subgroup
containing UX(D;) C w1 (M \ D, b). O

[a] = [v5][v7][va][v6][va][va][v1]

5.7. Zariski van-Kampen theorem in general setting. Let f : M — C be
a surjective homomorphic map from a connected complex manifold M to a 1-
dimensional complex manifold C'. Suppose that the following conditions are satis-
fied.

(a) The curve C is simply connected.

(b) There exists a holomorphic map s : C — M such that f os = id¢ holds.

(c) There exists a finite set Z of points of C such that the restriction fo : My —
C\ Z of fto My:= f~1(C\ Z) is a locally trivial fiber space

Here a locally trivial fiber space means in the category of topological spaces and
continuous maps. Let b be a base point of C'\ Z, and let s(b) be a base point of
My. We denote by Fy, := f~1(b) the fiber over b, and by i : F}, — M the inclusion
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map. It is easy to see that My is path-connected. Because there is a section, F is
also path-connected. The fundamental group 7 (C \ Z, b) acts on 71 (Fy, s(b)) from
right. We denote this action by

a—a? (a€m(Fys), gem(C\ZDb)).

The following the theorem of Zariski van-Kampen in this general setting.
Theorem 5.7.1. (1) Suppose that the conditions (a), (b), (¢) are satisfied. Then
s : T1(Fp, 8(b)) — w1 (M, s(b)) is surjective.

(2) Suppose moreover that the following condition is satisfied:

(d) For each point p € Z, the fiber f~1(p) is irreducible.
Then the kernel of i, : w1 (Fp,s(b)) — w1 (M,s(b)) is the smallest subgroup of
m1(Fy, s(b)) containing the subset

{a'a9 | a€m(Fys(b), gem(C\ZDb)}

of m1(Fy, s(b)).
Proof. Suppose that the conditions (a), (b), (c) are fulfilled.

We put

Z ={ay,...,an},
and let D; denote the singular fiber f~*(a;) of f : M — C. The homomorphic
section s : C' — M passes through a smooth point of D; for each a; € Z. There
exist local holomorphic coordinates (z1, ..., z,) of M with the center s(a;) and a
local holomorphic coordinate ¢ of C with the center a; such that f is given by
(215 ey2m) —t =21
and s is given by
t+— (¢,0,...,0).

Let D} be the irreducible component of D; containing the point s(a;), and D? the
union of other irreducible components. We put

M’ = M\| D},

and let f': M’ — C be the restriction of f. The homomorphic section s : C' — M
is also a homomorphic section s : C' — M’ of f': M’ — C. The inclusion M’ — M
induces a surjective homomorphism 7y (M’,b) — m(M,b). On the other hand,
f': M'" — C satisfies the condition (d), as well as (a), (b), (c). Hence, if (2) is
proved for f' : M’ — C, then (1) will be proved for f : M — C. Therefore it is
enough to prove (2) under the assumptions (a), (b), (¢), (d).

Now we assume that f: M — C satisfies (a), (b), (c), (d). We put
cV:=c\z, M°:=f1CY),
and let the restriction of f and s be denoted by
oM -0 V00— MO,

respectively. Let j : M® < M and iq : Fj, < M9 be the inclusions. Then 71 (M°, b)
is isomorphic to the semi-direct product

71 (Fy,b) x w1 (C°, )
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constructed from the monodromy action of 71 (C°, b) on 71 (Fy, b). The isomorphism
7T'1(Fb, 5) Del 7T'1(C'07 b) AN 7T1(M0, 5)

is given by
(u, ) — Qgx (1) S0x (V).

Let g; : I — C° be a lasso around a; € Z with the base point b. Since C' is simply
connected, 71 (C?, b) is generated by the homotopy classes [g;] of these lassos. On
the other hand, sgog; : I — MO is a lasso around the irreducible hypersurface
D; with the base point b. Hence the kernel Ker j« of the surjective homomorphism
Gu 2 1 (MO, b) — 7 (M, b) is the smallest normal subgroup containing the homotopy
classes [sp © g;] = S0«([¢:]). In other words, Ker j, is the smallest normal subgroup
of 71 (MO, b) containing Im s,

Ker jO*

1 — m(Fnb) — m(M°%b) == m(C°b) — 1.

10 fox

7T1(M,B)

l

1

Hence the proof of Theorem is reduced to the proof of the following proposition of
group-theory. O

Proposition 5.7.2. Suppose that a group H acts on a group N from right, and let
N x H be the semi-direct product. We consider N as a normal subgroup of N x H
by the injective homomorphism n — (n,eq), and H as a subgroup of N x H by the
injective homomorphism h +— (en,h). Let K be the smallest normal subgroup of
N x H containing H. Then the composite v : N — (N x H)/K of N — N x H
and the natural homomorphism N x H — (N x H)/K is surjective, and its kernel
N N K is the smallest subgroup of N containing the set

S:={n"'n" | neNhecH} (5.1)
Proof. Recall that the product in N x H is defined by
—1
(nlyhl)(n% hz) = (ﬂln;hl )7h1h2)-

Since every element (n,h) € N x H can be written (n,h) = (n,eq)(en,h), this
element (n, h) is equal to (n,ey) modulo K. Therefore v is surjective. Because

(n~'n" ey) = (n,en) Hen,h V) (n,en)(en, h) € K,

we have (s,ey) € NNK for any s € S. Hence the smallest subgroup of N containing
S is contained in NN K. For n € N, g,h € H, we have

o e () () K N (U R D R (D K
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Therefore S is invariant under the action of H and the action s — s~1. Because
(n,h) " (en, g)(n, h) = (W™l ) h="gh),

the first component of an arbitrary element of K is contained in the smallest sub-
group of N containing S. Therefore N N K coincides with the smallest subgroup
of N containing S. O

We consider the situation in the previous proposition. Suppose that N is gener-
ated by a subset 'y C N, and H is generated by a subset I'yy C H. Then the
smallest subgroup of N containing S is equal to the smallest normal subgroup of
N containing

Sr ::{nflnh | nely,hely }
This follows from the following:

(n1n2) ™! (nana)" = ny ' (ny 'nf)na(ng 'nj),

(n—l)—l(n—l)h _ (n/—ln/(h’))—l (n/ _ (n—l)h)7
n ) (7 ) ()7 ("),
n—ln(h’l) — (n/—ln/h)—l (’I’L/ — n(h’l)).

Hence we obtain the following:

Corollary 5.7.3. Suppose that f : M — C satisfies the conditions (a), (b), (c),
(d) and

(e) m1(Fy,b) is a free group generated by aq,...,aq.

Suppose that m (C\ Z,b) is generated by y1,...,vn. Then m (M, I;) 18 isomorphic
to the group defined by the presentation

<a1,...,ad ol =, (i’:17...,d)>.
’ j=1,...,N

6. LOCAL FUNDAMENTAL GROUP OF CURVE SINGULARITIES

Let us consider the the local fundamental group
7T1((A25 X AQT) \ C)

of the curve singularity C' defined by P —y? = 0, which was considered above. Let
X be the complement (Ag. x Ag,.)\ C, and let f: X — Ag. be the projection onto
the first factor. As was shown above, there is a holomorphic section z — (z, a) of
f X — Agy.. The fundamental group of the fiber is the free group generated by
Lo, ..., Lq—1. By introducing the auxiliary elements

m = éq_léq_z N '5160,

l; :==m*m™*° when j =aq+7r(0<r <gq),

we can write the monodromy action of the generator v € m(AJ) by

g;y == €i+p .
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Hence, by the corollary, the fundamental group m(X) is isomorphic to G defined
by the presentation below:

m = Eq_léq_g . 'flfo,
Gi={( m l;(jEL) | ljirg=mlm?,
l; ={;4, (the monodromy relation)
Theorem 6.0.4. Suppose that p and q are prime to each other. Then the group G
has a simpler presentation G' := ((«a, 5 | of = 7).
Proof. For any integer j, let (A}, B;) be a pair of integers satisfying A;q+ B;jp = j.
From the relations ¢;1, = mf;m~" and ¢; = {;4,, we have
—Aj

Civget- by =Lasgrq1 .- -Lasg =mY (L1 ... Lo)m™ Y =m.

We define an element n € G by
n = épflépfg i -flfo.
Then we have
mP = fqp_l . .gléo =nd,
Hence we can define a homomorphism ¢ : G’ — G by
a—m, [ n.
We have
Aibgm ™4 =0y, =10 =
motem Ajq Ajq+B;p J
Let us calculate m41nB1. Since mA1+*rpBi—ke — ;A1 Br for any integer k, we
can assume B; > 0 and A; < 0. Then we have

mAlnBl = (E\Al\q .. .61)71(631P_1 .. Eo) =Y,
because B1p — 1 = |A1|¢. Hence any ¢; can be written as a word of m and n. In
particular, ¢ is surjective. It can be easily checked that
m— «, and £ ati (a1 gBrya =N
define an inverse homomorphism ¢! : G — G’. Note that, from o” = 39, the right-
hand side does not depend on the choice of (4, B;). Thus ¢ is an isomorphism. O

Corollary 6.0.5. The local fundamental group of the ordinary cusp x> —y> =0 is
(a,B|a*=p%). O
7. FUNDAMENTAL GROUPS OF COMPLEMENTS TO PROJECTIVE PLANE CURVES
7.1. Zariski-van Kampen theorem for projective plane curves. Let C' C P?

be a complex projective plane curve defined by a homogeneous equation
o(X,Y,Z)=0

of degree d. Suppose that C' is reduced; that is, ® does not have any multiple factor.

We consider the fundamental group 71 (P? \ C). (Since P2\ C is path-connected,

71(P? \ C) does not depend on the choice of the base point.) We choose a point
a € P2\ C. By a linear coordinate transformation, we can assume that

a=10:0:1].

Since a ¢ C, the coefficient of Z?¢ in ® is not zero. Let L C P? be the line defined
by Z = 0. For a point p € L, let pa C P? be the line connecting p and a. We put

X:={(pgeLxP?®| qepa},
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and let f: X — L and p: X — P2 be the projections onto each factors. If ¢ # a,
then p~!(q) consists of a single point, while E := p~!(a) is isomorphic to L by f.
The morphism p : X — P2 is called the blowing up of P? at a, and FE is called the
exceptional divisor.

We then put

X :=X\p H(0),

and let f : X — L be the restriction of f. Since EN p~*(C) = ), p induces an
isomorphism from X \ E to P2\ (C U {a}). We have the following commutative
diagram:

m(X\E) — m(P*\(CU{a}))

| L

7T1(X) (p\—x)) Wl(IPQ\C),

where the vertical arrows are induced from the inclusions. The right vertical arrow
is surjective because E is a proper subvariety of X, and the left vertical arrow is
an isomorphism because {a} is a proper subvariety of P? \ C with codimension 2.
Hence p|X induces an isomorphism from 71(X) to 71 (P? \ C). Therefore we will
calculate m (X).

For p € L, the intersection points of f~(p) and p~!(C) is mapped by p to the
intersection points of pa and C' bijectively. Suppose that p is the point [£ : 7 : 0].
Then the line pa is given by an affine parameter ¢ as follows:

{[€:m:t] [ teCuU{oo}},

where t = oo corresponds to a. Hence the intersection points of pa and C correspond
to the roots of

(¢, m,t) =0
bijectively. Let Dg (&, 7n) be the discriminant of ®(£,n,t) regarded as a polynomial

of t. We have assumed that ® has no multiple factors. Therefore D4 (&, 1) is not
zero. It is a homogeneous polynomial of degree d(d — 1) in £ and . We put

Z:={[6:n:0l €L | Do(&n) =0}

If p € L\ Z, then f~1(p) is the line pa minus d distinct points. Hence the restriction
of fto f~YL\ Z) is a locally trivial fiber space over L\ Z.

We choose a base point of X at b€ E\ (EN f~'(Z)), and let b := f(b) be the
base point of L. Let F be the fiber f~1(b) of f passing through b. The map

P (pa)

is the holomorphic section s : L — X of f : X — L that passes through b. The
image of s is E. Hence m (L \ Z,b) acts on 71 (F,b) from right. The projective
line L is simply connected. Every fiber of f is irreducible because it is a projective
line minus some points. Moreover mq (F), 5) is the free group generated by homotopy
classes aq,...,aq-1 of d — 1 lassos around d — 1 points of F N p~1(C). Hence we
can apply the corollary. Suppose that Z C L consists of e points. Then 7 (L \ Z,b)
is the free group generated by homotopy classes v1,...,7.—1 of e — 1 lassos around
e — 1 points of Z.
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FiGure 7.1. Blowing up at a

Theorem 7.1.1. The fundamental group 7 (P? \ C) is isomorphic to the group
defined by the presentation

<a1,...,ad,1 S (;zll,,céill) >

7.2. An example. Let C be a nodal cubic curve defined by
F(X,Y,Z):=Y*Z - (X+2Z)X*=0.

Its affine part (Z # 0) is given by

y? =2 (x+1) (x=X/Z, y=Y/Z).
Let [U : V : W] be the homogeneous coordinates of the dual projective plane; that
is, a point [U : V : W] corresponds to the line defined by

UX+VY+WZ=0.
The dual curve CV of C' is defined by
GU, V,W):= —4WU? + 36 UV2W — 2T V2W? - 8U?V2 4+ 4V* +4U* = 0.

The defining polynomial G of C'V is obtained by the following method. The inci-
dence variety
I:={(p,0) € C x CV | {is tangent to C at p}
is defined by the equation
oF oF oF
F =0, U—a—X:Q V—a—yzo, W_67:0’
in P2 x P2. We calculate the Grobner basis of the defining ideal of I with respect
to the lexicographic order. Since CV is the image of I by the second projection,
you can find G among the Grébner basis. Solving the equation
06 _ oG _ G _|
ou oV ow ’
we see that CV has three singular points

0:0:1], [g:i%:l].

Looking at G locally around these points, we see that these three points are ordinary
cusps of CV. Conversely, the dual curve of a three-cuspidal quartic curve is a nodal
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cubic curve. Since any nodal cubic curve is projectively isomorphic to C, any
three-cuspidal quartic curve is projectively isomorphic to CV.

We blow up P2 at

a=1[1:0:0].
Note that a ¢ CV. We put
L:={U =0},
and let
s:=V/W

be the affine parameter on L. The line connecting a and a point p=1[0:s:1] of L
is given by

{[t:s:1]|teCU{oc0}}
in terms of the affine parameter ¢, where ¢t = oo corresponds to a. Hence the
intesection points of pa and CV corresponds to the roots of

G(t,s,1) =4t* — 4¢3 — 8571 + 36 5%t + 45 — 275> = 0.
The discriminant of this equation is
—256 5% (6452 +27)° .
You can easily check that the line connecting a and the point s = oo on L does not

intersect CV transversely. It also follows from the fact that —256 s* (64 52 + 27)3
does not have the degree d(d — 1) = 12 of the homogeneous discriminant. Hence

we have
=27
Z = { 0, :lZT, e} }

The line connecting a and s = oo is the double tangent to C'V, which corresponds
to the node of (CV)Y = C. The other three lines connecting a and the points of Z
pass throgh the cusps of CV. The line connecting a and s = 0 is the tangent line
at the cusp [0 : 0 : 1]; that is, the intersection multiplicity is 3. The other two lines
intersect CV at the cusps [9/8 : +1/—27/8 : 1] with intersection multiplicity 2.

We choose a base point b € L\ Z at s = 1. Then the fundamental group
m(L\ Z,b) is the free group generated by the homotopy classes o, @ and 3 of of
the lassos indicated in Figure 7.2. The homotopy class of a lasso around the point
s = oo of Z is equal to (afa)~".

The line ba intersects CV at four points

A : t=0.7886...,
B : t=1.2200---+1.3353... 4.
C : t=-22287...,

D : t=1.2200---—1.3353... 1.
The base point b on the fiber is given by
t = 0.

The fundamental group 71 (ba \ (ba N CV),b) is generated by the homotopy classes
a, b and c of of the lassos indicated in Figure 7.3. The homotopy class of the lasso
d in Figure 7.3 is equal to the product (cba)~?!; that is we have

mi(ba\ (ba N CV),b) = (a,b,c,d | deba =1).

When a point p on L\ Z moves from the base point s = 1 to the point near
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the base point

Re

FIGURE 7.2. The generators of m (L \ Z,b)

(0]
L

M
L

[0)
[0

fa
i

A
i

FIGURE 7.3. The generators of 71 (ba \ (ba N CV),b)

the deleted point s = /—27/8 along the line segment part of the lasso «, the
intersection points pa N C'V moves as in Figure 7.5. The two points C' and D will
collide. This collision corresponds to the cusp [9/8 : v/—27/8 : 1] of CV. When
the point p goes around the deleted point s = 1/—27/8 in a counter-clockwise
direction, then the two points go around each other 3/2 times, and interchange
their positions. Actually, they move in the way as indicated in Figure 7.4. This is
the case p = 3,¢ = 2 in the previous section. When the point p goes back to the
base point, then the four points go back to the original point. The lassos a, b, c,
d around the points A, B, C, D are dragged by these movements, and become the
lassos a, 5, C, d indicated in Figure 7.6. Since

¢ =¢=dede 'd™', d* =d=deded e N,
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FIGURE 7.4. The movement of C' and D around s = /—27/8
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FIGURE 7.5. The movement of points for the monodromy of «
/
b Q
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é
FIGURE 7.6. The new lassos after the monodromy action of «
we have

¢ =dede 1,

d = deded e 1d ™,
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FIGURE 7.8. The movement of A, B, C around s =0

in 71 (P? \ CV,a). These can be reduced to the simple relation
cde = dcd.

By the same method, we see that the monodromy relation in 7 (P? \ CV,a) corre-
sponding to & € w1 (L \ Z,b) is
ada = dad.

When a point p on L\ Z moves from the base point s = 1 to the point near
the deleted point s = 0 along the line segment part of the lasso 3, the intersection
points pa N CV moves as in Figure 7.7. The three points A, B, C colide. This
collision corresponds to the cusp [0 : 0 : 1] of CV. When the point p goes around
the deleted point s = 0 in a counter-clockwise direction, then the three points go
around each other 2/3 times, and interchange their positions. See Figure 7.8. This
is the case p = 2, ¢ = 3 in the previous section. Note that the line connecting s = 0
and a intersects CV at [0 : 0 : 1] with multiplicity 3. When the point p goes back
to the base point, the lassos a, b, ¢, d around the points A, B, C, D are dragged

and become the lassos a, b, ¢, d indicated in Figure 7.9. Since
dd=a=c V=b=d'ad, P’ =¢=d b,

we have

in 7 (P2\ CV,a).
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FIGURE 7.9. The new lassos after the monodromy action of

Combining all of these, we see that

decba =1,
T (P2\ CY,a) = < a,b,c,d | cdec = ded,ada = dad, >

a=c,db=ad,dc=bd

We can reduce the relations to

1 (P2\ CY,a) = (¢,d | cdec = ded, c*d* = 1).
Putting a = ¢d, 8 = cde, we have

B\ CY,a) = (a,8| o’ = 52 = (Ba)? ).

This group is the binary 3-dihedral group. Thus we obtain the following theorem
due to Zariski:

Theorem 7.2.1. The fundamental group of the complement to a three cuspidal
quartic curve is isomorphic to the binary 3-dihedral group. O

Remark 7.2.2. Let us see the structure of the group
G := (a,b|aba = bab,a®b* =1).
From a?b? = 1, we have ab?a = ba?b = 1. Hence
(aba)? = a(ba*b)a = a®,  (bab)* = b(ab*a)b = b°.

From aba = bab, we have a® = b>. We put ¢ := a? = b%. Then c is of order 2 and
in the center of G. Since the group

G/{c) = (a,b| aba = bab,a® =b* =1

is isomorphic t &3, we see that G is a central extension of &3 by Z/(2). In particular,
G is a non-abelian finite group of order 12.
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7.3. Zariski conjecture and Zariski pairs. If a reduced plane curve C' C P?
consists of irreducible components of degree dy,...,d, then H;(P?\ C,Z) is iso-
morphic to

ZF/(dy, ..., dy)Z.
Suppose that m1(P? \ C) is abelian. Then it is isomorphic to Hy(P? \ C,Z), and
hence it is determined by the degrees of the irreducible components.

When is 71 (P? \ C) abelian? We have the following theorem, which had been
known as Zariski conjecture since the publication of the paper [11], and was proved
by Fulton and Deligne around 1970 in [4] and [3].

Theorem 7.3.1. If C is nodal, then 71 (P?\ C) is abelian. O

This theorem was proved, not by Zariski-van kampen’s theorem, but by Fulton-
Hansen’s connectedness theorem [6]. See [7] for the proof.

Several improvements of this theorem are known. One of them is the following
theorem, due to Nori [9].

Theorem 7.3.2. Let C be an irreducible curve of degree d with n nodes and k
cusps. If 2n + 6k < d?, then w1 (P2 \ C) is abelian.

Note that the fundamental group of the complement need not be determined
by the number and types of the singularity. The following is the classical example
discovered by Zariski.

Example 7.3.3. There exist two curves Cy and C5, both of which are of degree 6

and has 6 cusps as their only singularities, such that 71 (P? \ C}) is isomorphic to

7/(6) while 71 (P2 \ Cs) is isomorphic to the free product of Z/(2) * Z/(3).
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