
LECTURES ON ZARISKI VAN-KAMPEN THEOREM

ICHIRO SHIMADA

1. Introduction

Zariski van-Kampen Theorem is a tool for computing fundamental groups of
complements to curves (germs of curve singularities, affine plane curves and pro-
jective plane curves). It gives you the fundamental groups in terms of generators
and relations.

2. The fundamental group

2.1. Homotopy between continuous maps. We denote by I the closed interval
[0, 1] of R. Let X and Y be two topological spaces, and let f0 : X → Y and
f1 : X → Y be two continuous maps. A continuous map F : X × I → Y is called a
homotopy from f0 to f1 if it satisfies

F (x, 0) = f0(x), F (x, 1) = f1(x) for all x ∈ X.

We say that f0 and f1 are homotopic and write f0 ∼ f1 if there exists a homotopy
from f0 to f1. The relation ∼ is an equivalence relation as is seen below.
• Reflexive law. For any continuous map f : X → Y , define F : X × I → Y by

F (x, s) := f(x) for all s ∈ I.

Thus f ∼ f follows.
• Symmetric law. Let F : X × I → Y be a homotopy from f0 to f1. Define

F : X × I → Y by
F (x, s) := F (x, 1− s),

which is a homotopy from f1 to f0. Hence f0 ∼ f1 implies f1 ∼ f0.
• Transitive law. Let F : X × I → Y be a homotopy from f0 to f1, and

F ′ : X × I → Y a homotopy from f1 to f2. Define G : X × I → Y by

G(x, s) =

{
F (x, 2s) if 0 ≤ s ≤ 1/2
F ′(x, 2s− 1) if 1/2 ≤ s ≤ 1,

which is a homotopy from f0 to f2. Hence f0 ∼ f1 and f1 ∼ f2 imply f0 ∼ f2.
We call the equivalence class under the relation ∼ the homotopy class.

If there are continuous maps f : X → Y and g : Y → X such that g ◦ f is
homotopic to the identity of X, and f ◦ g is homotopic to the identity of Y , then
X and Y are said to be homotopically equivalent.

Let A be a subspace of X. A homotopy F : X × I → Y from f0 to f1 is said to
be stationary on A if

F (a, s) = f0(a) for all (a, s) ∈ A× I.
1
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Figure 2.1. [u] 	= [v] = [v′] 	= [w]

If there exists a homotopy stationary on A from f0 to f1, we say that f0 and f1

are homotopic relative to A, and write f0 ∼A f1. It is easy to see that ∼A is an
equivalence relation.

2.2. Definition of the fundamental group. Let p and q be points of a topolog-
ical space X. A continuous map u : I → X satisfying

u(0) = p, u(1) = q

is called a path from p to q. We denote by [u] the homotopy class relative to
∂I = {0, 1} containing u. We define a path ū : I → X from q to p by

ū(t) := u(1− t),

and call ū the inverse path of u. A constant map to the point p is a path with both
of the initial point and the terminal point being p. This path is denoted by 0p. Let
p, q, r be three points of X. Let u be a path from p to q, and v a path from q to
r. We define a path uv : I → X from p to r by

uv(t) =

{
u(2t) if 0 ≤ t ≤ 1/2
v(2t− 1) if 1/2 ≤ t ≤ 1.

and call it the concatenation of u and v.

Lemma 2.2.1. Let p, q, r, s be points of X. Let u and u′ be paths from p to q, v
and v′ paths from q to r, and w a path from r to s.

p q r

u

u′

v

v′

w

s

(1) If [u] = [u′] and [v] = [v′], then [uv] = [u′v′].
(2) [0pu] = [u0q] = [u].
(3) [ūu] = [0q], [uū] = [0p].
(4) [u(vw)] = [(uv)w].

Proof. (1) Let F : I × I → X be a homotopy stationary on ∂I from u to u′, and
let G : I × I → X be a homotopy stationary on ∂I from v to v′. We can construct
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Figure 2.2. Proof of Lemma 2.2.1.

a homotopy H : I × I → X stationary on ∂I from uv to u′v′ by

H(t, s) :=

{
F (2t, s) if 0 ≤ t ≤ 1/2
G(2t− 1, s) if 1/2 ≤ t ≤ 1.

(2) We can construct a homotopy F : I × I → X stationary on ∂I from 0pu to
u by

F (t, s) :=

{
p if 0 ≤ t ≤ (1− s)/2
u(1− 2(1− t)/(s+ 1)) if (1− s)/2 ≤ t ≤ 1.

A homotopy stationary on ∂I from u0p to u can be constructed in a similar way.
(3) We can construct a homotopy F : I × I → X stationary on ∂I from ūu to

0q by

F (t, s) :=



ū(2t) if 0 ≤ t ≤ (1− s)/2
ū(1− s) = u(s) if (1− s)/2 ≤ t ≤ (1 + s)/2
u(2t− 1) if (1 + s)/2 ≤ t ≤ 1.

A homotopy stationary on ∂I from uū to 0p can be constructed in a similar way.
(4) We can construct a homotopy F : I × I → X stationary on ∂I from u(vw)

to u(vw) by

F (t, s) :=



u(4t/(2− s)) if 0 ≤ t ≤ (2− s)/4
v(4t+ s− 2) if (2− s)/4 ≤ t ≤ (3− s)/4
w((4t+ s− 3)/(s+ 1)) if (3− s)/4 ≤ t ≤ 1.

The following is obvious from the definition:

Lemma 2.2.2. Let u and v be paths on X with u(1) = v(0), and φ : X → Y a
continuous map. Then φ ◦ u and φ ◦ v are paths on Y with (φ ◦ u)(1) = (φ ◦ v)(0)
and they satisfy φ ◦ (uv) = (φ ◦ u)(φ ◦ v).

We fix a point b of X, and call it a base point of X. A path from b to b is
called a loop with the base point b. Let π1(X, b) denote the set of homotopy classes
(relative to ∂I) of loops with the base point b. We define a structure of the group
on π1(X, b) by

[u] · [v] := [uv].
From Lemma 2.2.1 (1), this product is well-defined; that is, [uv] does not depend
on the choice of the representatives u of [u] and v of [v]. By Lemma 2.2.1 (4), this
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product satisfies the associative law. By Lemma 2.2.1 (3), [0b] yields the neutral
element 1. By Lemma 2.2.1 (2), [ū] gives the inverse [u]−1 of [u]. Therefore π1(X, b)
is a group.

Definition 2.2.3. The group π1(X, b) is called the fundamental group of X with
the base point b.

Definition 2.2.4. On the set of points of X, we can introduce an equivalence
relation by

p ∼ q ⇐⇒ there exists a path from p to q.

An equivalence class of this relation is called a path-connected component of X.
When X has only one path-connected component, we say that X is path-connected.

Lemma 2.2.5. Let b1 and b2 be two base points of X. Suppose that w : I → X is
a path from b1 to b2. The map [w]�([u]) := [wuw̄] defines an isomorphism

[w]� : π1(X, b2)
∼−→π1(X, b1)

of groups. The inverse is given by [w̄]�. This isomorphism depends only on the
homotopy class [w] of w; that is, if w and w′ are homotopic with respect to ∂I, then
[w]� = [w′]� holds.

Corollary 2.2.6. If X is path-connected, then, for any two points b1 and b2, the
fundamental group π1(X, b1) is isomorphic to π1(X, b2)

The following theorem is well-known.

Theorem 2.2.7. If X is path-connected, then the abelianization π1/[π1, π1] of π1 :=
π1(X, b) is isomorphic to H1(X; Z).

Definition 2.2.8. A topological space X is said to be simply connected if X is
path-connected and π1(X, b) is trivial for any base point b.

Example 2.2.9. If n ≥ 2, then Sn is simply connected. The circle S1 is path-
connected, but π1(S1) ∼= Z.

2.3. Homotopy invariance. Let φ : X → Y be a continuous map. We choose
a base point b of X, and let b′ := φ(b) be a base point of Y . Suppose that an
element [u] ∈ π1(X, b) is represented by a loop u : I → X with the base point
b. Then φ ◦ u : I → Y is a loop on Y with the base point b′. If [u] = [u′], then
[φ ◦u] = [φ ◦u′]. Indeed, let F : I × I → X be a homotopy (stationary on ∂I) from
u to u′. Then φ ◦ F : I × I → Y is a homotopy (stationary on ∂I) from φ ◦ u to
φ ◦ u′. Accordingly, we can define a well-defined map φ∗ : π1(X, b)→ π1(Y, b′) by

φ∗([u]) := [φ ◦ u].

For [u], [v] ∈ π1(X, b), we have

φ ◦ (uv) = (φ ◦ u)(φ ◦ v).
Hence φ∗ is a homomorphism, which is called the the homomorphism induced from
φ : X → Y .

Let Z be another topological space, and let ψ : Y → Z be a continuous map.
We put b′′ := ψ(b′). Then we have

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗.
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Figure 2.3. The homotopy G in the proof of Proposition 2.3.1

Let w : I → X be a path from b1 ∈ X to b2 ∈ X. The following diagram is
commutative:

π1(X, b2)
φ∗−→ π1(Y, φ(b2))

[w]�
�� �� [φ◦w]�

π1(X, b1) −→
φ∗

π1(Y, φ(b1)).

(2.1)

Indeed, for a loop u : I → X with the base point b, we have

(φ∗ ◦ [w]�)([u]) = φ ◦ (wuw̄) = (φ ◦ w)(φ ◦ u)(φ ◦ w̄) = ([φ ◦ w]� ◦ φ∗)([u]).

Proposition 2.3.1. Let F : X × I → Y be a homotopy from a continuous map φ :
X → Y to a continuous map φ′ : X → Y . Let v : I → Y be a path on Y from φ(b)
to φ′(b) defined by t �→ F (b, t). Then the composite of φ′

∗ : π1(X, b) → π1(Y, φ′(b))
and [v]� : π1(Y, φ′(b))→ π1(Y, φ(b)) coincides with φ∗ : π1(X, b)→ π1(Y, φ(b)).

Proof. Let u : I → X be a loop with the base point b. We can construct a homotopy
G : I × I → Y stationary on ∂I from φ ◦ u to v(φ′ ◦ u)v̄ by

G(t, s) :=



v(4t) if 0 ≤ t ≤ s/4
F (u((4t− s)/(4− 3s)), s) if s/4 ≤ t ≤ (2− s)/2
v̄(2t− 1) if (2− s)/2 ≤ t ≤ 1 .

Proposition 2.3.2. Suppose that X and Y are homotopically equivalent, and that
X is path-connected. Then Y is also path-connected, and, for any base points b ∈ X
and b′ ∈ Y , the fundamental group π1(X, b) and π1(Y, b′) are isomorphic.

Proof. By the assumption, there are continuous maps φ : X → Y and ψ : Y →
X, and homotopies F : X × I → X from the identity map of X to φ ◦ ψ, and
G : Y × I → X from the identity map of Y to ψ ◦ φ. For any y ∈ Y , the map
t �→ G(y, t) defines a path vy : I → Y from y to (φ ◦ ψ)(y). Let b′1 and b′2 ∈ Y
be chosen arbitrary. Since X is path-connected, there is a path u : I → X from
ψ(b′1) to ψ(b′2). Then vb′1(φ ◦ u)v̄b′2 is a path on Y from b′1 to b′2. Therefore Y is
path-connected.

Since ψ ◦ φ is homotopic to the identity map of X, ψ∗ ◦ φ∗ is an isomorphism
of π1(X). Hence φ∗ is surjective. Since φ ◦ ψ is homotopic to the identity map
of Y , φ∗ ◦ ψ∗ is an isomorphism of π1(Y ). Hence φ∗ is injective. Therefore φ∗ :
π1(X, b)→ π1(Y, φ(b)) is an isomorphism.
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Corollary 2.3.3. Suppose that X and Y are homotopically equivalent, and that X
is simply connected. Then Y is also simply connected.

3. Presentation of groups

We review the theory of presentation of groups briefly. For the details, see [8] or
[10].

3.1. Amalgam. First we introduce a notion of amalgam. This notion has been
used to construct various interesting examples in group theory.

Proposition 3.1.1. Let A,G1, G2 be groups, and let f1 : A→ G1, f2 : A→ G2 be
homomorphisms. Then there exists a triple (G, g1, g2), unique up to isomorphism,
where G is a group and gν : Gν → G are homomorphisms, with the following
properties:

(i) g1 ◦ f1 = g2 ◦ f2.
(ii) Suppose we are given a group H with homomorphisms hν : Gν → H for

ν = 1, 2 satisfying h1 ◦ f1 = h2 ◦ f2. Then there exists a unique homomorphism
h : G→ H such that h1 = h ◦ g1 and h2 = h ◦ g1.

A

G2

G1

G H

✟✟✟✟✯

❍❍❍❍❥

❍❍❍❍❥

✟✟✟✟✯

�

✘✘✘✘✘✘✿
✲

f1

f2

g1

g2

h1

h2

h

Figure 3.1. Universality of the amalgam

Proof. We call a finite sequence (a1, . . . , al) of elements of G1 or G2 a word. The
empty sequence () is also regarded as a word. We define a product on the set W
of words by the conjunction:

(a1, . . . , al) · (b1, . . . , bm) := (a1, . . . , al, b1, . . . , bm).

This product satisfies the associative rule. We then introduce a relation � on W by
the following rule. Let w,w′ ∈W . Then w � w′ if and only if one of the following
holds:

(1) Successive two elements ai, ai+1 of w belong to a same Gν , and w′ is obtained
from w by replacing these two with a single element aiai+1 ∈ Gν .

(2) An element of w is the neutral element of Gν , and w′ is obtained from w by
deleting this element.

(3) An element ai of w is an image fν(a) of some a ∈ A, and w′ is obtained from
w by replacing ai with fµ(a) where µ 	= ν.

We introduce a relation ∼ on W by the following. Let w and w′ be two words.
Then w ∼ w′ if and only if there exists a sequence w0, . . . , wN of words with w0 = w
and wN = w′ such that wj � wj+1 or wj ≺ wj+1 or wj = wj+1 holds for each j. It
is easy to check that ∼ is an equivalence relation, and that

w1 ∼ w′
1, w2 ∼ w′

2 =⇒ w1 · w2 ∼ w′
1 · w′

2.
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The equivalence class containing w ∈W is denoted by [w]. We can define a product
on G := W/ ∼ by [w] · [w′] := [w · w′]. This product is well-defined, and G
becomes a group under this product. Moreover, the map a �→ [(a)] gives a group
homomorphism gν : Gν → G. This triple (G, g1, g2) possesses the properties (i)
and (ii) above. Hence the proof of the existence part is completed.

The uniqueness follows from the universal property. Suppose that both of
(G, g1, g2) and (G′, g′1, g

′
2) enjoy the properties (i) and (ii). Then there exist homo-

morphisms ψ : G → G′ and ψ′ : G′ → G such that ψ ◦ gν = g′ν and ψ′ ◦ g′ν = gν
hold for ν = 1, 2. The composite ψ′ ◦ ψ : G → G satisfies (ψ′ ◦ ψ) ◦ gν = gν for
ν = 1, 2, and the identity map idG also satisfies idG ◦ gν = gν for ν = 1, 2. From
the uniqueness of h in (ii), it follows idG = ψ′ ◦ ψ. By the same way, we can show
idG′ = ψ ◦ ψ′. Hence (G, g1, g2) and (G′, g′1, g

′
2) are isomorphic.

Definition 3.1.2. The triple (G, g1, g2) is called the amalgam of f1 : A → G1

and f2 : A → G2, and G is denoted by G1 ∗A G2 (with the homomorphisms being
understood).

When A is the trivial group, then G1 ∗A G2 is simply denoted by G1 ∗G2, and
called the free product of G1 and G2.

Example 3.1.3. Let G be a group, and let N1 and N2 be two normal subgroups
of G. Let N be the smallest normal subgroup of G containing N1 and N2. Then
the amalgam of the natural homomorphisms G→ G/N1 and G→ G/N2 is G/N .

Definition 3.1.4. We define free groups Fn generated by n alphabets by induction
on n. We put F1 := Z (the infinite cyclic group), and Fn+1 := Fn ∗ F1.

By definition, Fn is constructed as follows. Let a word mean a sequence of n
alphabets a1, . . . , an and their inverse a−1

1 , . . . , a−1
n . If successive two alphabets of

a word w is of the form ai, a
−1
i or a−1

i , ai, and w′ is obtained from w by removing
these two letters, then we write w � w′. Let w and w′ be two words. We define an
equivalence relation ≈ on the set of words by the following: w ≈ w′ if and only if
there exists a sequence w0, . . . , wN of words with w0 = w and wN = w′ such that
wj � wj+1 or wj ≺ wj+1 or wj = wj+1 holds for each j. We can define a product
on the set of equivalence classes of words by [w] · [w′] := [w ·w′], where w ·w′ is the
conjunction of words. Then this set becomes a group, which is Fn.

3.2. Van Kampen Theorem.

Theorem 3.2.1 (van Kampen). Let X be a path-connected topological space, and
b ∈ X a base point. Let U1 and U2 be two open subsets of X such that the following
hold:
• U1 ∪ U2 = X, U1 ∩ U2 � b.
• U1, U2 and U12 := U1 ∩ U2 are path-connected.

Let iν : U12 ↪→ Uν and jν : Uν ↪→ X be the inclusions. Then (π1(X, b), j1∗, j2∗) is
the amalgam of i1∗ : π1(U12, b) → π1(U1, b) and i2∗ : π1(U12, b) → π1(U2, b). That

π1(U12, b)

π1(U2, b)

π1(U1, b)

π1(X, b)
✏✏✏✏✶

�����

�����

✏✏✏✏✶

i1∗

i2∗

j1∗

j2∗

is, the above diagram is a diagram of the amalgam.
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For the proof, see [2].

Corollary 3.2.2. Let Xn be the bouquet of n circles: Xn = S1 ∨ · · · ∨ S1. Then
π1(Xn) is isomorphic to Fn.

Corollary 3.2.3. (1) Let Z be a set of distinct n points on the complex plane C.
Then π1(C \ Z) is isomorphic to Fn.

(2) Let Z be a set of distinct n points on the complex projective line P
1. Then

π1(P1 \ Z) is isomorphic to Fn−1.

Here is a simple topological proof of the following classical theorem.

Proposition 3.2.4. Let G be a subgroup of Fn with [Fn : G] = r <∞. Then G is
isomorphic to Frn−r+1.

Proof. The euler number of Xn is 1−n. Let YG → Xn be the covering corresponding
to G; that is, YG is the quotient of the universal covering of Xn by G. Then YG
is an r-fold covering of Xn, and hence its euler number is r(1 − n). On the other
hand, YG is homotopically equivalent to a bouquet of S1, and the number circles is
1− r(1− n). Hence G ∼= π1(YG) is isomorphic to Frn−r+1.

3.3. Presentation.

Definition 3.3.1. Let R := {Rλ}λ∈Λ be a subset of Fn, and let N(R) be the
smallest normal subgroup of Fn containing R. We denote the group Fn/N(R) by

〈 a1, . . . , an | Rλ = e (λ ∈ Λ) 〉,

and call it the group generated by a1, . . . , an with defining relations Rλ (λ ∈ Λ).

Example 3.3.2. The group 〈 a | an = e 〉 is isomorphic to Z/(n).

Example 3.3.3. 〈 a, b | aba−1b−1 = e 〉 is isomorphic to Z × Z. We write this
group sometimes as 〈 a, b | ab = ba 〉.

Example 3.3.4. Let n be an integer≥ 2. Then the group generated by a1, . . . , an−1

with defining relations

a2
i = e for i = 1, . . . , n− 1,

aiaj = ajai if |i− j| > 1,
aiai+1ai = ai+1aiai+1 for i = 1, . . . , n− 1,

is isomorphic to the full symmetric group Sn. The isomorphism is given by ai �→
(i, i+ 1).

Example 3.3.5. Let p, q be positive integers, f1 : Z → Z and f2 : Z → Z the
multiplications by p and q, respectively. Then the amalgam of these two homomor-
phisms is isomorphic to 〈 a, b | ap = bq 〉.

Remark 3.3.6. In general, it is very difficult to see the structure of a group from
its presentation. For example, it is proved that there are no universal algorithms
for determining whether a finitely presented group is finite or not (abelian or not).
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�time

Figure 4.1. A braid

4. Braid groups

We put

Mn := C
n \ (the big diagonal) = { (z1, . . . , zn) ∈ C

n | zi 	= zj(i 	= j) }.

The symmetric group Sn acts on Mn by interchanging the coordinates. We then
put Mn := Mn/Sn. This space Mn is the space parameterizing non-ordered sets of
distinct n points on the complex plane C (sometimes called the configuration space
of non-ordered sets of distinct n points on C). By associating to a non-ordered set
of distinct n points {α1, . . . , αn} the coefficients a1, . . . , an of

zn + a1z
n−1 + · · ·+ an−1z + an = (z − α1) · · · (z − αn),

we obtain an isomorphism from Mn to the complement to the discriminant hyper-
surface of monic polynomials of degree n in C

n. For example, M4 is the complement
in an affine space C

4 with the affine parameter a1, a2, a3, a4 to the hypersurface de-
fined by

−27 a4
2a1

4 + 18 a4 a3 a2 a1
3 − 4 a4 a2

3a1
2 − 4 a3

3a1
3 + a3

2a2
2a1

2

+144 a4
2a2 a1

2 − 6 a4 a3
2a1

2 − 80 a4 a3 a2
2a1 + 16 a4 a2

4 + 18 a3
3a2 a1 − 4 a3

2a2
3

−192 a4
2a3 a1 − 128 a4

2a2
2 + 144 a4 a3

2a2 − 27 a3
4 + 256 a4

3 = 0.

We put

Pn := π1(Mn), Bn := π1(Mn),

where the base points are chosen in a suitable way. The group Pn is called the pure
braid group on n strings, and the group Bn is called the braid group on n strings.
By definition, we have a short exact sequence

1 −→ Pn −→ Bn −→ Sn −→ 1,

corresponding to the Galois covering Mn →Mn with Galois group Sn. The point
of the configuration space Mn is a set of distinct n points on the complex plane
C. Hence a loop in Mn is a movement of these distinct points on C, which can be
expresses by a braid as in Figure 4.1, whence the name the braid group.

The product in Bn is defined by the conjunction of the braids. In particular, the
inverse is represented by the braid upside-down. For i = 1, . . . , n− 1, let σi be the
element of Bn represented by the braid given in Figure 4.4.
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α

β

homotopic

αβ

�

Figure 4.2. The product in a braid group

α

homotopic�

α−1

Figure 4.3. The inverse in a braid group

i i+ 1 i+ 2i− 1

i i+ 1 i+ 2i− 1

Figure 4.4. The element σi

Theorem 4.0.7 (Artin). The braid group Bn is generated by the elements σ1, . . . ,
σn−1, and defined by the following relations:

σiσj = σjσi if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 1.
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σi

σi+1

homotopic�

σi

σi+1

σi

σi+1

Figure 4.5. σiσi+1σi = σi+1σiσi+1

The fact that Bn is generated by σ1, . . . , σn−1 is easy to see. The relations
actually hold can be checked easily by drawing braids. The difficult part is that
any other relations among the generators can be derived from these relations. See
[1] for the proof.

We can define an action from right of the braid group Bn on the free group Fn
by the following

aσi
j :=



aj if j 	= i, i+ 1
aiai+1a

−1
i if j = i

ai if j = i+ 1.
(4.1)

Check that this definition is compatible with the defining relation of the braid
group. In the next section, we will explain the geometric meaning of this action.

5. Monodromy on fundamental groups

We denote the conjunction of paths α : I → X and β : I → X on the topological
space X in such a way that αβ is defined if and only if α(1) = β(0).

5.1. Fundamental groups and locally trivial fiber spaces. Let p : E → B be
a locally trivial fiber space. Suppose that p : E → B has a section

s : B → E;

that is, s is a continuous map satisfying p ◦ s = idB . We choose a base point b̃ of
E and b of B in such a way that b̃ = s(b) holds. We then put

Fb := p−1(b).
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We can regard b̃ as a base point of the fiber Fb. Then π1(B, b) acts on π1(Fb, b̃)
from right. This action is called the monodromy action on the fundamental group
of the fiber.

Indeed, suppose that we are given a loop u : I → B with the base point b, and
a loop w : I → Fb with the base point b̃ = s(u(0)). The pointed fibers

(p−1(u(t)), s(u(t))) (t ∈ I)

form a trivial fiber space over I. We can deform the loop w into a loop

wt : I → p−1(u(t))

with the base point s(u(t)) continuously. The loop w1 : I → p−1(u(1)) with the base
point s(u(1)) = b̃ represents [w][u] ∈ π1(Fb, b̃). We have to check that [w][u] = [w1]
is independent of the choice of the representing loops u : I → B and w : I → Fb,
and of the choice of the deformation wt : I → p−1(u(t)). This checking is carried
out straightforwardly by means of Serre’s lifting property of the locally trivial fiber
space.

Example 5.1.1. Suppose that E is B × F and p : E → B is the projection. For
a point a ∈ F , the map x �→ (x, a) defines a section of p : E → B. In this case,
π1(B, b) acts on π1(F, a) trivially.

Example 5.1.2. Let p : E → B be as above. For a continuous map α : B → F ,
the map x �→ (x, α(x)) defines a section of p : E → B. In this case, the pointed
fibers are (F, α(u(t))). Let At : [0, t] → F be the path defined on F from a(b) to
α(u(t)) by At(s) := α(u(s)). Then wt := A−1

t wAt is a deformation of w. Hence
π1(B, b) acts on π1(F, α(b)) by

[w][u] = (α∗[u])−1 · [w] · (α∗[u]).

5.2. Monodromy action of the braid group Bn on the free group Fn. Let
R be a sufficiently large positive real number, and let ∆R ⊂ C be the open unit
disc with the radius R. We define a open subset M ′

n of the configuration space Mn

of ordered distinct n points on C by

M ′
n := { (z1, . . . , zn) ∈Mn | |zi| < R for i = 1, . . . , n } = ∆n

R \ (the big diagonal),

and put
M

′
n := M ′

n/Sn.

We choose a base point b̄ of M
′
n to be a point corresponding to a set Sb of distinct

n points on the closed interval [−1, 1] ⊂ C. The inclusion M
′
n ↪→ Mn induces an

isomorphism
π1(M

′
n, b) ∼= π1(Mn, b) = Bn.

Indeed, there is a homeomorphism C → ∆R that is a homotopy inverse to the
inclusion map ∆R ↪→ C. From this homeomorphism, we can construct a homotopy
inverse Mn →M

′
n of the inclusion M

′
n ↪→Mn.

We consider the universal family of the complements on Mn;

C := { (S, y) ∈Mn × C | y /∈ S },
where a point S ∈ Mn is regarded as a subset of C. The projection C → Mn is
a locally trivial fiber space. A fiber over S ∈ Mn is the complement C \ S to S.
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2Ri

2Ri

61

61

6n

6n

6i+16i

. . . . . .

. . . . . .

6̃i

6̃i+1

σi

Figure 5.1. The braid monodromy

In particular, the fundamental group of a fiber is the free group generated by n
elements. We put

C′ := p−1(M
′
n),

and let p′ : C′ → M
′
n be the restriction of p to C′. We can construct a section of

p′ : C′ →M
′
n by

S �→ (S, 2Ri),

because, if S ∈ M
′
n, then 2Ri /∈ S. Then the monodromy action of the braid

group π1(M
′
n, Sb) = Bn on the free group π1(C \ Sb, 2Ri) = Fn is just the one

described in the previous section. Indeed, π1(C\Sb, 2Ri) is the free group generated
by the homotopy classes of the loops 61, . . . , 6n indicated in the upper part of
Figure 5.1. By the movement of the points in Sb that represents σi ∈ Bn, the i-th
and (i + 1)-st points interchange their positions by going around their mid-point
counter-clockwise, while the other points remain still. Hence the loops 6i and 6i+1

are dragged, and deform into the new loops 6̃i and 6̃i+1 indicated in the lower part
of Figure 5.1, while other loops does not change. The homotopy classes of loops 6̃i
and 6̃i+1 are written as a word of the homotopy classes of original loops:

[6̃i+1] = [6i], [6̃i] = [6i][6i+1][6i]−1.

Therefore we get the action (4.1).
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5.3. Monodromy around a curve singularity. Let ∆r denote the open disc
{z ∈ C | |z| < r}. We consider the curve C on ∆2ε ×∆2r defined by

xp − yq = 0,

where p, q are integers ≥ 2. Let p̄ : ∆2ε × ∆2r → ∆2ε be the first projection
(x, y) �→ x. We assume that r is large enough compared with ε. We put

Y := p̄−1(∆×
2ε) ∩ ((∆2ε ×∆2r) \ C).

Then the restriction
p : Y → ∆×

2ε

of p̄ is locally trivial. The fiber over x ∈ ∆×
2ε is ∆2r minus the q-th roots of xp. We

choose the base point of ∆×
2ε at

b := ε.

Let α be a positive real number such that

|2ε|p/q < α < r.

Then the map x �→ (x, α) gives us a section of p : Y → ∆×
2ε, because α does not

overlap any deleted point. We put

Fb := p−1(b), and b̃ := s(b) = (ε, α).

How does π1(∆×
2ε, b) act on π1(Fb, b̃)?

The group π1(∆×
2ε, b) is an infinite cyclic group generated by the homotopy class

γ = [g] of the loop
g(t) = ε exp(2πit).

On the other hand, the fiber Fb is homotopic to the bouquet of q circles, and hence
its fundamental group π1(Fb, b̃) is a free group generated by q elements 60, . . . , 6q−1,
which are represented by the lassos given in Figure 5.2. (We draw figures for the
case p = 2 and q = 5.) The loop of the type in Figure 5.3 is called a lasso.

How does the fiber p−1(g(t)) with the base point s(g(t)) deform when t goes
from 0 to 1? The base point s(g(t)) is constantly at α. The deleted points move
around the origin with angular speed 2πp/q, because g(t)p moves around the origin
with angular speed 2πp, and hence the angular speed of its q-th roots is 2πp/q.
Therefore the lassos around the deleted points are dragged around the origin, and
when g(t) comes back to the starting point, the lasso 6i in Figure 5.2 is deformed
into the lasso 6̃i in Figure 5.4. Therefore the monodromy action of π1(∆×

2ε, b) = 〈γ〉
on the free group

π1(Fb, b̃) = 〈60, . . . , 6q−1〉
is given by

6γi = 6̃i.

The homotopy classes 6̃i ∈ π1(Fb, b̃) should be written as words of 60, . . . , 6q−1. For
this purpose, we use the following notation:

m := 6q−16q−2 · · · 6160,
6j = 6aq+r := ma6rm

−a.

for j < 0 or j ≥ q, where r is the remainder of j devided by r

The homotopy class m is represented by the big loop around the origin. Then we
have

6̃i = 6i+p.
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❝

❝

❝

❝

❝

�

60

61

62

63

64

α

Figure 5.2. The generators of π1(Fb, b̃)

the base point

the deleted point

Figure 5.3. A lasso around a deleted point

Hence the monodromy action of π1(∆×
2ε, b) on π1(Fb, b̃) is given by

6γi = 6i+p.

We will return to this example when we calculate the local fundamental group of
the curve singularity C.

5.4. Semi-direct product. In order to use the monodromy action in the calcula-
tion of the fundamental group of the total space, we need the concept of semi-direct
product of groups. Hence let us recall briefly the definition.

Suppose that a group H acts on a group N from right. We denote this action
by

n �→ nh (n ∈ N,h ∈ H)

We can define a product on the set N ×H by

(n1, h1)(n2, h2) = (n1n
(h−1

1 )
2 , h1h2).
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❝

❝
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�

6̃0

6̃1

6̃2

6̃3

6̃4

α

Figure 5.4. The dragged generators

❝

❝

❝

❝

❝

�

m

6̃4

α61

Figure 5.5. The loops representing m and 6̃i

It is easy to see that, under this product, N ×H becomes a group, which is called
the semi-direct product of N and H, and denoted by N �H. The map n �→ (n, eH)
defines an injective homomorphism ι : N → N � H, whose image is a normal
subgroup of N � H. By ι, we can regard N as a normal subgroup of N � H. The
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map (n, h) �→ h defines a surjective homomorphism ρ : N � H → H whose kernel
is N . Hence H can be identified with (N � H)/N . The map h �→ (eN , h) defines
an injective homomorphism σ : H → N � H such that ρ ◦ σ = idH . By σ, we can
regard H as a subgroup (not normal in general) of N �H. We have thus obtain a
splitting short exact sequence

1 −→ N −→
ι

N � H
σ←−−→
ρ

H −→ 1.

Example 5.4.1. Suppose that H acts on N trivially. Then N � H is the direct
product N ×H.

Example 5.4.2. Suppose that Z/(2) acts on Z/(n) by x �→ −x. Then N � H is
the dihedral group of order 2n.

Let G be a group, N a normal subgroup of G, and ι : N ↪→ G the inclusion map.
We denote G/N by H, and let ρ : G→ H be the natural surjective homomorphism.
An injective homomorphism σ : H → G such that ρ ◦ σ = idH is called a section of
ρ. Suppose that a section σ : H → G of ρ exists.

1 −→ N −→
ι

G
σ←−−→
ρ

H −→ 1.

We can define an action of H from right by

n �→ σ(h)−1nσ(h) (n ∈ N,h ∈ H).

Then the semi-direct product N �H constructed from this action is isomorphic to
G. The isomorphism from G to N � H is given by

g �→ (g · σ(ρ(g))−1, ρ(g))

and its inverse is given by
(n, h) �→ ι(n)σ(h)

5.5. The fundamental group of the total space.

Proposition 5.5.1. Let p : E → B be a locally trivial fiber space with a section
s : B → E. Suppose that E is path-connected. Let b be a base point of B, and
put b̃ := s(b), Fb := p−1(b). Then π1(E, b̃) is isomorphic to the semi-direct product
π1(Fb, b̃)�π1(B, b) constructed from the monodromy action of π1(B, b) on π1(Fb, b̃).

Proof. First note that Fb and B are path-connected, because E is path-connected
and there is a section s. (The union of the path-connected components of fibers
that contain the point of the image of s form a path-connected component of E,
and hence it coincides with E.) Let i : Fb ↪→ E be the inclusion. We have the
homotopy exact sequence

i∗−→ π2(E, b̃)
p∗−→ π2(B, b) −→ π1(Fb, b̃)

i∗−→ π1(E, b̃)
p∗−→ π1(B, b) −→ 1.

Note that π0(Fb, b̃) = 1. There is a homomorphism s∗ : π2(B, b) → π2(E, b̃) such
that

π2(B, b)
s∗−→ π2(E, b̃)

p∗−→ π2(B, b)

is the identity. Therefore p∗ : π2(E, b̃)→ π2(B, b) is surjective, and hence we obtain
a short exact sequence

1 −→ π1(Fb, b̃)
i∗−→ π1(E, b̃)

p∗−→ π1(B, b) −→ 1.
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There is a section s∗ : π1(B, b) → π1(E, b̃) of p∗ : π1(E, b̃) → π1(B, b). We regard
π1(Fb, b̃) as a normal subgroup of π1(E, b̃) by i∗. Then π1(E, b̃) is isomorphic to
the semi-direct product

(π1(Fb, b̃) � π1(B, b))′

constructed from the action of π1(B, b) on π1(Fb, b̃) given by

γ �→ s∗(α)−1 · γ · s∗(α) (α ∈ π1(B, b), γ ∈ π1(Fb, b̃) ⊂ π1(E, b̃)).

Hence it is enough to show that this group-theoretic action of π1(B, b) on π1(Fb, b̃)
coincides with the monodromy action of π1(B, b) on π1(Fb, b̃). Let a : I → B
be a loop on B representing α ∈ π1(B, b), c0 : I → Fb a loop in Fb representing
γ ∈ π1(Fb, b̃), and c1 : I → Fb a loop in Fb representing γα ∈ π1(Fb, b̃). Then the
conjunction

s∗(a) · c1 · s∗(a)−1 · c−1
0

is null-homotopic in the total space E by the definition of the monodromy. Indeed,
let

ct : I → p−1(a(t)) (t ∈ I)

be the loops in the fiber p−1(a(t)) with the base point s(a(t)) that appear in the
process of the deformation (dragging) of c0 into c1. Then the above conjunction is
the boundary of the map I2 → E given by

(s, t) �→ ct(s).

s ◦ α

c0 c1ct

s ◦ α

Hence we have γα = s∗(α)−1 · γ · s∗(α).

As can be seen from the construction above, the isomorphism

π1(Fb, b̃) � π1(B, b)
∼−→ π1(E, b̃)

is given by

(u, v) �→ i∗(u)s∗(v),

where i : Fb ↪→ E is the inclusion.
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5.6. Fundamental groups of complements to subvarieties. Let M be a con-
nected complex manifold, and V a proper closed analytic subspace of M . Let
ι : M \ V ↪→ M be the inclusion. We choose a base point b of M \ V . We will
investigate the homomorphism ι∗ : π1(M \ V, b)→ π1(M, b).

Proposition 5.6.1. (1) The homomorphism ι∗ : π1(M \ V, b) → π1(M, b) is sur-
jective. (2) If the codimension of V in M is at least 2, then ι∗ is an isomorphism.

Proof. (1) Let f : I → M be an arbitrary loop in M with the base point b. Since
V is of real codimension ≥ 2 and I is of real dimension 1, we can perturb f into
a new loop f ′ with the base point fixed so that the image of f ′ is disjoint from V .
Since [f ] = [f ′] in π1(M, b) and f ′ is a loop of M \ V , the homotopy class [f ] is in
the image of ι∗.

(2) Suppose that the homotopy class [g] ∈ π1(M \V, b) of a loop g : I →M \V is
contained in Ker ι∗. Then g is null-homotopic in M ; that is, there exists a homotopy
G : I×I →M stationary on the boundary from G|I×{0} = g to the constant loop
G|I × {1} = 0b. Since V is of real codimension ≥ 4 by the assumption and I × I
is of real dimension 2, we can perturb G to a new homotopy G′ : I × I →M from
g to 0b such that the image of G′ is disjoint from V . Then G′ is a homotopy in
M \ V . Therefore g is actually null-homotopic in M \ V . Hence ι∗ is injective.

Now let us consider the case when V is a hypersurface D of M ; that is, suppose
that every irreducible component of V = D is of codimension 1 in M . Suppose
also that D has only finitely many irreducible components. Let D1, . . . , DN be the
irreducible components of D. We put

D◦
i := Di \ (Di ∩ SingD).

Note that D◦
i is a connected complex manifold. Let p be an arbitrary point of D◦

i .
We take a sufficiently small open disc ∆ in M in such a way that ∆ intersects D at
only one point p and that the intersection is transverse. Let z be a local coordinate
on ∆ with the center p. Then, for a small positive real number ε, the map

t �→ z = ε exp(2πit)

is a loop in M \D. Let v : I →M \D be a path from the base point b to u(0) = u(1).
Then vuv−1 is a loop in M \D with the base point b. We call a loop of this type
a lasso around Di.

Proposition 5.6.2. Homotopy classes of lassos around an irreducible component
Di of D constitute a conjugacy class of π1(M \D, b).
Proof. Let vuv−1 be a lasso around Di. Then any element of π1(M \D, b) conjugate
to [vuv−1] is represented by a loop of the type w(vuv−1)w−1, where w : I →M \D
is a loop with the base point b. Since w(vuv−1)w−1 = (wv)u(wv)−1 is also a
lasso around Di, the conjugacy class of π1(M \D, b) containing [vuv−1] consists of
homotopy classes of lassos around Di.

Next we show that any two lassos v0u0v
−1
0 and v1u1v

−1
1 around Di represents

homotopy classes conjugate to each other. Since D◦
i is connected, there is a homo-

topy
U : I × I →M \D

from U |I × {0} = u0 to U |I × {1} = u1 such that U(0, s) = U(1, s) holds for any
s ∈ I. Let w : I → M \D be the path from u0(0) = u0(1) to u1(0) = u1(1) given
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the base point

u

v

Di

Dj

Figure 5.6. A lasso around Di

the base point

u0

v0 u1

v1

w

U

Di

Dj

Figure 5.7. The path w

by w(s) := U(s, 0). Then we have

[v0u0v
−1
0 ] = [v0wu1w

−1v−1
0 ] = [av1u1v

−1
1 a−1],

where a = v0wv
−1
1 is a loop in M \D with the base point b. Hence [v0u0v

−1
0 ] and

[v1u1v
−1
1 ] are conjugate to each other in π1(M \D, b).

Definition 5.6.3. We will denote by Σ(Di) ⊂ π1(M \ D, b) the conjugacy class
consisting of homotopy classes of lassos around an irreducible component Di.

Proposition 5.6.4. The kernel of ι∗ : π1(M \ D, b) → π1(M, b) is the smallest
subgroup of π1(M \D, b) containing Σ(D1) ∪ · · · ∪ Σ(DN ).
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Proof. Any lasso around an irreducible component of D is null-homotopic in M .
Hence Σ(Di) is contained in the kernel of ι∗.

Suppose that a loop f : I →M \D with the base point b represents an element of
Ker ι∗. Then f is null-homotopic in M , and hence there is a homotopy F : I × I →
M from F |I × {0} = f to F |I × {1} = 0b that is stationary on the boundary
∂I. Noting that dim SingD < dimM − 1, we can perturb F into a new homotopy
G : I × I →M from f to 0b such that the following hold:
• The image of G is disjoint from SingD.
• The image G(∂(I × I)) of ∂(I × I) by G is disjoint from D.
• The map G intersects D transversely; that is, if q ∈ I × I satisfies G(q) ∈ D,

then Im(dG)q ⊕ TR

G(q)D = TR

G(q)M holds, where TR is the real tangent space.

Let {q1, . . . , qL} be the inverse image G−1(D). We choose a lasso vi in I×I around
each point qi of G−1(D) with the base point (0, 0). Let α : I → I × I be the loop
with the base point (0, 0) that goes along the boundary of the square in the counter
clockwise direction. Then α is homotopically equivalent to a product of lassos vi
in (I × I) \G−1(D). On the other hand, the image G ◦ vi of this lasso vi by G is a
lasso around an irreducible component of D, or its inverse. Since f is homotopically
equivalent in M \D to G ◦ (α−1), it is also homotopically equivalent in M \D to
the product of these loops G ◦ vi. Hence [f ] is contained in the smallest subgroup
containing ∪Σ(Di) ⊂ π1(M \D, b).

v1
v2

v3

v4 v5

v6 v7

α

[α] = [v5][v7][v4][v6][v2][v3][v1�]

5.7. Zariski van-Kampen theorem in general setting. Let f : M → C be
a surjective homomorphic map from a connected complex manifold M to a 1-
dimensional complex manifold C. Suppose that the following conditions are satis-
fied.

(a) The curve C is simply connected.
(b) There exists a holomorphic map s : C →M such that f ◦ s = idC holds.
(c) There exists a finite set Z of points of C such that the restriction f0 : M0 →

C \ Z of f to M0 := f−1(C \ Z) is a locally trivial fiber space

Here a locally trivial fiber space means in the category of topological spaces and
continuous maps. Let b be a base point of C \ Z, and let s(b) be a base point of
M0. We denote by Fb := f−1(b) the fiber over b, and by i : Fb ↪→ M the inclusion
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map. It is easy to see that M0 is path-connected. Because there is a section, Fb is
also path-connected. The fundamental group π1(C \Z, b) acts on π1(Fb, s(b)) from
right. We denote this action by

a �→ ag ( a ∈ π1(Fb, s(b)), g ∈ π1(C \ Z, b) ).

The following the theorem of Zariski van-Kampen in this general setting.

Theorem 5.7.1. (1) Suppose that the conditions (a), (b), (c) are satisfied. Then
i∗ : π1(Fb, s(b))→ π1(M, s(b)) is surjective.

(2) Suppose moreover that the following condition is satisfied:
(d) For each point p ∈ Z, the fiber f−1(p) is irreducible.

Then the kernel of i∗ : π1(Fb, s(b)) → π1(M, s(b)) is the smallest subgroup of
π1(Fb, s(b)) containing the subset

{ a−1ag | a ∈ π1(Fb, s(b)), g ∈ π1(C \ Z, b)}
of π1(Fb, s(b)).

Proof. Suppose that the conditions (a), (b), (c) are fulfilled.

We put
Z = {a1, . . . , aN},

and let Di denote the singular fiber f−1(ai) of f : M → C. The homomorphic
section s : C → M passes through a smooth point of Di for each ai ∈ Z. There
exist local holomorphic coordinates (z1, . . . , zm) of M with the center s(ai) and a
local holomorphic coordinate t of C with the center ai such that f is given by

(z1, . . . , zm) �→ t = z1

and s is given by
t �→ (t, 0, . . . , 0).

Let D1
i be the irreducible component of Di containing the point s(ai), and D2

i the
union of other irreducible components. We put

M ′ := M \
⋃
i

D2
i ,

and let f ′ : M ′ → C be the restriction of f . The homomorphic section s : C →M
is also a homomorphic section s : C →M ′ of f ′ : M ′ → C. The inclusion M ′ ↪→M
induces a surjective homomorphism π1(M ′, b̃) →→ π1(M, b̃). On the other hand,
f ′ : M ′ → C satisfies the condition (d), as well as (a), (b), (c). Hence, if (2) is
proved for f ′ : M ′ → C, then (1) will be proved for f : M → C. Therefore it is
enough to prove (2) under the assumptions (a), (b), (c), (d).

Now we assume that f : M → C satisfies (a), (b), (c), (d). We put

C0 := C \ Z, M0 := f−1(C0),

and let the restriction of f and s be denoted by

f0 : M0 → C0, s0 : C0 →M0,

respectively. Let j : M0 ↪→M and i0 : Fb ↪→M0 be the inclusions. Then π1(M0, b̃)
is isomorphic to the semi-direct product

π1(Fb, b̃) � π1(C0, b)
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constructed from the monodromy action of π1(C0, b) on π1(Fb, b̃). The isomorphism

π1(Fb, b̃) � π1(C0, b) ∼−→ π1(M0, b̃)

is given by
(u, v) �→ i0∗(u)s0∗(v).

Let gi : I → C0 be a lasso around ai ∈ Z with the base point b. Since C is simply
connected, π1(C0, b) is generated by the homotopy classes [gi] of these lassos. On
the other hand, s0 ◦ gi : I → M0 is a lasso around the irreducible hypersurface
Di with the base point b̃. Hence the kernel Ker j∗ of the surjective homomorphism
j∗ : π1(M0, b̃)→ π1(M, b̃) is the smallest normal subgroup containing the homotopy
classes [s0 ◦ gi] = s0∗([gi]). In other words, Ker j∗ is the smallest normal subgroup
of π1(M0, b̃) containing Im s0∗.

1�
Ker j0∗� ↖

1 −→ π1(Fb, b̃) −→
i0∗

π1(M0, b̃)
s0∗←−−→
f0∗

π1(C0, b) −→ 1�
π1(M, b̃)�

1

.

Hence the proof of Theorem is reduced to the proof of the following proposition of
group-theory.

Proposition 5.7.2. Suppose that a group H acts on a group N from right, and let
N �H be the semi-direct product. We consider N as a normal subgroup of N �H
by the injective homomorphism n �→ (n, eH), and H as a subgroup of N �H by the
injective homomorphism h �→ (eN , h). Let K be the smallest normal subgroup of
N � H containing H. Then the composite γ : N → (N � H)/K of N ↪→ N � H
and the natural homomorphism N �H → (N �H)/K is surjective, and its kernel
N ∩K is the smallest subgroup of N containing the set

S := { n−1nh | n ∈ N,h ∈ H }. (5.1)

Proof. Recall that the product in N � H is defined by

(n1, h1)(n2, h2) = (n1n
(h−1

1 )
2 , h1h2).

Since every element (n, h) ∈ N � H can be written (n, h) = (n, eH)(eN , h), this
element (n, h) is equal to (n, eH) modulo K. Therefore γ is surjective. Because

(n−1nh, eH) = (n, eH)−1(eN , h−1)(n, eH)(eN , h) ∈ K,

we have (s, eH) ∈ N∩K for any s ∈ S. Hence the smallest subgroup of N containing
S is contained in N ∩K. For n ∈ N , g, h ∈ H, we have

(n−1nh)g = (ng)−1(ng)(g
−1hg), (n−1nh)−1 = (nh)−1(nh)(h

−1).
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Therefore S is invariant under the action of H and the action s �→ s−1. Because

(n, h)−1(eN , g)(n, h) = ((n−1n(g−1))h, h−1gh),

the first component of an arbitrary element of K is contained in the smallest sub-
group of N containing S. Therefore N ∩K coincides with the smallest subgroup
of N containing S.

We consider the situation in the previous proposition. Suppose that N is gener-
ated by a subset ΓN ⊂ N , and H is generated by a subset ΓH ⊂ H. Then the
smallest subgroup of N containing S is equal to the smallest normal subgroup of
N containing

SΓ := { n−1nh | n ∈ ΓN , h ∈ ΓH }.
This follows from the following:

(n1n2)−1(n1n2)h = n−1
2 (n−1

1 nh1 )n2(n−1
2 nh2 ),

(n−1)−1(n−1)h = (n′−1n′(h′))−1 (n′ = (n−1)h),

n−1n(h1h2) = (n−1nh1)((nh1)−1(nh1)h2),

n−1n(h−1) = (n′−1n′h)−1 (n′ = n(h−1)).

Hence we obtain the following:

Corollary 5.7.3. Suppose that f : M → C satisfies the conditions (a), (b), (c),
(d) and

(e) π1(Fb, b̃) is a free group generated by α1, . . . , αd.

Suppose that π1(C\Z, b) is generated by γ1, . . . , γN . Then π1(M, b̃) is isomorphic
to the group defined by the presentation〈

α1, . . . , αd
∣∣∣ α

γj

i = αi

(
i = 1, . . . , d
j = 1, . . . , N

) 〉
.

6. Local fundamental group of curve singularities

Let us consider the the local fundamental group

π1((∆2ε ×∆2r) \ C)

of the curve singularity C defined by xp− yq = 0, which was considered above. Let
X be the complement (∆2ε×∆2r) \C, and let f : X → ∆2ε be the projection onto
the first factor. As was shown above, there is a holomorphic section x �→ (x, α) of
f : X → ∆2ε. The fundamental group of the fiber is the free group generated by
60, . . . , 6q−1. By introducing the auxiliary elements

m := 6q−16q−2 · · · 6160,
6j := ma6rm

−a when j = aq + r(0 ≤ r < q),

we can write the monodromy action of the generator γ ∈ π1(∆×
2ε) by

6γi = 6i+p.
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Hence, by the corollary, the fundamental group π1(X) is isomorphic to G defined
by the presentation below:

G :=

〈
m, 6j (j ∈ Z)

∣∣∣∣∣∣
m = 6q−16q−2 · · · 6160,
6j+q = m6jm

−1,
6j = 6j+p (the monodromy relation)

〉
.

Theorem 6.0.4. Suppose that p and q are prime to each other. Then the group G
has a simpler presentation G′ := 〈 α, β | αp = βq 〉.
Proof. For any integer j, let (Aj , Bj) be a pair of integers satisfying Ajq+Bjp = j.
From the relations 6j+q = m6jm

−1 and 6j = 6j+p, we have

6j+q−1 . . . 6j = 6Ajq+q−1 . . . 6Ajq = mAj (6q−1 . . . 60)m−Aj = m.

We define an element n ∈ G by

n = 6p−16p−2 · · · 6160.
Then we have

mp = 6qp−1 . . . 6160 = nq.

Hence we can define a homomorphism ϕ : G′ → G by

α �→ m, β �→ n.

We have
mAj 60m

−Aj = 6Ajq = 6Ajq+Bjp = 6j .

Let us calculate mA1nB1 . Since mA1+kpnB1−kq = mA1nB1 for any integer k, we
can assume B1 > 0 and A1 < 0. Then we have

mA1nB1 = (6|A1|q . . . 61)
−1(6B1p−1 . . . 60) = 60,

because B1p − 1 = |A1|q. Hence any 6j can be written as a word of m and n. In
particular, ϕ is surjective. It can be easily checked that

m �→ α, and 6j �→ αAj (αA1βB1)α−Aj

define an inverse homomorphism ϕ−1 : G→ G′. Note that, from αp = βq, the right-
hand side does not depend on the choice of (Aj , Bj). Thus ϕ is an isomorphism.

Corollary 6.0.5. The local fundamental group of the ordinary cusp x2− y3 = 0 is
〈 α, β | α2 = β3 〉.

7. Fundamental groups of complements to projective plane curves

7.1. Zariski-van Kampen theorem for projective plane curves. Let C ⊂ P
2

be a complex projective plane curve defined by a homogeneous equation

Φ(X,Y, Z) = 0

of degree d. Suppose that C is reduced; that is, Φ does not have any multiple factor.
We consider the fundamental group π1(P2 \ C). (Since P

2 \ C is path-connected,
π1(P2 \ C) does not depend on the choice of the base point.) We choose a point
a ∈ P

2 \ C. By a linear coordinate transformation, we can assume that

a = [0 : 0 : 1].

Since a /∈ C, the coefficient of Zd in Φ is not zero. Let L ⊂ P
2 be the line defined

by Z = 0. For a point p ∈ L, let pa ⊂ P
2 be the line connecting p and a. We put

X := { (p, q) ∈ L× P
2 | q ∈ pa },
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and let f̄ : X → L and ρ : X → P
2 be the projections onto each factors. If q 	= a,

then ρ−1(q) consists of a single point, while E := ρ−1(a) is isomorphic to L by f̄ .
The morphism ρ : X → P

2 is called the blowing up of P
2 at a, and E is called the

exceptional divisor.
We then put

X := X \ ρ−1(C),

and let f : X → L be the restriction of f̄ . Since E ∩ ρ−1(C) = ∅, ρ induces an
isomorphism from X \ E to P

2 \ (C ∪ {a}). We have the following commutative
diagram:

π1(X \ E) ∼−→ π1(P2 \ (C ∪ {a}))�� ��

π1(X) −→
(ρ|X)∗

π1(P2 \ C),

where the vertical arrows are induced from the inclusions. The right vertical arrow
is surjective because E is a proper subvariety of X, and the left vertical arrow is
an isomorphism because {a} is a proper subvariety of P

2 \ C with codimension 2.
Hence ρ|X induces an isomorphism from π1(X) to π1(P2 \ C). Therefore we will
calculate π1(X).

For p ∈ L, the intersection points of f̄−1(p) and ρ−1(C) is mapped by ρ to the
intersection points of pa and C bijectively. Suppose that p is the point [ξ : η : 0].
Then the line pa is given by an affine parameter t as follows:

{ [ξ : η : t] | t ∈ C ∪ {∞} },

where t =∞ corresponds to a. Hence the intersection points of pa and C correspond
to the roots of

Φ(ξ, η, t) = 0

bijectively. Let DΦ(ξ, η) be the discriminant of Φ(ξ, η, t) regarded as a polynomial
of t. We have assumed that Φ has no multiple factors. Therefore DΦ(ξ, η) is not
zero. It is a homogeneous polynomial of degree d(d− 1) in ξ and η. We put

Z := { [ξ : η : 0] ∈ L | DΦ(ξ, η) = 0 }.

If p ∈ L\Z, then f−1(p) is the line pa minus d distinct points. Hence the restriction
of f to f−1(L \ Z) is a locally trivial fiber space over L \ Z.

We choose a base point of X at b̃ ∈ E \ (E ∩ f−1(Z)), and let b := f(b̃) be the
base point of L. Let F be the fiber f−1(b) of f passing through b̃. The map

p �→ (p, a)

is the holomorphic section s : L → X of f : X → L that passes through b̃. The
image of s is E. Hence π1(L \ Z, b) acts on π1(F, b̃) from right. The projective
line L is simply connected. Every fiber of f is irreducible because it is a projective
line minus some points. Moreover π1(F, b̃) is the free group generated by homotopy
classes α1, . . . , αd−1 of d − 1 lassos around d − 1 points of F ∩ ρ−1(C). Hence we
can apply the corollary. Suppose that Z ⊂ L consists of e points. Then π1(L\Z, b)
is the free group generated by homotopy classes γ1, . . . , γe−1 of e− 1 lassos around
e− 1 points of Z.
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a

b

C

L

b̃

ρ−1(C)

E

ρ−1(L)

ρ

Figure 7.1. Blowing up at a

Theorem 7.1.1. The fundamental group π1(P2 \ C) is isomorphic to the group
defined by the presentation〈

α1, . . . , αd−1

∣∣∣ α
γj

i = αi

(
i = 1, . . . , d− 1
j = 1, . . . , e− 1

) 〉
.

7.2. An example. Let C be a nodal cubic curve defined by

F (X,Y, Z) := Y 2Z − (X + Z)X2 = 0.

Its affine part (Z 	= 0) is given by

y2 = x2(x+ 1) (x = X/Z, y = Y/Z).

Let [U : V : W ] be the homogeneous coordinates of the dual projective plane; that
is, a point [U : V : W ] corresponds to the line defined by

UX + V Y +WZ = 0.

The dual curve C∨ of C is defined by

G(U, V,W ) := −4WU3 + 36UV 2W − 27V 2W 2 − 8U2V 2 + 4V 4 + 4U4 = 0.

The defining polynomial G of C∨ is obtained by the following method. The inci-
dence variety

I := {(p, 6) ∈ C × C∨ | 6 is tangent to C at p}
is defined by the equation

F = 0, U − ∂F

∂X
= 0, V − ∂F

∂Y
= 0, W − ∂F

∂Z
= 0,

in P
2 × P

2. We calculate the Gröbner basis of the defining ideal of I with respect
to the lexicographic order. Since C∨ is the image of I by the second projection,
you can find G among the Gröbner basis. Solving the equation

∂G

∂U
=

∂G

∂V
=

∂G

∂W
= 0,

we see that C∨ has three singular points

[0 : 0 : 1], [
9
8

: ±
√
−27
8

: 1].

Looking at G locally around these points, we see that these three points are ordinary
cusps of C∨. Conversely, the dual curve of a three-cuspidal quartic curve is a nodal
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cubic curve. Since any nodal cubic curve is projectively isomorphic to C, any
three-cuspidal quartic curve is projectively isomorphic to C∨.

We blow up P
2 at

a = [1 : 0 : 0].
Note that a /∈ C∨. We put

L := {U = 0},
and let

s := V/W

be the affine parameter on L. The line connecting a and a point p = [0 : s : 1] of L
is given by

{[t : s : 1] | t ∈ C ∪ {∞}}
in terms of the affine parameter t, where t = ∞ corresponds to a. Hence the
intesection points of pa and C∨ corresponds to the roots of

G(t, s, 1) = 4 t4 − 4 t3 − 8 s2t2 + 36 s2t+ 4 s4 − 27 s2 = 0.

The discriminant of this equation is

−256 s4
(
64 s2 + 27

)3
.

You can easily check that the line connecting a and the point s =∞ on L does not
intersect C∨ transversely. It also follows from the fact that −256 s4

(
64 s2 + 27

)3

does not have the degree d(d − 1) = 12 of the homogeneous discriminant. Hence
we have

Z = { 0, ±
√
−27
8

, ∞ }.
The line connecting a and s = ∞ is the double tangent to C∨, which corresponds
to the node of (C∨)∨ = C. The other three lines connecting a and the points of Z
pass throgh the cusps of C∨. The line connecting a and s = 0 is the tangent line
at the cusp [0 : 0 : 1]; that is, the intersection multiplicity is 3. The other two lines
intersect C∨ at the cusps [9/8 : ±

√
−27/8 : 1] with intersection multiplicity 2.

We choose a base point b ∈ L \ Z at s = 1. Then the fundamental group
π1(L \ Z, b) is the free group generated by the homotopy classes α, ᾱ and β of of
the lassos indicated in Figure 7.2. The homotopy class of a lasso around the point
s =∞ of Z is equal to (αβᾱ)−1.

The line ba intersects C∨ at four points

A : t = 0.7886 . . . ,
B : t = 1.2200 · · ·+ 1.3353 . . . i.
C : t = −2.2287 . . . ,
D : t = 1.2200 · · · − 1.3353 . . . i.

The base point b̃ on the fiber is given by

t =∞.

The fundamental group π1(ba \ (ba ∩ C∨), b̃) is generated by the homotopy classes
a, b and c of of the lassos indicated in Figure 7.3. The homotopy class of the lasso
d in Figure 7.3 is equal to the product (cba)−1; that is we have

π1(ba \ (ba ∩ C∨), b̃) = 〈 a, b, c, d | dcba = 1 〉.
When a point p on L \ Z moves from the base point s = 1 to the point near
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Im

Re

the base point

α

β

ᾱ

Figure 7.2. The generators of π1(L \ Z, b)

a

b

c

d

Figure 7.3. The generators of π1(ba \ (ba ∩ C∨), b̃)

the deleted point s =
√
−27/8 along the line segment part of the lasso α, the

intersection points pa ∩ C∨ moves as in Figure 7.5. The two points C and D will
collide. This collision corresponds to the cusp [9/8 :

√
−27/8 : 1] of C∨. When

the point p goes around the deleted point s =
√
−27/8 in a counter-clockwise

direction, then the two points go around each other 3/2 times, and interchange
their positions. Actually, they move in the way as indicated in Figure 7.4. This is
the case p = 3, q = 2 in the previous section. When the point p goes back to the
base point, then the four points go back to the original point. The lassos a, b, c,
d around the points A, B, C, D are dragged by these movements, and become the
lassos ã, b̃, c̃, d̃ indicated in Figure 7.6. Since

cα = c̃ = dcdc−1d−1, dα = d̃ = dcdcd−1c−1d−1,
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C

D

Figure 7.4. The movement of C and D around s =
√
−27/8

A

B

C

D

Figure 7.5. The movement of points for the monodromy of α

ã

b̃

c̃

d̃

Figure 7.6. The new lassos after the monodromy action of α

we have

c = dcdc−1d−1, d = dcdcd−1c−1d−1,
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A

B D

C

Figure 7.7. The movement of points for the monodromy of β

A

B

C

Figure 7.8. The movement of A, B, C around s = 0

in π1(P2 \ C∨, a). These can be reduced to the simple relation

cdc = dcd.

By the same method, we see that the monodromy relation in π1(P2 \ C∨, a) corre-
sponding to ᾱ ∈ π1(L \ Z, b) is

ada = dad.

When a point p on L \ Z moves from the base point s = 1 to the point near
the deleted point s = 0 along the line segment part of the lasso β, the intersection
points pa ∩ C∨ moves as in Figure 7.7. The three points A, B, C colide. This
collision corresponds to the cusp [0 : 0 : 1] of C∨. When the point p goes around
the deleted point s = 0 in a counter-clockwise direction, then the three points go
around each other 2/3 times, and interchange their positions. See Figure 7.8. This
is the case p = 2, q = 3 in the previous section. Note that the line connecting s = 0
and a intersects C∨ at [0 : 0 : 1] with multiplicity 3. When the point p goes back
to the base point, the lassos a, b, c, d around the points A, B, C, D are dragged
and become the lassos ã, b̃, c̃, d̃ indicated in Figure 7.9. Since

aβ = ã = c, bβ = b̃ = d−1ad, cβ = c̃ = d−1bd,

we have
a = c, db = ad, dc = bd

in π1(P2 \ C∨, a).
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b̃

ã

c̃

d̃

Figure 7.9. The new lassos after the monodromy action of β

Combining all of these, we see that

π1(P2 \ C∨, a) =

〈
a, b, c, d

∣∣∣∣∣
dcba = 1,
cdc = dcd, ada = dad,
a = c, db = ad, dc = bd

〉
.

We can reduce the relations to

π1(P2 \ C∨, a) = 〈 c, d | cdc = dcd, c2d2 = 1 〉.

Putting α = cd, β = cdc, we have

π1(P2 \ C∨, a) = 〈 α, β | α3 = β2 = (βα)2 〉.

This group is the binary 3-dihedral group. Thus we obtain the following theorem
due to Zariski:

Theorem 7.2.1. The fundamental group of the complement to a three cuspidal
quartic curve is isomorphic to the binary 3-dihedral group.

Remark 7.2.2. Let us see the structure of the group

G := 〈 a, b | aba = bab, a2b2 = 1 〉.

From a2b2 = 1, we have ab2a = ba2b = 1. Hence

(aba)2 = a(ba2b)a = a2, (bab)2 = b(ab2a)b = b2.

From aba = bab, we have a2 = b2. We put c := a2 = b2. Then c is of order 2 and
in the center of G. Since the group

G/〈c〉 = 〈 a, b | aba = bab, a2 = b2 = 1 〉

is isomorphic t S3, we see thatG is a central extension of S3 by Z/(2). In particular,
G is a non-abelian finite group of order 12.
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7.3. Zariski conjecture and Zariski pairs. If a reduced plane curve C ⊂ P
2

consists of irreducible components of degree d1, . . . , dk, then H1(P2 \ C,Z) is iso-
morphic to

Z
k/(d1, . . . , dk)Z.

Suppose that π1(P2 \ C) is abelian. Then it is isomorphic to H1(P2 \ C,Z), and
hence it is determined by the degrees of the irreducible components.

When is π1(P2 \ C) abelian? We have the following theorem, which had been
known as Zariski conjecture since the publication of the paper [11], and was proved
by Fulton and Deligne around 1970 in [4] and [3].

Theorem 7.3.1. If C is nodal, then π1(P2 \ C) is abelian.

This theorem was proved, not by Zariski-van kampen’s theorem, but by Fulton-
Hansen’s connectedness theorem [6]. See [7] for the proof.

Several improvements of this theorem are known. One of them is the following
theorem, due to Nori [9].

Theorem 7.3.2. Let C be an irreducible curve of degree d with n nodes and k
cusps. If 2n+ 6k < d2, then π1(P2 \ C) is abelian.

Note that the fundamental group of the complement need not be determined
by the number and types of the singularity. The following is the classical example
discovered by Zariski.

Example 7.3.3. There exist two curves C1 and C2, both of which are of degree 6
and has 6 cusps as their only singularities, such that π1(P2 \ C1) is isomorphic to
Z/(6) while π1(P2 \ C2) is isomorphic to the free product of Z/(2) ∗ Z/(3).
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