THE AUTOMORPHISM GROUPS OF CERTAIN SINGULAR K3 SURFACES AND AN ENRIQUES SURFACE: COMPUTATIONAL DATA

ICHIRO SHIMADA

We explain the contents of the computational data for the paper

[*] I. Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface

that are presented in the author's web-page

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

The numbers of Tables, Theorems, etc. and various notations are according to the paper [*].

- In the file GramS.txt, we present the Gram matrix GramS[k] of the Néron-Severi lattice S_k of X_k with respect to the basis given in Corollary 3.5.
- In the file ample.txt, we present the ample vector ample[k] = a_k ∈ S_k that appears in Theorem 1.2 and Table 5.2.
- In the file AutXa.txt, we present all the elements of the finite group $AutXa[k] = Aut(X_k, a_k)$ as a list of 20×20 matrices in $O(S_k)$.
- In the file walls.txt, we present the orbit decomposition walls[k] of the set Δ(D⁽⁰⁾) of outward primitive defining vectors of walls of the induced chamber D⁽⁰⁾ ⊂ N(X_k) by the action of Aut(X_k, a_k). Each element of walls[k] is an orbit, which is a list of outward primitive defining vectors of walls. The orbits are listed in the same order as in Table 1.1.
- In the file Invols.txt, we present the set Invols[k, i] = Invols⁽ⁱ⁾_k of involutions, where i = 0,..., 12 for k = 0, i = 0,..., 12 for k = 1, and i = 0,..., 7 for k = 2. Each Invols[k, i] is a list of [M, type], where M is the 20 × 20 matrix that represents the involution, and type ∈ {.symp, _Enr, _rat} is the type of the involution. For i > 0, the involutions in Invols[k, i] = Invols⁽ⁱ⁾_k

Partially supported by JSPS Grants-in-Aid for Scientific Research (C) No.25400042 .

ICHIRO SHIMADA

map $D^{(0)}$ to the induced chamber $D^{(i)}$ adjacent to $D^{(0)}$ along the wall defined by the *first element* in the corresponding orbit in the list walls[k] of orbits.

- In the file EnriquesInvol.txt, we present the matrix representation of the Enriques involution EnriquesInvol := $\varepsilon_0^{(0)} \in \operatorname{Aut}(X_0, a_0)$ (Table 8.1).
- In the file NonSympOrder4.txt, we present the matrix representation of the purely non-symplectic automorphism NonSympOrder4 := $\rho_0^{(0)} \in \text{Aut}(X_0, a_0)$ of order 4 (Table 8.2).
- In the file hrhodata.txt, we present the data [hrho, nodes, lines], where hrho = h_ρ is the polarization of degree 4 of X₀ invariant under ρ₀⁽⁰⁾ (see Section 9.1), nodes is the orbit decomposition of the set of classes of smooth rational curves that are contracted to the 8 nodes of the quartic surface Y under the action of ⟨ρ₀⁽⁰⁾⟩ (an orbit [p₀, p₁, p₂, p₃] of length 4 and an orbit [q₀, q₁] of length 2), and lines is the orbit decomposition of the set of classes of smooth rational curves that are mapped to lines of Y isomorphically under the action of ⟨ρ₀⁽⁰⁾⟩ (9 orbits l_i = [ℓ_i, ℓ'_s, ℓ''_i, ℓ'''_i] of length 4).
- In the file SympInvol14.txt, we present the matrix representation of the symplectic involution SympInvol14 := $\sigma_1^{(4)} \in \text{Invols}_1^{(4)}$ (Table 8.6).
- In the file hsigmadata.txt, we present the data [hsigma, M, cusps, lines], where hsigma = h_{σ} is the polarization of degree 2 of X_1 invariant under $\sigma_1^{(4)}$ (see Section 9.4), M is the matrix representation of the double-plane involution $\tau(h_{\sigma})$, cusps is the list of the 7 pairs of classes of two smooth rational curves that are contracted to a singular point of Y (ordered as $q_0, q_1, q'_1, q_2, q'_2, q_3, q'_3)$, and lines is the list of the 10 pairs of classes of two smooth rational curves that are mapped isomorphically to a splitting line of B (ordered as ℓ_0, \ldots, ℓ_9).

For a polarization h of degree 2, the set $C_0(h)$ of the classes of smooth rational curves contracted by $X \to X_h$ is decomposed into the union of indecomposable root systems, and each indecomposable root system is presented in the form of

[the ADE-type, the list of roots in this system],

so that the ADE-type of Sing X_h is easily obtained.

• In the file three invols_AutXa.txt, we present the data three invols_AutXa[k] of the three involutions $\tau(h_k^{[1]})$, $\tau(h_k^{[2]})$, $\tau(h_k^{[3]})$ in Aut(X_k, a_k). The data three invols_AutXa[k] consists of three quartets [h, M, CO, C1], where $\mathbf{h} = h_k^{[i]}$

is the polarization of degree 2 in Tables 8.3, 8.4, 8.5, M is the matrix representation of the double-plane involution $\tau(h_k^{[i]})$, CO is the list $C_0(h_k^{[i]})$ formatted as above, and C1 is the list $C_1(h_k^{[i]})$.

In the file adjacentAutX.txt, we present the data adjacentAutX[k, i] of the automorphisms τ(˜h_k⁽ⁱ⁾) in Aut(X_k), where i = 1,..., 12 for k = 0, i = 1,..., 3, 5,..., 12 for k = 1, and i = 1,..., 7 for k = 2. The data adjacentAutX[k, i] is a quartet [h, M, CO, C1], where h = ˜h_k⁽ⁱ⁾ is the polarization of degree 2 in Tables 8.3, 8.4, 8.5, M is the matrix representation of the double-plane involution τ(˜h_k⁽ⁱ⁾), CO is the list C₀(˜h_k⁽ⁱ⁾) formatted as above, and C1 is the list C₁(˜h_k⁽ⁱ⁾).

We put

$$\operatorname{Aut}(X_k, a_k)' := \langle \tau(h_k^{[1]}), \tau(h_k^{[2]}), \tau(h_k^{[3]}) \rangle,$$

which is of index 2 (resp. 1) for k = 0 (resp. k = 1, 2) in Aut (X_k, a_k) , and

$$H_k := \begin{cases} \mathfrak{A}_6 \times \{\pm 1\} & \text{ if } k = 0, \\ \mathrm{PGL}_2(\mathbb{F}_9) & \text{ if } k = 1, 2. \end{cases}$$

Then we have an isomorphism ϕ : Aut $(X_k, a_k)' \cong H_k$ (see Section 8).

In the file Isom.txt, we present the list Isom[k] of the pairs [M, phi(M)], where M is an element of Aut(X_k, a_k)' and phi(M) is its image by the isomorphism φ. An element of G₀ = A₆ × {±1} is written in the form [[a₁, a₂, a₃, a₄, a₅, a₆], ±1], where [a₁, a₂, a₃, a₄, a₅, a₆] is the permutation

An element of $G_1 = G_2 = \text{PGL}_2(\mathbb{F}_9)$ is written in the form of the matrix [[a, b], [c, d]], where $a, b, c, d \in \mathbb{F}_9 = \mathbb{F}_3(\sqrt{2})$, that represents

$$z \mapsto \frac{az+b}{cz+d}.$$

For Borcherds method, we put the following data:

- In the file GramL.txt, we present the Gram matrix of L_{26} with respect to the basis (5.1).
- In the file w0.txt, we present the Weyl vector w_0 .
- In the file EmbS.txt, we present the embeddings $\varepsilon_k \colon S_k \hookrightarrow L_{26}$. The map $v \mapsto v \cdot \text{EmbS}[\mathbf{k}]$ gives the embedding $\varepsilon_k \colon S_k \hookrightarrow L_{26}$.

ICHIRO SHIMADA

• In the file EmbR.txt, we present the embeddings $R_k \hookrightarrow L_{26}$. The map $v \mapsto v \cdot \text{EmbR}[k]$ gives the embedding of the orthogonal complement R_k of S_k in L_{26} , where the basis of R_k form the standard root system of type $2A_2 + 2A_1$ (for k = 0), $A_3 + A_2 + A_1$ (for k = 1), $A_4 + A_2$ (for k = 2).

We also present the following data for the calculation of the automorphism group $\operatorname{Aut}(Z_0)$ of the Enriques surface $Z_0 := X_0 / \varepsilon_0^{(0)}$.

- In the file EmbZ.txt, we present a basis of the submodule S_0^+ of S_0 , which is identified with S_Z by π^* up to the multiplicative factor 2 on the intersection pairing. The rows of the 10×20 matrix EmbZ are the basis f_1, \ldots, f_{10} of Table 10.1.
- In the file GramSZ.txt, we present the Gram matrix GramSZ of the lattice $(S_Z, \langle , \rangle_Z)$ with respect to the basis f_1, \ldots, f_{10} .
- In the file prZMat.txt, we present the 20 × 10 matrix prZMat such that $v \mapsto v \cdot prZMat$ gives the orthogonal projection $pr_Z: S_0 \otimes \mathbb{R} \to S_Z \otimes \mathbb{R}$.
- In the file gensAutZ.txt, we present the matrix presentations of the generators

$\zeta(ho_0^{(0)})$	(zetaNonSympOrder4)
$\zeta(\tau(h_0^{[1]}))$	(zetainvol001),
$\zeta(\tau(h_0^{[2]}))$	(zetainvol002),
$\zeta(\tau(h_0^{[3]}))$	(zetainvol003),
$\zeta(\tau(\tilde{h}_0^{(3)}))$	(zetaadjinvol03).

• In the file DZ0.txt, the data of the chamber $D_Z^{(0)}$ is given. We present the interior point

aZ = [122, 60, -105, -136, -92, -182, -270, -168, -114, -58].

We also give the lists tildeorbit0 and tildeorbit3 of the vectors in the orbits \tilde{o}_0 and \tilde{o}_3 .

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp

4