ON EDGE'S CORRESPONDENCE ASSOCIATED WITH $\cdot 222$

COMPUTATIONAL DATA

ICHIRO SHIMADA

1. Introduction

This note explains the contents of the computational data for the paper [3], which is available as the text file "compdataEdge.txt" from the author's website

```
http://www.math.sci.hiroshima-u.ac.jp/~shimada/lattice.html
```

These data were made by GAP [2]. We use the notation defined in [3].

2. Conventions

- Each vector of Λ_{24} is written with respect to the standard basis of \mathbb{Z}^{M} (not with respect to the basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{24}$ given in BLambda).
- Suppose that two finite sets S and T of the same cardinality N are expressed as lists $\mathrm{S}=$ $\left[a_{1}, \ldots, a_{N}\right]$ and $\mathrm{T}=\left[b_{1}, \ldots, b_{N}\right]$, respectively. Then a bijection $F: S \rightarrow T$ is given by a list $[f(1), \ldots, f(N)]$ of positive integers $\leq N$, which indicates that $a_{i}^{F}=b_{f(i)}$ for $i=1, \ldots, N$. In particular, a permutation σ on S is given by a list $[s(1), \ldots, s(N)]$, which indicates that $a_{i}^{\sigma}=a_{s(i)}$ for $i=1, \ldots, N$.
- A list is always sorted in the standard way.
- The group $\operatorname{P\Gamma U}(6,4)$ acts on \mathbb{P}^{5} from the right. The orthogonal group $\mathrm{O}(L)$ of a lattice L acts on L from the right.
- The root $\omega \in \mathbb{F}_{4}$ of $x^{2}+x+1=0$ is written as omega.

3. The data

3.1. The Fermat cubic 4-fold X.

- XF4 is the list $X\left(\mathbb{F}_{4}\right)$ of \mathbb{F}_{4}-rational points on X. Each point is expressed by a row vector of length 6 with respect to the homogeneous coordinates $\left(x_{1}: \cdots: x_{6}\right)$ of \mathbb{P}^{5}. If an \mathbb{F}_{4}-rational point P of X appears at the i th position of XF4, then we put $\nu(P):=i$.
- PX is the list \mathcal{P}_{X} of planes contained in X. Each plane $\Pi \in \mathcal{P}_{X}$ is expressed by the list consisting 21 positive integers $\nu(P)$, where P runs through $\Pi\left(\mathbb{F}_{4}\right)$.

3.2. The Leech lattice Λ_{24}.

- C24 is the list of codewords of the extended binary Golay code \mathcal{C}_{24}. Each codeword is expressed by a subset of the set M of the positions $[1, \ldots, 24]$ of MOG.
- BLambda is the matrix B_{Λ} in Figure 4.12 of [1], with the scalar multiplication $1 / \sqrt{8}$ removed. The row vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{24}$ of BLambda considered as vectors of \mathbb{Z}^{M} form a basis of Λ_{24}.
- GramLeech is the Gram matrix of Λ_{24} with respect to the basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{24}$; that is, GramLeech is the symmetric matrix $(1 / 8) B_{\Lambda} \cdot{ }^{\mathrm{T}} B_{\Lambda}$.
- A is the point $A=\left(0^{21}, 4,0,-4\right)$.
- B is the point $B=\left(0^{21}, 0,4,-4\right)$.
- TAB is the list $\mathcal{T}_{A B}$.

3.3. The group $\mathrm{P} \Gamma \mathrm{U}(6,4)$.

- alpha is the 6×6 matrix $\alpha \in \mathrm{GU}(6,4)$.
- beta is the 6×6 matrix $\beta \in \operatorname{GU}(6,4)$.
- alphaXF4perm is the permutation of $X\left(\mathbb{F}_{4}\right)=\mathrm{XF} 4$ induced by the action of α on X.
- betaXF4perm is the permutation of $X\left(\mathbb{F}_{4}\right)=\mathrm{XF} 4$ induced by the action of β on X.
- gammaXF4perm is the permutation of $X\left(\mathbb{F}_{4}\right)=$ XF4 induced by the Frobenius action γ on X.
- alphaPXperm is the permutation of $\mathcal{P}_{X}=\mathrm{PX}$ induced by the action of α on X.
- betaPXperm is the permutation of $\mathcal{P}_{X}=\mathrm{PX}$ induced by the action of β on X.
- gammaPXperm is the permutation of $\mathcal{P}_{X}=\mathrm{PX}$ induced by the Frobenius action γ on X.

3.4. The Edge correspondence ϕ_{0}.

- Pi0 is the plane $\Pi_{0} \in \mathcal{P}_{X}$, expressed in the same way as in PX.
- Piinf is the plane $\Pi_{\infty} \in \mathcal{P}_{X}$, expressed in the same way as in PX.
- the21Pis is the list $S=\left\{\Pi_{1}, \ldots, \Pi_{21}\right\}$ of 21 planes $\Pi_{s} \in \mathcal{P}_{X}$ that satisfy $\operatorname{dim}\left(\Pi_{0} \cap \Pi_{s}\right)=1$ and $\operatorname{dim}\left(\Pi_{\infty} \cap \Pi_{s}\right)=-1$. Each member of the21Pis is expressed in the same way as in PX.
- wt5wordsHX is the list of codewords of weight 5 in $\mathcal{H}_{X} \subset 2^{S}$. A member $\left[i_{1}, \ldots, i_{5}\right]$ of wt5wordsHX expresses the word consisting of the i_{ν} th element of $S=$ the21Pis $(\nu=1, \ldots, 5)$.
- T0 is the lattice point $T_{0} \in \mathcal{T}_{A B}$.
- Tinf is the lattice point $T_{\infty} \in \mathcal{T}_{A B}$.
- the21Ts is the list M^{\prime} consisting of $T \in \mathcal{T}_{A B}$ satisfying $\left\langle T_{0}, T\right\rangle=0$ and $\left\langle T_{\infty}, T\right\rangle=1$.
- wt5wordsC21 is the list of codewords of weight 5 in $\mathcal{C}_{21} \subset 2^{M^{\prime}}$. A member $\left[j_{1}, \ldots, j_{5}\right]$ of wt5wordsC21 expresses the word consisting of the j_{ν} th element of $M^{\prime}=$ the21Ts $(\nu=1, \ldots, 5)$.
- varphi0 is the list expressing the bijection $\varphi_{0}: S \xrightarrow{\sim} M^{\prime}$ from $S=$ the21Pis to $M^{\prime}=$ the21Ts that induces an isomorphism $\mathcal{H}_{X} \cong \mathcal{C}_{21}$ of binary codes.
- phi0 is the list expressing the Edge correspondence $\phi_{0}:\left(\mathcal{P}_{X}, \nu_{\mathcal{P}}\right) \xrightarrow{\sim}\left(\mathcal{T}_{A B}, \nu_{\mathcal{T}}\right)$ from $\mathcal{P}_{X}=\mathrm{PX}$ to $\mathcal{T}_{A B}=\mathrm{TAB}$.

Let $\phi_{0}^{\prime}: \operatorname{P\Gamma U}(6,4) \rightarrow \operatorname{Aut}\left(\mathcal{T}_{A B}, \nu_{\mathcal{T}}\right)$ denote the composite of $\rho_{\mathcal{P}}: \operatorname{P\Gamma U}(6,4) \rightarrow \operatorname{Aut}\left(\mathcal{P}_{X}, \nu_{\mathcal{P}}\right)$ and the isomorphism $\operatorname{Aut}\left(\mathcal{P}_{X}, \nu_{\mathcal{P}}\right) \xrightarrow{\sim} \operatorname{Aut}\left(\mathcal{T}_{A B}, \nu_{\mathcal{T}}\right)$ induced by ϕ_{0}.

- alphaTABperm is the permutation of $\mathcal{T}_{A B}=$ TAB induced by $\phi_{0}^{\prime}(\alpha)$.
- betaTABperm is the permutation of $\mathcal{T}_{A B}=$ TAB induced by $\phi_{0}^{\prime}(\beta)$.
- gammaTABperm is the permutation of $\mathcal{T}_{A B}=$ TAB induced by $\phi_{0}^{\prime}(\gamma)$.
- alphatilde is the matrix $\tilde{\alpha}=\Psi_{0}(\alpha) \in \circ 222_{A B}$.
- betatilde is the matrix $\tilde{\beta}=\Psi_{0}(\alpha) \in \circ 222_{A B}$.
- gammatilde is the matrix $\tilde{\gamma}=\Psi_{0}(\alpha) \in \circ 222_{A B}$.

References

[1] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, third edition, 1999.
[2] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.7.9; 2015 (http://www.gap-system.org).
[3] Ichiro Shimada. On Edge's correspondence associated with $\cdot 222$. http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints, 2017.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: ichiro-shimada@hiroshima-u.ac.jp

