ON EDGE'S CORRESPONDENCE ASSOCIATED WITH ·222 COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

This note explains the contents of the computational data for the paper [3], which is available as the text file "compdataEdge.txt" from the author's website

http://www.math.sci.hiroshima-u.ac.jp/~shimada/lattice.html

These data were made by GAP [2]. We use the notation defined in [3].

2. Conventions

- Each vector of Λ_{24} is written with respect to the standard basis of \mathbb{Z}^M (not with respect to the basis $\mathbf{b}_1, \ldots, \mathbf{b}_{24}$ given in BLambda).
- Suppose that two finite sets S and T of the same cardinality N are expressed as lists $S = [a_1, \ldots, a_N]$ and $T = [b_1, \ldots, b_N]$, respectively. Then a bijection $F: S \to T$ is given by a list $[f(1), \ldots, f(N)]$ of positive integers $\leq N$, which indicates that $a_i^F = b_{f(i)}$ for $i = 1, \ldots, N$. In particular, a permutation σ on S is given by a list $[s(1), \ldots, s(N)]$, which indicates that $a_i^{\sigma} = a_{s(i)}$ for $i = 1, \ldots, N$.
- A list is always sorted in the standard way.
- The group $P\Gamma U(6, 4)$ acts on \mathbb{P}^5 from the *right*. The orthogonal group O(L) of a lattice L acts on L from the *right*.
- The root $\omega \in \mathbb{F}_4$ of $x^2 + x + 1 = 0$ is written as omega.

3. The data

3.1. The Fermat cubic 4-fold X.

- XF4 is the list X(𝔽₄) of 𝔽₄-rational points on X. Each point is expressed by a row vector of length 6 with respect to the homogeneous coordinates (x₁ : · · · : x₆) of 𝔼⁵. If an 𝔽₄-rational point P of X appears at the *i*th position of XF4, then we put ν(P) := *i*.
- PX is the list \mathcal{P}_X of planes contained in X. Each plane $\Pi \in \mathcal{P}_X$ is expressed by the list consisting 21 positive integers $\nu(P)$, where P runs through $\Pi(\mathbb{F}_4)$.

ICHIRO SHIMADA

3.2. The Leech lattice Λ_{24} .

- C24 is the list of codewords of the extended binary Golay code C_{24} . Each codeword is expressed by a subset of the set M of the positions $[1, \ldots, 24]$ of MOG.
- BLambda is the matrix B_{Λ} in Figure 4.12 of [1], with the scalar multiplication $1/\sqrt{8}$ removed. The row vectors $\mathbf{b}_1, \ldots, \mathbf{b}_{24}$ of BLambda considered as vectors of \mathbb{Z}^M form a basis of Λ_{24} .
- GramLeech is the Gram matrix of Λ_{24} with respect to the basis $\mathbf{b}_1, \ldots, \mathbf{b}_{24}$; that is, GramLeech is the symmetric matrix (1/8) $B_{\Lambda} \cdot {}^{\mathrm{T}}B_{\Lambda}$.
- A is the point $A = (0^{21}, 4, 0, -4)$.
- B is the point $B = (0^{21}, 0, 4, -4)$.
- TAB is the list \mathcal{T}_{AB} .

3.3. The group $P\Gamma U(6, 4)$.

- alpha is the 6×6 matrix $\alpha \in GU(6, 4)$.
- beta is the 6×6 matrix $\beta \in GU(6, 4)$.
- alphaXF4perm is the permutation of $X(\mathbb{F}_4) = XF4$ induced by the action of α on X.
- betaXF4perm is the permutation of $X(\mathbb{F}_4) = XF4$ induced by the action of β on X.
- gammaXF4perm is the permutation of $X(\mathbb{F}_4) = XF4$ induced by the Frobenius action γ on X.
- alphaPXperm is the permutation of $\mathcal{P}_X = PX$ induced by the action of α on X.
- betaPXperm is the permutation of $\mathcal{P}_X = PX$ induced by the action of β on X.
- gammaPXperm is the permutation of $\mathcal{P}_X = PX$ induced by the Frobenius action γ on X.

3.4. The Edge correspondence ϕ_0 .

- PiO is the plane $\Pi_0 \in \mathcal{P}_X$, expressed in the same way as in PX.
- Piinf is the plane $\Pi_{\infty} \in \mathcal{P}_X$, expressed in the same way as in PX.
- the21Pis is the list $S = \{\Pi_1, \ldots, \Pi_{21}\}$ of 21 planes $\Pi_s \in \mathcal{P}_X$ that satisfy $\dim(\Pi_0 \cap \Pi_s) = 1$ and $\dim(\Pi_{\infty} \cap \Pi_s) = -1$. Each member of the21Pis is expressed in the same way as in PX.
- wt5wordsHX is the list of codewords of weight 5 in $\mathcal{H}_X \subset 2^S$. A member $[i_1, \ldots, i_5]$ of wt5wordsHX expresses the word consisting of the i_{ν} th element of $S = \text{the21Pis} (\nu = 1, \ldots, 5)$.
- T0 is the lattice point $T_0 \in \mathcal{T}_{AB}$.
- Tinf is the lattice point $T_{\infty} \in \mathcal{T}_{AB}$.
- the21Ts is the list M' consisting of $T \in \mathcal{T}_{AB}$ satisfying $\langle T_0, T \rangle = 0$ and $\langle T_{\infty}, T \rangle = 1$.
- wt5wordsC21 is the list of codewords of weight 5 in $C_{21} \subset 2^{M'}$. A member $[j_1, \ldots, j_5]$ of wt5wordsC21 expresses the word consisting of the j_{ν} th element of $M' = \text{the21Ts} (\nu = 1, \ldots, 5)$.
- varphi0 is the list expressing the bijection $\varphi_0 \colon S \xrightarrow{\sim} M'$ from S = the21Pis to M' = the21Ts that induces an isomorphism $\mathcal{H}_X \cong \mathcal{C}_{21}$ of binary codes.

ON EDGE'S CORRESPONDENCE ASSOCIATED WITH -222: COMPUTATIONAL DATA

• phiO is the list expressing the Edge correspondence $\phi_0 : (\mathcal{P}_X, \nu_{\mathcal{P}}) \xrightarrow{\sim} (\mathcal{T}_{AB}, \nu_{\mathcal{T}})$ from $\mathcal{P}_X = \mathsf{PX}$ to $\mathcal{T}_{AB} = \mathsf{TAB}$.

Let $\phi'_0: \mathrm{P}\Gamma\mathrm{U}(6,4) \to \mathrm{Aut}(\mathcal{T}_{AB},\nu_{\mathcal{T}})$ denote the composite of $\rho_{\mathcal{P}}: \mathrm{P}\Gamma\mathrm{U}(6,4) \to \mathrm{Aut}(\mathcal{P}_X,\nu_{\mathcal{P}})$ and the isomorphism $\mathrm{Aut}(\mathcal{P}_X,\nu_{\mathcal{P}}) \xrightarrow{\sim} \mathrm{Aut}(\mathcal{T}_{AB},\nu_{\mathcal{T}})$ induced by ϕ_0 .

- alphaTABperm is the permutation of $\mathcal{T}_{AB} = \text{TAB}$ induced by $\phi'_0(\alpha)$.
- betaTABperm is the permutation of $\mathcal{T}_{AB} = \text{TAB}$ induced by $\phi'_0(\beta)$.
- gammaTABperm is the permutation of \mathcal{T}_{AB} = TAB induced by $\phi'_0(\gamma)$.
- alphatilde is the matrix $\tilde{\alpha} = \Psi_0(\alpha) \in \circ 222_{AB}$.
- betatilde is the matrix $\tilde{\beta} = \Psi_0(\alpha) \in \circ 222_{AB}$.
- gammatilde is the matrix $\tilde{\gamma} = \Psi_0(\alpha) \in \circ 222_{AB}$.

References

- J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, third edition, 1999.
- [2] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.7.9; 2015 (http://www.gap-system.org).
- [3] Ichiro Shimada. On Edge's correspondence associated with $\cdot 222.$

 $\verb+http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints, 2017.$

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: ichiro-shimada@hiroshima-u.ac.jp