BORCHERDS’ METHOD FOR ENRIQUES SURFACES:
COMPUTATIONAL DATA

ICHIRO SHIMADA

This note explains the contents of the computational data about the results of the paper [1] (joint work with Simon Brandhorst). The data is available at

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html

in the text file L10L26compdata.txt. In this data, we use the Record-format of GAP [2].

We fix a basis e_1, \ldots, e_{10} of L_{10} given in the paper [1].

- **stdNKconfigs** is the list of intersection matrices of the 7 Nikulin-Kondo configurations, sorted by the type I, II, ..., VII.
- **GramL10** is the Gram matrix of L_{10}. (Hence the Gram matrix of $S = L_{10}(2)$ is 2 times this matrix.)
- a_{10} is the interior point $a_{10} = e_1^\vee + \cdots + e_{10}^\vee$ of the Vinberg chamber V defined by $\langle x, e_i \rangle_{10} \geq 0$ for $i = 1, \ldots, 10$.
- **Embs** is a list of 17 records, each of which contains the data for one of the 17 primitive embeddings of $S = L_{10}(2)$ into L_{26}. The contents of each record in this list are explained below.

Let \texttt{irec} be a record corresponding to a primitive embedding $\iota: S = L_{10}(2) \hookrightarrow L_{26}$. Recall that R_i is the orthogonal complement of the image of ι in L_{26}. Then \texttt{irec} has the following contents.

- **irec.No** is the number of ι used in Tables of the paper [1].
- **irec.name** is the name of ι, which is one of the strings "12A", "12B", ..., "96C", "infty".
- **irec.GramL26** is a Gram matrix of L_{26} with respect to a certain fixed basis. We use this basis for other data in this record \texttt{irec}.
- **irec.embS** is the 10×26 integer matrix M such that $v \mapsto vM$ gives the embedding $\iota: S \hookrightarrow L_{26}$.
- **irec.embR** is the 16×26 integer matrix M' such that $v \mapsto vM'$ gives the embedding of R_i into L_{26} with respect to a certain fixed basis of R_i.
- **irec.GramR** is the Gram matrix of R_i with respect to the fixed basis.
- **irec.rootsR** is the list of (-2)-vectors of R_i.
- **irec.rootstypeR** is the ADE-type of (-2)-vectors of R_i, which is a list of strings of "A1", "A2",

Supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.
- \(\text{ires.m4R} \) is the number of \((-4)\)-vectors of \(R \).
- \(\text{ires.ogR} \) is the order of \(O(R) \).
- \(\text{ires.projS} \) is the \(26 \times 10 \) matrix \(P \) such that \(v \mapsto vP \) gives the orthogonal projection \(\text{pr}_S : L_{26} \to S' \).
- \(\text{ires.projR} \) is the \(26 \times 16 \) matrix \(P' \) such that \(v \mapsto vP' \) gives the orthogonal projection \(\text{pr}_R : L_{26} \to R'_v \).
- \(\text{ires.weyl} \) is the Weyl vector \(w \in L_{26} \) such that \(D : = \{ P(C(w)) \} \) is an induced chamber in \(\mathcal{P}(L_{10}) \), where \(C(w) \subset \mathcal{P}(L_{26}) \) is the Conway chamber corresponding to \(w \).
- \(\text{ires.weylprime} \) is another Weyl vector \(w' \in L_{26} \) such that \(\langle w, w' \rangle_{26} = 1 \), so that \(a_{26} = 2w + w' \) is an interior point of \(C(w) \).
- \(\text{ires.VR} \) is the list of vectors \(v \) of \(R'_v \) such that \(\langle v, v \rangle_{R} = 1 \), that is, the list of vectors in \(V_R \) in Table 2.1 of [1].
- \(\text{ires.walls} \) is the list of \((-2)\)-vectors defining the walls of the induced chamber \(D \). For the embedding of type \text{infty}, this list is a string "infty".
- \(\text{ires.volindex} \) is \(|O(L_{10}) \otimes \mathbb{F}_2| = 4699591897600 \) devided by the number of Vinberg chambers contained in \(D \). For the embedding of type \text{infty}, this list is a string "infty".
- \(\text{ires.orderOL10D} \) is the order of the group of isometries of \(L_{10} \) that maps \(D \) to \(D \), that is, the order of \(O(L_{10}, D) \). For the embedding of type \text{infty}, this item is a string "infty".
- \(\text{ires.generatorsOL10D} \) is a generating set of \(O(L_{10}, D) \). Neither irredundancy nor minimality is proved for this generating set. For the embedding of type \text{infty}, this item is a string "infty".
- \(\text{ires.interiorpt} \) is an interior point \(a_{10} \) of \(D \) that is fixed under the action of \(O(L_{10}, D) \). For the embedding of type \text{infty}, this item is a string "infty".
- \(\text{ires.NK} \) is the Nikulin-Kondo type of the induced chamber \(D \), which is one of the strings "I", "II", ..., "VII", or "not corresponding to Nikulin-Kondo".
- \(\text{ires.NKisom} \) gives an isomorphism from the set of walls of \(D \) to the vertices of the standard Nikulin-Kondo configuration. Suppose that \(D \) is of Nikulin-Kondo type \(\tau \) with \(n \) vertices, where \(n = 12 \) or \(20 \). Then \(\text{ires.NKisom} = [\nu_1, ..., \nu_n] \) means that the bijection that maps \(i \)th wall in \(\text{ires.walls} \) to the \(\nu_i \)th vertex of the standard Nikulin-Kondo configuration of type \(\tau \) in \text{stdNKconfigs} \) preserves the intersection matrix. If \(\text{ires.NK} \) is "not corresponding to Nikulin-Kondo", then \(\text{ires.NKisom} \) is also "not corresponding to Nikulin-Kondo".
- \(\text{ires.isomto} \): If the induced chamber \(D \) is isomorphic to the induced chamber \(D' \) of a primitive embedding \(\iota' \) of type different from \(\text{ires.name} \), then...
irec.isomto is the pair of the name of \(\iota' \) and a bijection from the set of walls of \(D \) to the set of walls of \(D' \) that preserves the intersection matrix. The bijection is given in the same way as \(\textsf{irec.NKisom} \). If there exists no such primitive embedding \(\iota' \), then \(\textsf{irec.isomto} \) is an empty list \([\]\).

- **irec.wallrecs** is a list of records, each of which contains the data about a wall \(w \) of \(D \). For the embedding of type \textit{infty}, this list is a string “\textit{infty}”.

The contents of each record in this list are explained below.

Let \(\textsf{wrec} \) be a record in \(\textsf{irec.wallrecs} \) corresponding to a wall \(w = D \cap (r)\perp \) of the induced chamber \(D := \iota_r^{-1}(C(w)) \), where \(\iota \) is not of type \textit{infty}. Then \(\textsf{wrec} \) has the following contents. See the proof of Proposition 2.7 of \([1]\) for notation.

- \(\textsf{wrec.r} \) is the \((-2)\)-vector \(r \) of \(L_{10} \) that defines the wall \(w = D \cap (r)\perp \).
- \(\textsf{wrec.rlifts} \) is the list of \((-2)\)-vectors \(\hat{r} \) of \(L_{26} \) such that \(\langle w, \hat{r} \rangle_{26} = 1 \) and \(\iota_r^{-1}(\hat{r}\perp) = (r)\perp \).
- \(\textsf{wrec.embQ} \) is the \(17 \times 26 \) integer matrix \(M \) such that \(v \mapsto vM \) is the embedding \(Q \hookrightarrow L_{26} \) under a certain fixed basis of \(Q \).
- \(\textsf{wrec.GramQ} \) is the Gram matrix of \(Q \) with respect to the fixed basis of \(Q \).
- \(\textsf{wrec.embQperp} \) is the \(9 \times 26 \) integer matrix \(M \) such that \(v \mapsto vM \) is the embedding \(Q\perp \hookrightarrow L_{26} \) under a certain fixed basis of \(Q\perp \).
- \(\textsf{wrec.GramQperp} \) is the Gram matrix of \(Q\perp \) with respect to the fixed basis of \(Q\perp \).
- \(\textsf{wrec.rootsQ} \) is the list of \((-2)\)-vectors of \(Q \).
- \(\textsf{wrec.rootstypeQ} \) is the ADE-type of the set of \((-2)\)-vectors of \(Q \).
- \(\textsf{wrec.Sigma} \) is the list of \((-2)\)-vectors in \(\Sigma \).
- \(\textsf{wrec.adjweyl} \) is the Weyl vector \(w' \) corresponding to the Conway chamber \(C(w') \) such that \(\iota_r^{-1}(C(w')) \) is the induced chamber adjacent to \(D \) across the wall \(w = D \cap (r)\perp \).
- \(\textsf{wrec.thegtilde} \) is the isometry \(\tilde{g} \in O(L_{26}, \mathcal{P}) \) such that \(\tilde{g} \) preserves the image of \(\iota : S \hookrightarrow L_{26} \) and that its restriction \(\tilde{g}|S \) to \(S \) maps \(D \) to the induced chamber adjacent to \(D \) across the wall \(w = D \cap (r)\perp \). The existence of this isometry proves Proposition 2.7 of \([1]\).
- \(\textsf{wrec.theg} \) is the isometry \(g = \tilde{g}|S \) of \(L_{10} \). We can check that this isometry is equal to the reflection with respect to \(\textsf{wrec.r} \).

References
