A NOTE ON QUEBBEMANN'S EXTREMAL LATTICES OF RANK 64: COMPUTATION DATA

ICHIRO SHIMADA

This note is the explanation of the computation data that are used to obtain the main result of the paper
[Q] I. Shimada: A note on Quebbemann's extremal lattices of rank 64.
The data and the paper above are available from the author's webpage [1]. The data are made by GAP (see [2]).

We use the notions and notation of the paper [Q].
The matrix GramE is the Gram matrix of E with respect to the basis e_{1}, \ldots, e_{8}.
The matrix GramS is the Gram matrix of $S=E^{8}$ with respect to the basis

$$
\begin{equation*}
e_{1}^{(1)}, \ldots, e_{8}^{(1)}, e_{1}^{(2)}, \ldots, e_{8}^{(2)}, \ldots \ldots \ldots, e_{1}^{(8)}, \ldots, e_{8}^{(8)} . \tag{0.1}
\end{equation*}
$$

(See (3.2) of the paper [Q].)
The matrices VObasis, WIbasis, WIIbasis are the bases of the maximal isotropic subspaces $V_{0}, W^{\mathrm{I}}, W^{\mathrm{II}}$ of $U=E / 3 E$ with respect to the basis e_{1}, \ldots, e_{8}. (See Table 2.1 of the paper [Q].)

The other part of the data consists of records Qrec. Each record Qrec describes a Quebbemann lattice $Q=Q(\Delta, B)$ obtained by $\Delta \in \mathcal{D}^{8}$ and a ternary code $B \subset V_{T}$ satisfying p_{2}-condition. The record Qrec has the following components.

- no is the number of this example $Q=Q(\Delta, B)$. If Qrec.no ≤ 1000, then the component Qrec.Aut below is "trivial", whereas if Qrec.no > 1000, then the component Qrec.Aut is "order8".
- Aut is either "trivial" or "order8". In the former case, we have $\mathrm{O}(Q)=$ $\{ \pm 1\}$, and in the latter case, we have $\mathrm{O}(Q) \cong\{ \pm 1\} \times \mathbb{Z} / 8 \mathbb{Z}$.
- Delta indicates $\Delta \in \mathcal{D}^{8}$ that is used in the construction of $Q=Q(\Delta, B)$. Delta is a sequence $\left[i_{1}, \ldots, i_{8}\right]$ of 8 indexes $i_{j} \in\{1,2\}$, which means

$$
\Delta=\left(\left(V_{0}, W_{1}\right), \ldots,\left(V_{0}, W_{8}\right)\right)
$$

where, for $j=1, \ldots, 8$, the second factor W_{j} is W^{I} (reps. W^{II}) if $i_{j}=1$ (resp. $i_{j}=2$). (The first factors are all V_{0}, and hence $V_{T}=V_{0}^{8}$.)

- Bbasis is an 8×32 matrix with \mathbb{F}_{3}-components whose row vectors form a basis of the ternary code $B \subset V_{T}=V_{0}^{8}$. Each row vector v is of the form $\left(v_{1}|\ldots| v_{8}\right)$, where $v_{j} \in V_{0}$ is the $j^{\text {th }}$ component of $v \in B$ and is written with respect to the basis VObasis of V_{0}.
- Bperpbasis is a 24×32 matrix with \mathbb{F}_{3}-components whose row vectors form a basis of the ternary code $B^{\perp} \subset W_{T}=W_{1} \oplus \cdots \oplus W_{8}$. Each row vector v is of the form $\left(v_{1}|\ldots| v_{8}\right)$, where $v_{j} \in W_{j}$ is the $j^{\text {th }}$ component of $v \in B^{\perp}$ and is written with respect to the basis WIbasis (resp. WIIbasis) of $W_{j} \cong W^{\mathrm{I}}$ (resp. $W_{j} \cong W^{\mathrm{II}}$).
- Qbasis is a 64×64 matrix with \mathbb{Z}-components whose row vectors form a basis of $Q=Q(\Delta, B) \subset S=E^{8}$. Each row vector $v \in Q$ is written with respect to the basis (0.1) of $S=E^{8}$.
- GramQ is the Gram matrix of Q with respect to the basis Qbasis, that is, GramQ is equal to ($1 / 3$) • Qbasis • GramS • ${ }^{t}$ Qbasis, where ${ }^{t}$ Qbasis is the transposed matrix of Qbasis.
- minvects is the list of minimal-norm vectors of Q modulo the action of $\{ \pm 1\}$. Each vector is written with respect to the basis (0.1) of $S=E^{8}$ (not with respect to the basis Qbasis of Q). From each pair $\{v,-v\}$ of minimalnorm vectors, we choose the one whose left-most nonzero component is positive. The size of minvects is therefore 1305600 .
- intpatterns is the list of intersection patterns of minimal-norm vectors.

The $i^{\text {th }}$ element of this list is the intersection pattern $a\left(v_{i}\right)=\left[a_{1}\left(v_{i}\right), a_{2}\left(v_{i}\right), a_{3}\left(v_{i}\right)\right]$ of the $i^{\text {th }}$ element v_{i} of minvects.

- distribution describes the distribution A_{Q} of intersection patterns of Q by a list of $\left[a, A_{Q}(a)\right]$, where $a=\left[a_{1}, a_{2}, a_{3}\right]$ runs through the set of intersection patterns such that $A_{Q}(a)>0$. The elements $\left[a, A_{Q}(a)\right]$ in this list are sorted according to the lexicographic order on the $1^{\text {st }}$ component $a=\left[a_{1}, a_{2}, a_{3}\right]$.
- rigidifying is a 64×64 matrix with \mathbb{Z}-components whose row vectors form a Γ-rigidifying basis, where $\Gamma=\{ \pm 1\}$ when Qrec.Aut is "trivial", and $\Gamma=\{ \pm 1\} \times\left\langle\tilde{\gamma}_{Q}\right\rangle$ when Qrec.Aut is "order8".

When Qrec.Aut is "order8", the ternary code B is of the form $B(\gamma, v)$ and the record Qrec has the following additional components.

- gamma is the matrix representation of $\gamma \in \mathrm{O}(E)$ with respect to the basis e_{1}, \ldots, e_{8} of E.
- gammatilde is the matrix representation of $\tilde{\gamma} \in \mathrm{O}(S)$ with respect to the basis (0.1) of S.
- generatorv is the vector $v=\left(v_{1}|\ldots| v_{8}\right) \in V_{T}=V_{0}^{8}$, where each $v_{i} \in V_{0}$ is written with respect to the basis VObasis. Then the $k^{\text {th }}$ row vectors of Bbasis is $v^{\left(\tilde{\gamma}^{k}\right)}$.
- orbits is the list of indexes $\left\{k_{1}, \ldots, k_{8}\right\}$ such that the vectors at $k_{j}{ }^{\text {th }}$ positions $(j=1, \ldots, 8)$ in the list Qrec.minvects form an orbit of the action of $\mathrm{O}(Q) /\{ \pm 1\} \cong \mathbb{Z} / 8 \mathbb{Z}$ on $\operatorname{Min}(Q) /\{ \pm 1\}$.

Remark 0.1. We have produced $300+100$ records Qrec, 300 records with Qrec.Aut being "trivial" and 100 records with Qrec.Aut being "order8". We put only
$10+10$ of them on the webpage, because of the restriction on the disk usage. Their names are Qrec1 . . .Qrec10 and Qrec1001 ... Qrec1010.

Remark 0.2. The $2+2$ examples explained in Section 4 of the paper [Q] is Qrec1, Qrec2 and Qrec1001, Qrec1002.

References

[1] Ichiro Shimada. A note on Quebbemann's extremal lattices of rank 64: computation data. http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html, 2021.
[2] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.11.0; 2020 (http: //www.gap-system.org).

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp

