ON A SMOOTH QUARTIC SURFACE CONTAINING 56 LINES WHICH IS ISOMORPHIC AS A K3 SURFACE TO THE FERMAT QUARTIC: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

We give an explanation of the computational data that are used in the paper

 $[\rm X56~]$ I. Shimada and T. Shioda: On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic,

http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints.html

and available from the author's webpage

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

All data is written on a single text file X56compdata.txt (13.6 MB). The complex number

$$\zeta = \exp(2\pi\sqrt{-1}/8)$$

is expressed as zeta. We use the same notation as [X56].

2. Explanation of the computational data

2.1. The lines on X_{48} .

- LineTags48 The list of tags of the 48 lines on X_{48} .
- LineEqs48 The list of equations of the 48 lines on X_{48} , which is sorted according to LineTags48. The *k*th equation is given as a 2×4 matrix M_k with components in $\mathbb{Q}(\zeta)$ in the row-reduced echelon form, and the *k*th line is defined by $M_k x = 0$, where $x = [x_1, x_2, x_3, x_4]^T$.
- LineIntNumbs48 The 48×48 matrix of the intersection numbers of lines on X_{48} . The rows and columns are sorted according to LineTags48.
- BasisSX The tags of the 20 lines $[l_1], \ldots, [l_{20}]$ that form a basis of S_X .
- GramSX The Gram matrix G_{S_X} of S_X with respect to the basis $[l_1], \ldots, [l_{20}]$ of S_X .
- h48 The class h_{48} .
- LineClasses48 The list \mathcal{F}_{48} of classes of lines on X_{48} , which is sorted according to LineTags48.
- taupoints The list of τ -points.

In the following, the *i*th line ℓ_i on X_{48} means the line labelled by the *i*th tag in LineTags48.

• basisnumbs48 A list $[i_1, \ldots, i_{20}]$ such that the classes $[\ell_{i_j}]$ of the i_j th line on X_{48} form a basis of S_X .

ICHIRO SHIMADA

- 2.2. The lattice S_X .
 - discSXreps The vectors s_1 and s_2 of S_X^{\vee} in the dual representation.
 - discSX The discriminant form with respect to the basis σ_1, σ_2 of disc (S_X) .
 - discSXproj The matrix P that expresses the projection $S_X^{\vee} \to \operatorname{disc}(S_X)$ with respect to the dual basis of S_X^{\vee} and the basis σ_1, σ_2 of disc (S_X) .
 - OqSX The group $O(q_{S_X})$.
 - GramT The Gram matrix of T with respect to the basis t_1, t_2 .
 - discTreps The vectors t_1^{\vee} and t_2^{\vee} of T^{\vee} in the dual representation, that is, [1,0] and [0,1].
 - discT The discriminant form with respect to the basis τ_1, τ_2 of disc(T).
 - discTproj The matrix that expresses the projection $T^{\vee} \to \operatorname{disc}(T)$ with respect to the dual basis t_1^{\vee}, t_2^{\vee} of T^{\vee} and the basis τ_1, τ_2 of disc(T).
 - OT The group O(T).
 - OqT The group $O(q_T)$.
 - GammatildeT The group Γ_T .
 - etaTGammatildeT The subgroup $\eta_T(\tilde{\Gamma}_T)$ of $O(q_T)$.
 - Isoms The list of isomorphisms from q_{S_X} to $-q_T$.
 - GammaSX The subgroup Γ_{S_X} of $O(q_{S_X})$.

2.3. The groups associated with X_{48} .

- Gtilde48 The group G_{48} as a list of 20×20 matrices in $O(S_X)$.
- Gtilde48Perms The group \tilde{G}_{48} as a list of permutations on \mathcal{F}_{48} . An element $[i_1, \ldots, i_{48}]$ of this list maps the class $[\ell_j]$ to the class of $[\ell_{i_j}]$ for $j = 1, \ldots, 48$. The list Gtilde48Perms is sorted according to the list Gtilde48.
- G48 The group G_{48} as a list of 20×20 matrices in $O(S_X)$.
- G48Perms The group G_{48} as a list of permutations on \mathcal{F}_{48} . The list G48Perms is sorted according to the list G48.
- Gal The group $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ as a subgroup of Gtilde48.
- GalPerms The group $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ as a subgroup of Gtilde48Perms. The list GalPerms is sorted according to the list Gal.
- 2.4. The orbit decomposition of the set of pairs of lines on X_{48} by G_{48} .
 - OrbitsOfPairs The list of the orbits o_1, \ldots, o_8 . Each orbit is a list of pairs [i, j], which denote the pairs $\{\ell_i, \ell_j\}$.
 - OrbitsMat The 48 × 48 matrix whose (i, j) component is k if $\{\ell_i, \ell_j\} \in o_k$ and 0 if i = j.
 - Aos The list of the matrices $A(o_1), \ldots, A(o_8)$.

2.5. The sets \mathcal{H}_5 and \mathcal{H}_6 . The lists H5reps and H6reps are the list of orbits in the sets \mathcal{H}_5 and \mathcal{H}_6 under the action of G_{48} . Each list consists of the data

[v, size, flags],

where v is a representative of the orbit, size is the size of the orbit, and flags has the following meaning:

- if flags is [false], then v is not nef,
- if flags is [true, false], then v is nef, but $|\mathcal{L}_v|$ has a fixed-component,
- if flags is [true, true, false], then v is nef, $|\mathcal{L}_v|$ is fixed-component free, but the morphism $\Phi_v \colon X_{48} \to \mathbb{P}^3$ is hyperelliptic,

 $\mathbf{2}$

- A SMOOTH QUARTIC SURFACE CONTAINING 56 LINES: COMPUTATIONAL DATA 3
 - if flags is [true, true, false, R], then v is nef, $|\mathcal{L}_v|$ is fixed-component free, $\Phi_v: X_{48} \to \mathbb{P}^3$ is non-hyperelliptic, but the image X_v of Φ_v has singularities of ADE-type R (for example, R = ["A1", "A1"] means that X_v has two ordinary nodes as its only singularities), and
- if flags is [true, true, true, true, n], then v is very ample and X_v is contains exactly n lines.

The representative element v of an orbit is chosen so that the vector representation of v with respect to the basis $[l_1], \ldots, [l_{20}]$ of S_X is minimal with respect to the lexicographic order.

- 2.6. The surface X_{56} .
 - X56Pols The list of X_{56} -polarizations. This list consists of two lists of size 192, each of which is an orbit under the action of G_{48} .
 - X56ConfigOrbitsMat The 7×7 matrix that defines the X_{56} -configuration; that is, a 7-tuple $(\ell'_1, \ldots, \ell'_7)$ of lines on X_{48} is an X_{56} -configuration if $\{\ell'_i, \ell'_j\}$ is in o_k for $i, j = 1, \ldots, 7$ with $i \neq j$, where k is the (i, j) component of X56ConfigOrbitsMat. (The diagonal components of X56ConfigOrbitsMat are set to be 0.)
 - X56Configs The list of X_{56} -configurations. Each member is an ordered list $[i_1, \ldots, i_7]$, which indicates the list $(\ell_{i_1}, \ldots, \ell_{i_7})$ of seven lines on X_{48} that form an X_{56} -configuration.
 - TheX56Config The fixed X_{56} -configuration $(\ell_1, \ell_{11}, \ell_3, \ell_{17}, \ell_{22}, \ell_{36}, \ell_{18})$ that gives the X_{56} -polarization h_{56} , given as [1, 11, 3, 17, 22, 36, 18]. See (4.2) of [X56].
 - h56 The class h_{56} .
 - A $A = -1 2\zeta 2\zeta^3$.
 - B $B = 2 2\zeta 2\zeta^3$.
 - Psi The equation Ψ .
 - fPolys The homogeneous cubic polynomials f_1, \ldots, f_4 in x1, x2, x3, x4.

The following are the data used in the proof of Theorem 4.6 in [X56].

- BasisGamma3 The basis of the 20-dimensional linear space Γ₃, consisting of monomials in x1, x2, x3, x4 of degree 3.
- M56 The 24×20 matrix \mathcal{M}_{56} such that the solution space of the linear equation $\mathcal{M}_{56}z = 0$ defines the 4-dimensional subspace $H^0(X, \mathcal{L}_{h_{56}})$ of Γ_3 with respect to the basis BasisGamma3.
- fVects The basis f_1, \ldots, f_4 of the solution space of $\mathcal{M}_{56}z = 0$, written as row vectors with respect to the basis BasisGamma3.
- BasisbarGamma12 A basis of the 290-dimensional linear space Γ_{12} , consisting of monomials in x1, x2, x3, x4 of degree 12 with the degree with respect to x1 is ≤ 3 .
- BasisSigma4 A basis of the 35-dimensional linear space Σ₄, consisting of monomials in y1, y2, y3, y4 of degree 4.
- rhosigma The 290×35 matrix representing the linear map $\rho \circ \sigma \colon \Sigma_4 \to \Gamma_{12}$ with respect to the bases BasisSigma4 and BasisbarGamma12.
- PsiVect The equation $\Psi \in \Sigma_4$ represented as a row vector with respect to the basis BasisSigma4 of Σ_4 .
- 2.7. The lines on X_{56} .

ICHIRO SHIMADA

- LineClasses56 The list \mathcal{F}_{56} of classes of lines on X_{56} . The lines on X_{56} are sorted according to this list, that is, the *k*th line on X_{56} means the line on X_{56} whose class is the *k*th vector of LineClasses56.
- LineIntNumbs56 The 56×56 matrix of the intersection numbers of lines on X_{56} . The rows and columns are sorted according to LineClasses56.
- LineEqs56 The list of equations of the 56 lines on X_{56} . The *k*th equation is given as a 2 × 4 matrix M_k with components in $\mathbb{Q}(\zeta)$ in the row-reduced echelon form, and the *k*th line is defined by $M_k y = 0$, where $y = [y_1, y_2, y_3, y_4]^T$.

2.8. The groups associated with X_{56} .

- basisnumbs56 A list $[i_1, \ldots, i_{20}]$ such that the classes of the i_j th line on X_{56} form a basis of S_X .
- Gtilde56 The group \tilde{G}_{56} as a list of 20×20 matrices in $O(S_X)$.
- Gtilde56Perms The group \hat{G}_{56} as a list of permutations on \mathcal{F}_{56} . An element $[i_1, \ldots, i_{56}]$ of this list maps the class of the *j*th line on X_{56} (that is, the *j*th vector of LineClasses56) to the class of the i_j th line on X_{56} (that is, the i_j th vector of LineClasses56) for $j = 1, \ldots, 56$. The list Gtilde56Perms is sorted according to the list Gtilde56.
- G56 The group G_{56} as a list of 20×20 matrices in $O(S_X)$.
- G56Perms The group G_{56} as a list of permutations on \mathcal{F}_{56} . The list G56Perms is sorted according to the list G56.
- G56PGL The group G_{56} as a list of elements of $\operatorname{PGL}_3(\mathbb{C})$. The list G56PGL is sorted according to the list G56Perms, in the sense that, for the *i*th element g of G56PGL, the mapping $[\lambda] \mapsto [g(\lambda)]$ induces the *i*th permutation in G56Perms. CAUTION: Hence the representation of the *i*th element g of G56PGL on S_X is not the *i*th element f of G56, but its inverse f^{-1} , because the representation is defined by the pull-back.
- GeneratorsG56 A set of generators of G56 consisting of two elements.
- GeneratorsG56Perms The generators of G56Perms corresponding the two elements in GeneratorsG56.
- GeneratorsG56PGL The generators of G56PGL corresponding the two elements in GeneratorsG56. These two matrices are γ_1 and γ_2 in Theorem 4.9 of [X56].
- OrbitsLines56 The orbit decomposition of lines on X_{56} under the action of G_{56} . Each orbit is a list $[i_1, \ldots, i_t]$, which denote the orbit consisting of the i_j th lines for $j = 1, \ldots, t$.

2.9. The reductions.

- PsivarA The equation Ψ with A written as varA and B written as varA+3.
- F56prime The subset \mathcal{F}'_{56} of S_X^{\vee} . Each element is given as a row vector with respect to the basis $[l_1], \ldots, [l_{20}]$ of S_X .

2.10. The reduction at P_3 .

• LineEqs56P3 The list of $[M_{\lambda}, U_{\lambda}, \overline{U_{\lambda}M_{\lambda}}]$, where M_{λ} is the defining matrix of a line λ on X_{56} given in LineEqs56, and U_{λ} is a 2 × 2 invertible matrix with components in $\mathbb{Q}(\zeta)$ such that

$$\overline{U_{\lambda}M_{\lambda}} := U_{\lambda}M_{\lambda} \bmod P_3$$

4

is a matrix of rank 2 in the row-reduced echelon form with components in $\kappa_{P_3} \cong \mathbb{F}_9$. The $\gamma = \text{gamma}$ that appears in $\overline{U_\lambda M_\lambda}$ is a 8th root of unity in \mathbb{F}_9 such that $A \mod P_3 = -1 - 2\gamma - 2\gamma^3$ is zero, that is, $\gamma \in \mathbb{F}_9$ is a root of $\gamma^2 + 2\gamma + 2 = 0$.

• LineEqs112P3 The list of defining equations of the 112 lines on $X_{56}(P_3)$. The equations in the second half of this list come from the reduction (that is, they appear as the third members of elements of LineEqs56P3), while those in the first half are new (that is, they define the unique common intersecting lines of $\Lambda(r') \otimes \kappa_{P_3}$ of $r' \in \mathcal{F}'_{56}$).

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

 $E\text{-}mail\ address:\ \texttt{shimada@math.sci.hiroshima-u.ac.jp}$