
数体上定義された特異K3曲面

ICHIRO SHIMADA

1. Introduction

First, we fix some notions and notation.

By a lattice, we mean a finitely generated free Z-module Λ equipped with a non-

degenerate symmetric bilinear form

( , ) : Λ × Λ → Z.

The discriminant disc(Λ) ∈ Z of a lattice Λ is the determinant of a symmetric matrix

expressing the bilinear form. A lattice Λ is said to be even if (v, v) ∈ 2Z holds for

every v ∈ Λ. Let Λ and Λ′ be lattices. A homomorphism Λ → Λ′ of Z-modules

is called an isometry if it preserves the symmetric bilinear forms. By definition, an

isometry is injective. Let Λ ↪→ Λ′ be an isometry. We denote by

(Λ ↪→ Λ′)⊥

the orthogonal complement of Λ in Λ′. A sublattice Λ ⊂ Λ′ is called primitive if Λ′/Λ

is torsion-free. For a lattice Λ, we denote by Λ[−1] the lattice obtained from Λ by

multiplying the symmetric bilinear form by −1.

Let F be a number field. We denote by ZF the integer ring of F , and by

πF : Spec ZF → Spec Z

the natural projection.

Let k be a field of characteristic 0. We denote by Emb(k, C) the set of embeddings

σ : k ↪→ C of k into C. For a variety X over k and an embedding σ ∈ Emb(k, C),

we define a complex variety Xσ by the following diagram of the fiber product:

Xσ −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec k.

Two complex varieties X and X ′ are said to be conjugate if there exists σ ∈
Emb(C, C) such that Xσ is isomorphic to X ′ over C. It is obvious that the rela-

tion of being conjugate is an equivalence relation. If is easy to see that a complex

algebraic surface conjugate to a K3 surface is also a K3 surface.
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For a K3 surface X defined over a field k, we denote by NS(X) the Néron-Severi

lattice of X ⊗ k̄, where k̄ is the algebraic closure of k; that is, NS(X) is the lattice

of numerical equivalence classes of divisors on X ⊗ k̄ with the intersection pairing.

Definition 1.1. A K3 surface X defined over a field of characteristic 0 is said to be

singular if rank(NS(X)) = 20.

Definition 1.2. A K3 surface X defined over a field of characteristic p > 0 is said

to be supersingular if rank(NS(X)) = 22.

By the Hodge index theorem, if X is singular or supersingular, then

d(X) := disc(NS(X))

is a negative integer.

Shioda and Inose [27] showed that every singular K3 surface is defined over a

number field. Let X be a singular K3 surface defined over a number field F . We

consider a smooth proper family

X → U

of K3 surfaces over a non-empty Zariski open subset U of Spec ZF such that the

generic fiber Xη is isomorphic to X. For a closed point p of U , we denote by Xp the

reduction of X at p. For a prime integer p, we put

Sp(X ) := { p ∈ π−1
F (p) ∩ U | Xp is supersingular }.

We investigate the following lattices of rank 2:

• the transcendental lattice

T (Xσ) := (NS(X) ↪→ H2(Xσ, Z))⊥

for each σ ∈ Emb(F, C), where H2(Xσ, Z)) is the Betti cohomology group of

the complex surface Xσ with the cup-product, and

• the supersingular reduction lattice

L(X , p) := (NS(X) ↪→ NS(Xp))
⊥

for each p ∈ Sp(X ), where NS(X) ↪→ NS(Xp) is the specialization isometry.

(See [6, Exp. X], [13, §4] or [14, §20.3] for the definition of the specialization

isometry.)

As an application of our main results, we present new examples of non-homeomorphic

conjugate complex varieties, and arithmetic Zariski pairs of maximizing sextics.

Remark 1.3. The supersingular reduction lattices and their relation with transcen-

dental lattices were first considered by Shioda in [28] for certain elliptic K3 surfaces.
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2. The genus theory of lattices and discriminant forms

We recall the notions of genera and discriminant forms of lattices. See [7] and [19]

for details.

Definition 2.1. Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z

are said to be in the same genus if

λ ⊗ Zp : (Λ ⊗ Zp) × (Λ ⊗ Zp) → Zp and

λ′ ⊗ Zp : (Λ′ ⊗ Zp) × (Λ′ ⊗ Zp) → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

If Λ and Λ′ are in the same genus and Λ is even, then Λ′ is also even.

Definition 2.2. Let Λ be an even lattice. We put

Λ∨ := Hom(Λ, Z).

Then Λ is canonically embedded into Λ∨ as a subgroup of index equal to | disc(Λ)|,
and we have a natural symmetric bilinear form

Λ∨ × Λ∨ → Q

that extends the symmetric bilinear form on Λ. The finite abelian group DΛ := Λ∨/Λ

together with the natural quadratic form

qΛ : DΛ → Q/2Z

is called the discriminant form of Λ.

The following are due to Nikulin [19].

Theorem 2.3. Two even lattices of the same rank are in the same genus if and only

if they have the same signature and their discriminant forms are isomorphic.

Theorem 2.4. Let L be an even lattice, and let M ⊂ L be a primitive sublattice. We

put N := (M ↪→ L)⊥. Suppose that disc(M) and disc(L) are prime to each other.

Then there exists an isomorphism

(DN , qN) ∼= (DL, qL) ⊕ (DM ,−qM)

of finite quadratic forms. In particular, we have disc(N) = disc(L) disc(M).
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3. Transcendental lattices

Let X be a singular K3 surface defined over a number field F . For an embedding

σ : F ↪→ C, the transcendental lattice T (Xσ) of the complex singular K3 surface

Xσ := X ⊗F,σ C is an even positive-definite lattice of rank 2 with discriminant equal

to −d(X), where d(X) = disc(NS(X)).

Proposition 3.1. For σ, σ′ ∈ Emb(F, C), the lattices T (Xσ) and T (Xσ′
) are in the

same genus.

Proof. Because the Néron-Severi lattice is defined algebraically, we have

NS(X) ∼= NS(Xσ) ∼= NS(Xσ′
).

Since H2(Xσ, Z) is unimodular, it follows from Theorem 2.4 that

(DT (Xσ), qT (Xσ)) ∼= (DNS(Xσ),−qNS(Xσ)).

The same holds for T (Xσ′
). Hence T (Xσ) and T (Xσ′

) have the isomorphic discrim-

inant forms. ¤

For a negative integer d, we put

Md :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

b2 − 4ac = d

}
,

on which GL2(Z) acts by M 7→ tgMg (M ∈ Md, g ∈ GL2(Z)). We then denote by

Ld := Md/GL2(Z) (resp. L̃d := Md/SL2(Z) )

the set of isomorphism classes of even, positive-definite lattices (resp. even, positive-

definite oriented lattices) of rank 2 with discriminant −d.

Let S be a complex singular K3 surface. By the Hodge decomposition

T (S) ⊗ C = H2,0(S) ⊕ H0,2(S),

we can define a canonical orientation on T (S).

Definition 3.2. For a complex singular K3 surface S, we denote by T̃ (S) the ori-

ented transcendental lattice of S, and by [T̃ (S)] ∈ L̃d(S) the isomorphism class of the

oriented transcendental lattice.

The following is due to Shioda-Inose [27].

Theorem 3.3. The map S 7→ [T̃ (S)] induces a bijection from the set of isomorphism

classes of complex singular K3 surfaces to the set of isomorphism classes of even,

positive-definite oriented lattices of rank 2.

In [25] and [21], the author and M. Schütt have proved the following existence

theorem. (See Remark 4.15.)
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Theorem 3.4. Let G ⊂ Ld be a genus of even positive-definite lattices of rank 2,

and let G̃ ⊂ L̃d be the pull-back of G by the natural projection L̃d → Ld. Then there

exists a singular K3 surface X defined over a number field F with d(X) = d such

that the set

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } ⊂ L̃d

coincides with the oriented genus G̃.

Corollary 3.5. Complex singular K3 surfaces S and S ′ are conjugate if and only if

T (S) and T (S ′) are in the same genus.

Proof. The “only if ” part is proved in the same way as the proof of Proposition 3.1.

Suppose that T (S) and T (S ′) are in the same genus. Let G̃S ⊂ L̃d(S) be the oriented

genus containing [T̃ (S)] ∈ L̃d(S), and let X be the singular K3 surface defined over

a number field F such that

(3.1) { [T̃ (Xσ)] | σ ∈ Emb(F, C) } = G̃S.

By the assumption, we have [T̃ (S ′)] ∈ G̃S. By the injectivity of the theorem of

Shioda-Inose, there exist τ ∈ Emb(F, C) and τ ′ ∈ Emb(F, C) such that Xτ ∼= S and

Xτ ′ ∼= S ′. There exists σ : C ↪→ C such that σ ◦ τ = τ ′. ¤

Corollary 3.6. Let S be a complex singular K3 surface, and let G̃S ⊂ L̃d(S) be the

oriented genus containing [T̃ (S)] ∈ L̃d(S). If S is defined over a number field L, then

[L : Q] ≥ |G̃S|.

Proof. Let X be a K3 surface defined over a number field F such that (3.1) holds.

Then Xσ0 ∼= S for some σ0 ∈ Emb(F, C). Let Y be a K3 surface defined over L such

that Y τ0 ∼= S for some τ0 ∈ Emb(L, C). Then there exists a number field M ⊂ C
containing both of σ0(F ) and τ0(L) such that

X ⊗ M ∼= Y ⊗ M over M .

Therefore, for each σ ∈ Emb(F, C), there exists τ ∈ Emb(L, C) such that Xσ ∼= Y τ

over C. Since there exist exactly |G̃S| isomorphism classes of complex K3 surfaces

among Xσ, we have |Emb(L, C)| ≥ |G̃S|. ¤

Corollary 3.7. Let S and S ′ be complex singular K3 surfaces. If NS(S) and NS(S ′)

are in the same genus, then NS(S) and NS(S ′) are isomorphic.

Proof. If NS(S) and NS(S ′) are in the same genus, then T (S) and T (S ′) are in the

same genus, and hence S and S ′ are conjugate. ¤

4. Supersingular reduction lattices

Definition 4.1. Let Y be a supersingular K3 surface in characteristic p. Artin [4]

and Rudakov-Shafarevich [20] showed that there exists a positive integer σ(Y ) ≤ 10

such that d(Y ) := disc(NS(Y )) is written as −p2σ(Y ). This integer σ(Y ) is called the

Artin invariant of Y .
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We describe the Néron-Severi lattice of a supersingular K3 surface in odd charac-

teristic p > 0. In [20], Rudakov-Shafarevich showed the following:

Theorem 4.2. Let p be an odd prime, and let σ be a positive integer ≤ 10. Then

there exists a lattice Λp,σ of rank 22 with the following properties, and it is unique up

to isomorphism: (i) even, (ii) of signature (1, 21), and (iii) the discriminant group is

isomorphic to (Z/pZ)2σ.

Definition 4.3. We call Λp,σ the Rudakov-Shafarevich lattice.

Let χp : F×
p → {±1} be the Legendre character.

Remark 4.4. The discriminant form of Λp,σ is calculated in [24]. For an odd prime

p, let vp be an even integer such that χp(vp) = −1. Let 〈γ〉 be the cyclic group of

order p generated by γ. We define quadratic forms

q1 : 〈γ〉 → Q/2Z and qv : 〈γ〉 → Q/2Z

by q1(γ) := (p + 1)/p and qv(γ) := vp/p. Then the discriminant form (Dp,σ, qp,σ) of

Λp,σ for an odd prime p is isomorphic to{
(〈γ〉, q1)

⊕2σ if σ(p − 1) ≡ 2 mod 4,

(〈γ〉, q1)
⊕(2σ−1) ⊕ (〈γ〉, qv) if σ(p − 1) ≡ 0 mod 4.

Artin [4] and Rudakov-Shafarevich [20] showed the following:

Theorem 4.5. Let Y be a supersingular K3 surface in odd characteristic p with the

Artin invariant σ. Then NS(Y ) is isomorphic to Λp,σ.

We fix a smooth proper family X → U of K3 surfaces over an open subset U ⊂
Spec ZF such that the generic fiber Xη is singular, and investigate the set

Sp(X ) := { p ∈ π−1
F (p) ∩ U | Xp is supersingular }.

In [24] and [25], we have obtained the following:

Theorem 4.6. Suppose that p does not divide 2d(Xη) = 2 disc(NS(Xη)).

(1) If p ∈ Sp(X ), then the Artin invariant of Xp is 1.

(2) There exists a finite set N of prime integers containing the prime divisors of

2d(Xη) such that

p /∈ N ⇒ Sp(X ) =

{
∅ if χp(d(Xη)) = 1,

π−1
F (p) if χp(d(Xη)) = −1.

Recall that the supersingular reduction lattice L(X , p) of X at p ∈ Sp(X ) is defined

to be (NS(Xη) ↪→ NS(Xp))
⊥. If p 6 | 2d(Xη) and p ∈ Sp(X ), then the Artin invariant

of Xp is 1, and hence

NS(Xp) ∼= Λp,1.

Using the standard technique of [15, Exp. XI], we have obtained the following in [25]:
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Proposition 4.7. Suppose that p 6 | 2d(Xη), and let p be a point of Sp(X ). Then the

image of the specialization isometry NS(Xη) ↪→ NS(Xp) is primitive.

Combining Proposition 4.7 and Theorem 2.4, we obtain the following:

Corollary 4.8. Suppose that p 6 | 2d(Xη), and let p be a point of Sp(X ). Then L(X , p)

is an even, negative-definite lattice of rank 2 with discriminant −p2d(Xη), and its

discriminant form is isomorphic to

(DNS,−qNS) ⊕ (Dp,1, qp,1) ∼= (DT , qT ) ⊕ (Dp,1, qp,1),

where NS = NS(Xη), T = T (Xσ
η ) for any σ ∈ Emb(F, C), and (Dp,1, qp,1) is the

discriminant form of the Rudakov-Shafarevich lattice Λp,1.

Definition 4.9. For any [T ] ∈ Ld and a prime integer p 6 | 2d, we denote by

G(p, T ) ⊂ Lp2d[−1] := {−M |M ∈ Mp2d}/GL(2, Z)

the genus consisting of even, negative-definite lattices of rank 2 whose discriminant

form is isomorphic to (DT , qT ) ⊕ (Dp,1, qp,1).

In fact, the genus G(p, T ) depends only on the genus containing [T ]. By Theo-

rem 2.3, we have the following:

Corollary 4.10. Suppose that p 6 | 2d(Xη). Then L(X , p) is contained in the genus

G(p, T (Xσ
η )) for any p ∈ Sp(X ).

In view of Theorem 3.4, it is natural to raise the following:

Problem 4.11. For a given [T ] ∈ Ld, does there exist a smooth proper family X → U

of K3 surfaces over an open subset U ⊂ Spec ZF with the following properties?

(i) (DNS(Xη), qNS(Xη)) ∼= (DT ,−qT ), and

(ii) except for a finite number of primes, if χp(d) = −1, then the set of isomor-

phism classes [L(X , p)], where p runs through Sp(X ) = π−1
F (p), coincides with

the genus G(p, T ).

In [25], we have proved a partial affirmative answer to this problem.

Definition 4.12. A negative integer d is called a fundamental discriminant if it is

the discriminant of an imaginary quadratic field.

Definition 4.13. An even lattice of rank 2 is said to be primitive if it is expressed

by a matrix [
2a b

b 2c

]
with gcd(a, b, c) = 1.

Theorem 4.14. Let d be a negative integer, and let T be an even positive-definite

lattice of rank 2 with discriminant −d. Assume the following:

• d is odd,

• d is a fundamental discriminant, and
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• T is primitive.

Then there exists a smooth proper family of K3 surfaces X → U over an open subset

U ⊂ Spec ZF , where F is a number field, such that

(i) (DNS(Xη), qNS(Xη)) ∼= (DT ,−qT ), and

(ii) except for a finite number of primes, if χp(d) = −1, then the set

{ [L(X , p)] | p ∈ Sp(X ) = π−1
F (p) }

of isomorphism classes of supersingular reduction lattices at the points of

Sp(X ) = π−1
F (p) coincides with the genus G(p, T ).

Remark 4.15. The author proved Theorem 3.4 in [25] under the assumption that d

be a fundamental discriminant, and that T be primitive. Then Schütt [21] removed

these assumptions.

5. The theory of Shioda, Mitani and Inose

We give a sketch of the proof of Theorems 3.4 and 4.14.

Suppose that a matrix

T̃ =

[
2a b

b 2c

]
with a, b, c ∈ Z, a > 0, c > 0, d := b2 − 4ac < 0,

is given. Let
√

d ∈ C be in the upper-half plane. We consider elliptic curves

E ′ := C/(Z + τ ′Z) and E := C/(Z + τZ),

where τ ′ =
−b +

√
d

2a
and τ =

b +
√

d

2
. Shioda and Mitani [29] showed the following:

Theorem 5.1. The oriented transcendental lattice T̃ (A) of the abelian surface

A := E ′ × E.

is expressed by the given matrix T̃ .

We consider the Kummer diagram

Km(A) ←− Ã −→ A,

where Ã → A is the blowing-up of A at the 2-torsion points, and Km(A) ← Ã is the

quotient by the lift of the inversion of A. Shioda and Inose [27] showed that, on the

Kummer surface Km(A), there exist reduced effective divisors C and Θ such that

(i) C and Θ are disjoint,

(ii) C is an ADE-configuration of (−2)-curves C1, . . . , C8 of type E8,

(iii) Θ is an ADE-configuration of (−2)-curves Θ1, . . . , Θ8 of type 8A1, and

(iv) there exists a class [L] ∈ NS(Km(A)) such that 2[L] = [Θ].
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We consider the Shioda-Inose diagram

Y ←− Ỹ −→ Km(A),

where Ỹ → Km(A) is the double covering branched exactly along Θ, and Y ← Ỹ is

the contraction of the (−1)-curves on Ỹ (that is, the inverse images of Θ1, . . . , Θ8).

Shioda and Inose [27] proved the following:

Theorem 5.2. The surface Y is a singular K3 surface, and the diagram

Y ←− Ỹ −→ Km(A) ←− Ã −→ A

induces an isomorphism

T̃ (Y ) ∼= T̃ (A) ( ∼= T̃ )

of the oriented transcendental lattices.

Suppose that we have a Shioda-Inose-Kummer diagram

Y ←− Ỹ −→ Km(A) ←− Ã −→ A = E ′ × E

over an open subset U of Spec ZF , where F is a number field. We denote by

Yη ←− Ỹη −→ Km(Aη) ←− Ãη −→ Aη = E ′
η × Eη

the generic fiber of the diagram. For a closed point p ∈ U , we denote by

Yp ←− Ỹp −→ Km(Ap) ←− Ãp −→ Ap = E ′
p × Ep

the fiber over p of the diagram.

Analyzing the arguments of Shioda and Inose, we obtain the following theorems.

Theorem 5.3. The above diagram over η induces an isomorphism T̃ (Y σ
η ) ∼= T̃ (Aσ

η )

for any σ ∈ Emb(F, C).

Definition 5.4. For elliptic curves E1, E2 defined over a field k, we denote by

Hom(E1, E2) the Z-module of homomorphisms

φ : E1 ⊗ k̄ → E2 ⊗ k̄,

and we regard Hom(E1, E2) as a lattice by

(φ, φ) := 2 deg φ.

Theorem 5.5. Except for a finite number of closed points p of U , we have

Yp is supersingular ⇐⇒ E′
p and Ep are supersingular,

and if this is the case, then the above diagram over p induces an isomorphism

L(Y , p) ∼= (Hom(E′
η, Eη) ↪→ Hom(E ′

p, Ep))
⊥[−1],

where Hom(E′
η, Eη) ↪→ Hom(E ′

p, Ep) is the specialization isometry.
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Thus Theorems 3.4 and 4.14 are reduced to the statements about elliptic curves.

The lattices T̃ (Aσ
η ) = T̃ (E′

η
σ×Eη

σ) for σ ∈ Emb(F, C)) are calculated by the classical

theory of complex multiplications in the class field theory ([18], [30]). The lattices

(Hom(E′
η, Eη) ↪→ Hom(E ′

p, Ep))
⊥

are calculated by Deuring’s theory [10] of endmorphism rings of supersingular elliptic

curves. We use Dorman’s description [11] of optimal embeddings of the integer ring

of an imaginary quadratic fields into the Deuring order.

6. An application to topology

It is obvious from the definition that conjugate complex varieties are homeomor-

phic in Zariski topology. On the other hand, for the complex topology, we have the

following classical example by Serre [22].

Example 6.1. There exist conjugate complex smooth projective varieties X and Xσ

such that their topological fundamental groups are not isomorphic. In particular, X

and Xσ are not homotopically equivalent.

We also have Grothendieck’s dessins d’enfant ([16], [17]).

Example 6.2. Let f : C → P1 be a finite covering defined over Q ⊂ C branching

only at 0, 1,∞ ∈ P1. For σ ∈ Gal(Q/Q), consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ are topologically distinct in general. Belyi’s theorem asserts that the

action of Gal(Q/Q) on the set of topological types of the coverings of P1 branching

only at 0, 1,∞ is faithful.

See Abelson [1], Artal, Carmona and Cogolludo [3], Easton and Vakil [12], Bauer,

Catanese and Grunewald [5] and Charles [8] for other examples. Using Corollary 3.5,

we also have obtained simple and explicit examples of non-homeomorphic conjugate

complex varieties in [23] and [26]. (Note that, except for [22] and [1], all these papers

have appeared quite recently.)

We present our construction of examples in [23] and [26]. Let V be an oriented

topological manifold of real dimension 4. We put

H2(V ) := H2(V, Z)/torsion,

on which we have the intersection pairing

ιV : H2(V ) × H2(V ) → Z.

We then put

J∞(V ) :=
⋂
K

Im(H2(V \ K) → H2(V )),
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where K runs through the set of compact subsets of V , and set

B̃V := H2(V )/J∞(V ) and BV := (B̃V )/torsion.

Since any topological cycle is compact, the intersection pairing ιV induces a sym-

metric bilinear form

βV : BV × BV → Z.

It is obvious that the isomorphism class of (BV , βV ) is a topological invariant of V .

Theorem 6.3. Let S be a complex smooth projective surface, and let C1, . . . , Cn be

irreducible curves on S. We put

V := S \
⋃

Ci.

Suppose that the classes [C1], . . . , [Cn] span NS(S)⊗Q. Then (BV , βV ) is isomorphic

to the transcendental lattice

T (S) := (NS(S) ↪→ H2(S, Z))⊥/torsion.

Using Corollary 3.5 and Theorem 6.3, we obtain the following examples of non-

homeomorphic conjugate complex varieties.

Example 6.4. Let T1 and T2 be even positive-definite lattices of rank 2 that are in

the same genus but not isomorphic. We have a singular K3 surface X defined over

a number field F and two embeddings σ1, σ2 ∈ Emb(F, C) such that

T (Xσ1) ∼= T1 and T (Xσ2) ∼= T2.

Let C1, . . . , Cn be irreducible curves on X whose classes span NS(X)⊗Q. Enlarging

F , we can assume that the Zariski open subset V := X \
⋃

Ci of X is also defined

over F . Then the conjugate open varieties V σ1 and V σ2 are not homeomorphic.

Definition 6.5. A pair [C,C ′] of complex projective plane curves is said to be an

arithmetic Zariski pair if the following hold:

(i) Suppose that C = {Φ = 0}, where Φ is a homogeneous polynomial in three

variables. Then there exists σ ∈ Emb(C, C) such that C ′ ⊂ P2 is projectively

isomorphic to the plane curve Cσ := {Φσ = 0}.
(ii) There exist tubular neighborhoods T ⊂ P2 of C and T ′ ⊂ P2 of C ′ such that

(T , C) and (T ′, C ′) are diffeomorphic, while (P2, C) and (P2, C ′) are not homeomor-

phic.

Remark 6.6. The first example of an arithmetic Zariski pair was discovered by Artal,

Carmona, Cogolludo [3] in degree 12. They used the invariant of braid monodromies

in order to distinguish (P2, C) and (P2, C ′) topologically.

Definition 6.7. A complex plane curve C ⊂ P2 of degree 6 is called a maximizing

sextic if C has only simple singularities and the total Milnor number of C attains

the possible maximum 19.
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If C is a maximizing sextic, the minimal resolution XC → YC of the double cover

YC → P2 branching exactly along C is a singular K3 surface. We denote by T [C]

the transcendental lattice of XC .

Remark 6.8. Using Urabe’s idea [31], Yang [32] has made the complete list of all

possible ADE-configurations of singular points of sextic curves with only simple

singularities. Recently, Degtyarev [9] has described the connected components of the

equisingular family of sextic curves with only simple singularities of a given ADE-

configuration.

Example 6.9. In the following example, we employ a calculation of Artal, Carmona

and Cogolludo in [2]. We consider the following cubic extension of Q:

K := Q[t]/(ϕ), where ϕ = 17t3 − 18t2 − 228t + 556.

The roots of ϕ = 0 are α, ᾱ, β, where

α = 2.590 · · · + 1.108 · · ·
√
−1, β = −4.121 · · · .

There are three corresponding embeddings

σα : K ↪→ C, σᾱ : K ↪→ C and σβ : K ↪→ C.

There exists a homogeneous polynomial Φ(x0, x1, x2) of degree 6 with coefficients in

K such that the plane curve C = {Φ = 0} has three simple singular points of type

A16 + A2 + A1 as its only singularities. Consider the conjugate plane curves

Cα = {Φσα = 0}, Cᾱ = {Φσᾱ = 0} and Cβ = {Φσβ = 0}.

Artal, Carmona and Cogolludo showed that, if C ′ ⊂ P2 is a complex projective

plane curve possessing A16 +A2 +A1 as its only singularities, then C ′ is projectively

isomorphic to Cα, Cᾱ or Cβ.

On the other hand, by the surjectivity of the period map for complex K3 surfaces,

we can prove that there are exactly three singular K3 surfaces (up to isomorphism)

that is a double cover of P2 with a sextic branch curve possessing A16 + A2 + A1 as

its only singularities. Their oriented transcendental lattices are

[10,±4, 22] :=

[
10 ±4

±4 22

]
and [6, 0, 34] :=

[
6 0

0 34

]
,

which are in the same genus. The non-oriented lattices [10, 4, 22] and [10,−4, 22] are

isomorphic, while the non-oriented lattices [10, 4, 22] and [6, 0, 34] are not isomorphic.

Therefore we have

T [Cα] ∼= [10, 4, 22] or [10,−4, 22] and T [Cβ] ∼= [6, 0, 34].

(The homeomorphism (P2, Cα) ∼= (P2, Cᾱ) induced by the complex conjugate corre-

sponds to the orientation reversing of the transcendental lattices.) Let V ⊂ YC be

the pull-back of P2 \C by YC → P2, which is a smooth open surface defined over K.
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Then the conjugate varieties V σα and V σβ are not homeomorphic. Hence the pair

[Cα, Cβ] is an arithmetic Zariski pair.

By the same method, we have found examples of arithmetic Zariski pair of maxi-

mizing sextics listed in the table below.

No. Sing(C) = Sing(C ′) T [C] and T [C ′] (non-oriented)

1 E8 + A10 + A1 [6, 2, 8], [2, 0, 22]
2 E8 + A6 + A4 + A1 [8, 2, 18], [2, 0, 70]
3 E6 + D5 + A6 + A2 [12, 0, 42], [6, 0, 84]
4 E6 + A10 + A3 [12, 0, 22], [4, 0, 66]
5 E6 + A10 + A2 + A1 [18, 6, 24], [6, 0, 66]
6 E6 + A7 + A4 + A2 [24, 0, 30], [6, 0, 120]
7 E6 + A6 + A4 + A2 + A1 [30, 0, 42], [18, 6, 72]
8 D8 + A10 + A1 [6, 2, 8], [2, 0, 22]
9 D8 + A6 + A4 + A1 [8, 2, 18], [2, 0, 70]
10 D7 + A12 [6, 2, 18], [2, 0, 52]
11 D7 + A8 + A4 [18, 0, 20], [2, 0, 180]
12 D5 + A10 + A4 [20, 0, 22], [12, 4, 38]
13 D5 + A6 + A5 + A2 + A1 [12, 0, 42], [6, 0, 84]
14 D5 + A6 + 2A4 [20, 0, 70], [10, 0, 140]
15 A18 + A1 [8, 2, 10], [2, 0, 38]
16 A16 + A3 [4, 0, 34], [2, 0, 68]
17 A16 + A2 + A1 [10, 4, 22], [6, 0, 34]
18 A13 + A4 + 2A1 [8, 2, 18], [2, 0, 70]
19 A12 + A6 + A1 [8, 2, 46], [2, 0, 182]
20 A12 + A5 + 2A1 [12, 6, 16], [4, 2, 40]
21 A12 + A4 + A2 + A1 [24, 6, 34], [6, 0, 130]
22 A10 + A9 [10, 0, 22], [2, 0, 110]
23 A10 + A9 [8, 3, 8], [2, 1, 28]
24 A10 + A8 + A1 [18, 0, 22], [10, 2, 40]
25 A10 + A7 + A2 [22, 0, 24], [6, 0, 88]
26 A10 + A7 + 2A1 [10, 2, 18], [2, 0, 88]
27 A10 + A6 + A2 + A1 [22, 0, 42], [16, 2, 58]
28 A10 + A5 + A3 + A1 [12, 0, 22], [4, 0, 66]
29 A10 + 2A4 + A1 [30, 10, 40], [10, 0, 110]
30 A10 + A4 + 2A2 + A1 [30, 0, 66], [6, 0, 330]
31 A8 + A6 + A4 + A1 [22, 4, 58], [18, 0, 70]
32 A7 + A6 + A4 + A2 [24, 0, 70], [6, 0, 280]
33 A7 + A6 + A4 + 2A1 [18, 4, 32], [2, 0, 280]
34 A7 + A5 + A4 + A2 + A1 [24, 0, 30], [6, 0, 120]
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