Singularity of discriminant varieties in characteristic 2 and 3

Ichiro Shimada
(Hokkaido University, Sapporo, JAPAN)

We work over an algebraically closed field k.
§1. An Example

Let $E \subset \mathbb{P}^2$ be a smooth cubic plane curve. We fix a flex point $O \in E$, and consider the elliptic curve (E, O).

Let $(\mathbb{P}^2)^\vee$ be the dual projective plane, and let $E^\vee \subset (\mathbb{P}^2)^\vee$ be the dual curve of E. We denote by

$$\phi : E \to E^\vee$$

the morphism that maps a point $P \in E$ to the tangent line $T_P(E) \in E^\vee$ to E at P.

Suppose that $\text{char}(k) \neq 2$.

Then E^\vee is of degree 6, and ϕ is birational. The singular points $\text{Sing}(E^\vee)$ of E^\vee are in one-to-one correspondence with the flex points of E via ϕ. On the other hand, the flex points of E are in one-to-one correspondence with the 3-torsion subgroup $E[3]$ of (E, O).
We have
\[E[3] \cong \begin{cases}
\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} & \text{if char}(k) \neq 3, \\
\mathbb{Z}/3\mathbb{Z} & \text{if char}(k) = 3 \text{ and } E \text{ is not supersingular}, \\
0 & \text{if char}(k) = 3 \text{ and } E \text{ is supersingular}.
\end{cases} \]

Then we have
\[\text{Sing}(E^\vee) \text{ consists of} \]
\[\begin{cases}
9 \text{ points of type } A_2 & \text{if char}(k) \neq 3, \\
3 \text{ points of type } E_6 & \text{if char}(k) = 3 \text{ and } E \text{ is not s-singular}, \\
1 \text{ point of type } T_3 & \text{if char}(k) = 3 \text{ and } E \text{ is s-singular}.
\end{cases} \]

<table>
<thead>
<tr>
<th>type</th>
<th>defining equation</th>
<th>normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>$x^2 + y^3 = 0$</td>
<td>$t \mapsto (t^3, t^2)$</td>
</tr>
<tr>
<td>E_6</td>
<td>$x^4 + y^3 + x^2y^2 = 0$ or $x^4 + y^3 = 0$</td>
<td>$t \mapsto (t^4, t^3 + t^5)$ or $t \mapsto (t^4, t^3)$</td>
</tr>
<tr>
<td>T_3</td>
<td>$x^{10} + y^3 + x^6y^2 = 0$</td>
<td>$t \mapsto (t^{10}, t^3 + t^{11})$</td>
</tr>
</tbody>
</table>

Remark. When char(k) $\neq 3$, then the two types of the E_6-singular point are isomorphic.
Suppose that $\text{char}(k) = 2$.

Then E^\vee is a smooth cubic curve, and $\phi : E \to E^\vee$ is a purely inseparable finite morphism of degree 2.

If E is defined by

$$x^3 + y^3 + z^3 + a\ xyz = 0,$$

then E^\vee is defined by

$$\xi^3 + \eta^3 + \zeta^3 + a^2\ \xi\eta\zeta = 0,$$

where $[\xi : \eta : \zeta]$ are the homogeneous coordinates dual to $[x : y : z]$ (C. T. C. Wall).
§2. Introduction

The aim of this talk is to investigate the singularity of the discriminant variety of a smooth projective variety $X \subset \mathbb{P}^m$ in arbitrary characteristics.

It turns out that the nature of the singularity differs according to the following cases:

- $\text{char}(k) > 3$ or $\text{char}(k) = 0$ (the classical case),
- $\text{char}(k) = 3$,
- $\text{char}(k) = 2$ and $\dim X$ is even,
- $\text{char}(k) = 2$ and $\dim X$ is odd (I could not analyze the singularity in this case).
§3. Definition of the discriminant variety

We need some preparation.

Let V be a variety, and let E and F be vector bundles on V with rank e and f, respectively. For a bundle homomorphism $\sigma : E \to F$, we define the degeneracy subscheme of σ to be the closed subscheme of V defined locally on V by all r-minors of the $f \times e$-matrix expressing σ, where $r := \min(e, f)$.

Let V and W be smooth varieties, and let $\phi : V \to W$ be a morphism.

The critical subscheme of ϕ is the degeneracy subscheme of the homomorphism $d\phi : T(V) \to \phi^* T(W)$.

Suppose that $\dim V \leq \dim W$. We say that ϕ is a closed immersion formally at $P \in V$ if $d_P \phi : T_P(V) \to T_{\phi(P)}(W)$ is injective, or equivalently, the induced homomorphism $(\mathcal{O}_{W,\phi(P)})^\wedge \to (\mathcal{O}_{V,P})^\wedge$ is surjective.

When $\dim V \leq \dim W$, a point $P \in V$ is in the support of the critical subscheme of ϕ if and only if ϕ is not a closed immersion formally at P.
Let $X \subset \mathbb{P}^m$ be a smooth projective variety with $\dim X = n > 0$. We put
\[\mathcal{L} := \mathcal{O}_X(1). \]
We assume that X is not contained in any hyperplane of \mathbb{P}^m. Then the dual projective space
\[\mathbb{P} := (\mathbb{P}^m)\vee \]
is regarded as a linear system $|M|$ of divisors on X, where M is a linear subspace of $H^0(X, \mathcal{L})$.

Let $\mathcal{D} \subset X \times \mathbb{P}$ be the universal family of the hyperplane sections of X, which is smooth of dimension $n + m - 1$. The support of \mathcal{D} is equal to
\[\{ (p, H) \in X \times \mathbb{P} \mid p \in H \cap X \}. \]
Let $\mathcal{C} \subset \mathcal{D}$ be the critical subscheme of the second projection $\mathcal{D} \to \mathbb{P}$. It turns out that \mathcal{C} is smooth of dimension $m - 1$. The support of \mathcal{C} is equal to
\[\{ (p, H) \in \mathcal{D} \mid H \cap X \text{ is singular at } p \}. \]
Let $\mathcal{E} \subset \mathcal{C}$ be the critical subscheme of the second projection $\pi_2 : \mathcal{C} \to \mathbb{P}$. The support of \mathcal{E} is equal to
\[\{ (p, H) \in \mathcal{C} \mid \text{the Hessian of } H \cap X \text{ at } p \text{ is degenerate} \}. \]

The image of $\pi_2 : \mathcal{C} \to \mathbb{P}$ is called the discriminant variety of $X \subset \mathbb{P}^m$.

We will study the singularity of the discriminant variety by investigating the morphism $\pi_2 : \mathcal{C} \to \mathbb{P}$ at a point of the critical subscheme \mathcal{E}

Let $P = (p, H) \in X \times \mathbb{P}$ be a point of \mathcal{E}, so that $H \cap X$ has a degenerate singularity at p. Let $\Lambda \subset \mathbb{P}$ be a general plane passing through the point $\pi_2(P) = H \in \mathbb{P}$.

We denote by $C_\Lambda \subset \mathcal{C}$ the pull-back of Λ by π_2, and by $\pi_\Lambda : C_\Lambda \to \Lambda$ the restriction of π_2 to C_Λ.

- What type of singular point does the plane curve $\Lambda \cap \pi_2(\mathcal{C})$ have at H?
- Does there exist any normal form for the morphism $\pi_\Lambda : C_\Lambda \to \Lambda$ at P?
§4. The scheme \mathcal{E}

For $P = (p, H) \in \mathcal{C}$, we have the Hessian

$$H_P : T_p(X) \times T_p(X) \to k$$

of the hypersurface singularity $p \in H \cap X \subset X$. If $H \cap X$ is defined locally by $f = 0$ in X, then H_P is expressed by the symmetric matrix

$$M_P := \left(\frac{\partial^2 f}{\partial x_i \partial x_j} (p) \right).$$

Over \mathcal{C}, we can define the universal Hessian

$$\mathcal{H} : \pi_1^* T(X) \otimes \pi_1^* T(X) \to \tilde{\mathcal{L}} := \pi_1^* \mathcal{L} \otimes \pi_2^* \mathcal{O}_\mathbb{P}(1),$$

where $\pi_1 : \mathcal{C} \to X$ and $\pi_2 : \mathcal{C} \to \mathbb{P}$ are the projections.

The critical subscheme \mathcal{E} of $\pi_2 : \mathcal{C} \to \mathbb{P}$ coincides with the degeneracy subscheme of the homomorphism $\pi_1^* T(X) \to \pi_1^* T(X)^\vee \otimes \tilde{\mathcal{L}}$ induced from \mathcal{H}.

From this proposition, we see that $\mathcal{E} \subset \mathcal{C}$ is either empty or of codimension ≤ 1. In positive characteristics, we sometimes have $\mathcal{E} = \mathcal{C}$.
Example.

Suppose that char$(k) = 2$. Then the Hessian H_P is not only symmetric but also anti-symmetric, because we have

$$M_P = tM_P = -tM_P$$

and

$$\frac{\partial^2 \phi}{\partial x^2_i}(p) = 0.$$

On the other hand, the rank of an anti-symmetric bilinear form is always even. Hence we obtain the following:

If char$(k) = 2$ and dim X is odd, then $C = E$.

Example.

Let $X \subset \mathbb{P}^{n+1}$ be the Fermat hypersurface of degree $q+1$, where q is a power of the characteristic of the base field k. Then, at every point (p, H) of C, the singularity of $H \cap X$ at p is always degenerate. In particular, we have $C = E$.

The discriminant variety of a hypersurface is the dual hypersurface. The dual hypersurface X^\vee of the Fermat hypersurface X of degree $q+1$ is isomorphic to the Fermat hypersurface of degree $q+1$, and the natural morphism $X \to X^\vee$ is purely inseparable of degree q^n.

10
§5. The quotient morphism by an integrable tangent subbundle

In order to describe the situation in characteristic 2 and 3, we need the notion of the quotient morphism by an integrable tangent subbundle.

In this section, we assume that k is of characteristic $p > 0$. Let V be a smooth variety.

A subbundle \mathcal{N} of $T(V)$ is called integrable if \mathcal{N} is closed under the p-th power operation and the bracket product of Lie.

The following is due to Seshadri:

Let \mathcal{N} be an integrable subbundle of $T(V)$. Then there exists a unique morphism $q : V \to V^\mathcal{N}$ with the following properties;

(i) q induces a homeomorphism on the underlying topological spaces,
(ii) q is a radical covering of height 1, and
(iii) the kernel of $dq : T(V) \to q^* T(V^\mathcal{N})$ is equal to \mathcal{N}.

Moreover, the variety $V^\mathcal{N}$ is smooth, and the morphism q is finite of degree p^r, where $r = \text{rank } \mathcal{N}$.
For an integrable subbundle \mathcal{N} of $T(V)$, the morphism $q : V \to V^\mathcal{N}$ is called the \textit{quotient morphism} by \mathcal{N}.

The construction of $q : V \to V^\mathcal{N}$.

Let V be covered by affine schemes $U_i := \text{Spec} \, A_i$. We put

$$A_i^\mathcal{N} := \{ f \in A_i \mid Df = 0 \text{ for all } D \in \Gamma(U_i, \mathcal{N}) \}.$$

Then the natural morphisms $\text{Spec} \, A_i \to \text{Spec} \, A_i^\mathcal{N}$ patch together to form $q : V \to V^\mathcal{N}$.

Let $\phi : V \to W$ be a morphism from a smooth variety V to a smooth variety W. Suppose that the kernel \mathcal{K} of $d\phi : T(V) \to \phi^*T(W)$ is a subbundle of $T(V)$, which is always the case if we restrict ϕ to a Zariski open dense subset of V. Then \mathcal{K} is integrable, and ϕ factors through the quotient morphism by \mathcal{K}.
The case where char$(k) = 2$ and dim X is odd.

Suppose that char$(k) = 2$ and dim X is odd, so that $\mathcal{C} = \mathcal{E}$ holds. Let \mathcal{K} be the kernel of the homomorphism $\pi_1^* T(X) \to \pi_1^* T(X) \vee \otimes \widetilde{\mathcal{L}}$ induced from the universal Hessian \mathcal{H}, which is of rank ≥ 1 at the generic point of every irreducible component of \mathcal{C}. Then the subsheaf $\mathcal{K} \subset \pi_1^* T(X) \subset \pi_1^* T(X) \oplus \pi_2^* T(\mathbb{P}) = T(X \times \mathbb{P})|_\mathcal{C}$ is in fact contained in $T(\mathcal{C}) \subset T(X \times \mathbb{P})|_\mathcal{C}$.

Let $U \subset \mathcal{C}$ be a Zariski open dense subset of \mathcal{C} over which \mathcal{K} is a subbundle of $T(\mathcal{C})$. Then the restriction of π_2 to U factors through the quotient morphism by \mathcal{K}. In particular, the projection $\mathcal{C} \to \mathbb{P}$ is inseparable onto its image.
§6. The case where char(k) $\neq 2$

Suppose that the characteristic of k is not 2.

Let (p, H) be a point of \mathcal{E}, so that the divisor $H \cap X$ has a degenerate singularity at p.

We say that the singularity of $H \cap X$ at p is of type A_2 if there exists a formal parameter system (x_1, \ldots, x_n) of X at p such that $H \cap X$ is given as the zero of the function of the form

$$x_1^2 + \cdots + x_{n-1}^2 + x_n^3 + (\text{higher degree terms}).$$

We then put

$$\mathcal{E}^{A_2} := \left\{ (p, H) \in \mathcal{E} \mid \text{the singularity of } H \cap X \text{ at } p \text{ is of type } A_2 \right\}.$$

We also put

$$\mathcal{E}^{\text{sm}} := \left\{ (p, H) \in \mathcal{E} \mid \mathcal{E} \text{ is smooth of dimension } m - 2 \text{ at } (p, H) \right\}.$$

We see that \mathcal{E} is irreducible and the loci \mathcal{E}^{A_2} and \mathcal{E}^{sm} are dense in \mathcal{E} if the linear system $|M|$ is sufficiently ample; e.g., if the evaluation homomorphism

$$v_p^{[3]} : M \to \mathcal{L}_p/m_p^4\mathcal{L}_p$$

is surjective at every point p of X, where $m_p \subset \mathcal{O}_{X,p}$ is the maximal ideal.
The case where $\text{char}(k) > 3$ or $\text{char}(k) = 0$.

In this case, we have the following:

Let $P = (p, H)$ be a point of \mathcal{E}. The following two conditions are equivalent:

- $P \in \mathcal{E}^{A_2}$,
- $P \in \mathcal{E}^{\text{sm}}$, and the projection $\mathcal{E} \rightarrow \mathbb{P}$ is a closed immersion formally at P.

Moreover, if these conditions are satisfied, then the curve $C_\Lambda = \pi_2^{-1}(\Lambda)$ is smooth at P, and $\pi_\Lambda : C_\Lambda \rightarrow \Lambda$ has a critical point of A_2-type at P; that is,

\begin{align*}
\pi_\Lambda^* u &= a t^2 + b t^3 + (\text{terms of degree } \geq 4) \quad \text{and} \\
\pi_\Lambda^* v &= c t^2 + d t^3 + (\text{terms of degree } \geq 4)
\end{align*}

with $ad - bc \neq 0$ hold for a formal parameter system (u, v) of Λ at $\pi(P) = H$ and a formal parameter t of C_Λ at P.

By suitable choice of formal parameters, we have

\begin{align*}
\pi_\Lambda^* u &= t^3, \\
\pi_\Lambda^* v &= t^2,
\end{align*}

and the plane curve $\pi_2(C) \cap \Lambda \subset \Lambda$ is defined by $u^2 - v^3 = 0$ locally at $H \in \Lambda$.
The case where \(\text{char}(k) = 3 \).

In this case, \(P \in \mathcal{E}^{A_2} \) does not necessarily imply \(P \in \mathcal{E}^{\text{sm}} \). Our main results are as follows.

(I) Let \(\varpi : \mathcal{E}^{\text{sm}} \to \mathbb{P} \) be the projection. Then the kernel \(\mathcal{K} \) of \(d\varpi : T(\mathcal{E}^{\text{sm}}) \to \varpi^*T(\mathbb{P}) \) is a subbundle of \(T(\mathcal{E}^{\text{sm}}) \) with rank 1. Hence \(\varpi \) factors as

\[
\begin{align*}
\mathcal{E}^{\text{sm}} & \xrightarrow{q} (\mathcal{E}^{\text{sm}})^{\mathcal{K}} \xrightarrow{\tau} \mathbb{P},
\end{align*}
\]

where \(\mathcal{E}^{\text{sm}} \to (\mathcal{E}^{\text{sm}})^{\mathcal{K}} \) is the quotient morphism by \(\mathcal{K} \).

(II) Suppose that \(P \) is a point of \(\mathcal{E}^{\text{sm}} \cap \mathcal{E}^{A_2} \). Then \(\tau : (\mathcal{E}^{\text{sm}})^{\mathcal{K}} \to \mathbb{P} \) is a closed immersion formally at \(q(P) \). Moreover the curve \(C_\Lambda \) is smooth at \(P \), and \(\pi_\Lambda : C_\Lambda \to \Lambda \) has a critical point of \(E_6 \)-type at \(P \); i. e.,

\[
\begin{align*}
\pi_\Lambda^* u &= a t^3 + b t^4 + (\text{terms of degree } \geq 5) \quad \text{and} \\
\pi_\Lambda^* v &= c t^3 + d t^4 + (\text{terms of degree } \geq 5)
\end{align*}
\]

with \(ad - bc \neq 0 \) hold.

By suitable choice of formal parameters, we have either

\((\pi_\Lambda^* u = t^3, \pi_\Lambda^* v = t^4) \) or \((\pi_\Lambda^* u = t^3 + t^5, \pi_\Lambda^* v = t^4) \).

The plane curve \(\pi_2(C) \cap \Lambda \subset \Lambda \) is defined at \(H \in \Lambda \) by either

\[
x^4 + y^3 = 0 \quad \text{or} \quad x^4 + y^3 + x^2 y^2 = 0.
\]
In the case of a projective plane curve (i.e., the case where \((n, m) = (1, 2)\)), the locus \(E^{sm}\) is always empty. In this case, we have the following:

(III) Suppose that \((n, m) = (1, 2)\), and that the projection \(C \rightarrow \mathbb{P}\) is separable onto its image. (This assumption excludes the case of, for example, the Fermat curve of degree \(3^\nu + 1\).)

Then \(\dim E = 0\). Let \(P = (p, H)\) be a point of \(E\). Then the length of \(O_{E,P}\) is divisible by 3. If \(P \in E^{A_2}\) (that is, \(H\) is an ordinary flex tangent line to \(X\) at \(p\)), then, with appropriate choice of formal parameters, the formal completion of \(\pi_2 : C \rightarrow \mathbb{P}\) at \(P\) is given by

\[
T_l : t \mapsto (t^{3l+1}, t^3 + t^{3l+2}),
\]

where \(l := \text{length } O_{E,P}/3\).
§7. The case where $\text{char}(k) = 2$ and $\dim X$ is even.

For simplicity, we assume that $|M|$ is so ample that the evaluation homomorphism

$$v_p^{[4]} : M \to \mathcal{L}_p/m_p^5\mathcal{L}_p$$

is surjective at every point p of X.

Then \mathcal{E} is an irreducible divisor of \mathcal{C}, and is written as $2\mathcal{R}$, where \mathcal{R} is a reduced divisor of \mathcal{C}.

We denote by \mathcal{R}^{sm} the smooth locus of \mathcal{R}, and by $\varpi : \mathcal{R}^{\text{sm}} \to \mathbb{P}$ the projection.

Then we have the following:

(I) The kernel \mathcal{K} of $d\varpi : T(\mathcal{R}^{\text{sm}}) \to \varpi^*T(\mathbb{P})$ is a sub-bundle of $T(\mathcal{R}^{\text{sm}})$ with rank 2.

In particular, the projection ϖ factors through a finite inseparable morphism of degree 4.
(II) Let $P = (p, H)$ be a general point of \mathcal{R}.
Let $L \subset \mathbb{P}$ be a general linear subspace of dimension 3 containing Λ. We put $S_L := \pi_2^{-1}(L) \subset \mathcal{C}$.
Then S_L is smooth of dimension 2 at P, and C_Λ is a curve on S_L that has an ordinary cusp at P.
Let $\nu : \tilde{C}_\Lambda \to C_\Lambda$ be the normalization of C_Λ at P, and let z be a formal parameter of \tilde{C}_Λ at the inverse image $P' \in \tilde{C}_\Lambda$ of P. Then the formal completion at P' of $\pi_\Lambda \circ \nu : \tilde{C}_\Lambda \to \Lambda$ is written as
\[(\pi_\Lambda \circ \nu)^* u = a z^4 + (\text{terms of degree } \geq 6) \quad \text{and} \quad (\pi_\Lambda \circ \nu)^* v = b z^4 + (\text{terms of degree } \geq 6)\]
for some $a, b \in k$, where (u, v) is a formal parameter system of Λ at H.
Hence the plane curve singularity of $\pi_2(\mathcal{C}) \cap \Lambda$ at H is \textit{not} a rational double point any more.