THE GRAPHS OF HOFFMAN-SINGLETON, HIGMAN-SIMS, MCLAUGHLIN, AND THE HERMITIAN CURVE OF DEGREE 6 IN CHARACTERISTIC 5

ICHIRO SHIMADA (HIROSHIMA UNIVERSITY)

Abstract. We present algebro-geometric constructions of the graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin by means of the configuration of 3150 smooth conics totally tangent to the Hermitian curve of degree 6 in characteristic 5, and the Néron–Severi lattice of the supersingular $K3$ surface in characteristic 5 with Artin invariant 1.

1. Introduction

The graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin are important examples of strongly regular graphs. These three graphs are closely related. Indeed, the Higman-Sims graph is constructed from the set of 15-cocliques in the Hoffman-Singleton graph (see Hafner [10]), and the McLaughlin graph has been constructed from the Hoffman-Singleton graph by Inoue [14] recently.

The fact that the automorphism group of the Hoffman-Singleton graph contains the simple group $\text{PSU}_3(\mathbb{F}_{25})$ as a subgroup of index 2 suggests that there is a relation between these three graphs and the Hermitian curve of degree 6 over \mathbb{F}_{25}. In fact, Benson and Losey [2] constructed the Hoffman-Singleton graph by means of the geometry of $\mathbb{P}^2(\mathbb{F}_{25})$ equipped with a Hermitian polarity.

In this talk, we present two algebro-geometric constructions of these three graphs. The one uses the set of smooth conics totally tangent to the Hermitian curve of degree 6 in characteristic 5, and the other uses the Néron–Severi lattice of the supersingular $K3$ surface in characteristic 5 with Artin invariant 1. See [25] for the first construction, and [15] for the second construction.

2. Strongly regular graphs

Let $\Gamma = (V, E)$ be a graph, where V is the set of vertices and $E \subset \binom{V}{2}$ is the set of edges. We assume that V is finite. For $p \in V$, we put

$$L(p) := \{ p' \in V \mid pp' \in E \}.$$

2000 Mathematics Subject Classification. 51E20, 05C25.

This work is supported JSPS Grants-in-Aid for Scientific Research (C) No.25400042.
We say that Γ is regular of degree k if $k := |L(p)|$ does not depend on $p \in V$, and that Γ is strongly regular with the parameter (v, k, λ, μ) if Γ is regular of degree k with $|V| = v$ such that, for distinct vertices $p, p' \in V$, we have

$$|L(p) \cap L(p')| = \begin{cases} \lambda & \text{if } pp' \in E, \\ \mu & \text{otherwise}. \end{cases}$$

Definition-Example 2.1. A triangular graph $T(m)$ is defined to be the graph (V, E) such that $V = [m]$, where $[m] := \{1, 2, \ldots, m\}$, and E is the set of pairs $\{i, j\}, \{i', j'\}$ such that $\{i, j\} \cap \{i', j'\} \neq \emptyset$. Then $T(m)$ is a strongly regular graph of parameters $(v, k, \lambda, \mu) = (m(m - 1)/2, 2(m - 2), m - 2, 4)$.

Definition-Theorem 2.1. (1) The Hoffman-Singleton graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (50, 7, 0, 1)$.

(2) The Higman-Sims graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (100, 22, 0, 6)$.

(3) The McLaughlin graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (275, 112, 30, 56)$.

Theorem 2.1. (1) The automorphism group of the Hoffman-Singleton graph contains $\text{PSU}_3(F_{25})$ as a subgroup of index 2.

(2) The automorphism group of the Higman-Sims graph contains the Higman-Sims group as a subgroup of index 2.

(3) The automorphism group of the McLaughlin graph contains the McLaughlin group as a subgroup of index 2.

See [9], [11], [13], and [17]. See also [4] for constructions for these graphs.

Remark 2.2. Constructions of these graphs by the Leech lattice are known. Below is a part of Table 10.4 of Conway-Sloane’s book [7]. See also Borcherds’ paper [3].

<table>
<thead>
<tr>
<th>Name</th>
<th>Order</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>.533</td>
<td>$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$</td>
<td>PSU$3(F{25})$</td>
</tr>
<tr>
<td>.7</td>
<td>$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>HS</td>
</tr>
<tr>
<td>.1033</td>
<td>$2^{10} \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>HS.2</td>
</tr>
<tr>
<td>.332</td>
<td>$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>HS</td>
</tr>
<tr>
<td>.5</td>
<td>$2^8 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>McL.2</td>
</tr>
<tr>
<td>.832</td>
<td>$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>McL</td>
</tr>
<tr>
<td>.322</td>
<td>$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>McL</td>
</tr>
<tr>
<td>.522</td>
<td>$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$</td>
<td>McL.2</td>
</tr>
</tbody>
</table>
3. Hermitian varieties

In this and the next sections, we fix a power \(q := p^r \) of a prime integer \(p \). Let \(k \) denote an algebraic closure of the finite field \(\mathbb{F}_{q^2} \). Every algebraic variety will be defined over \(k \).

Let \(n \) be an integer \(\geq 2 \). We define the Hermitian variety \(X \) to be the hypersurface of \(\mathbb{P}^n \) defined by
\[
x_0^{q+1} + \cdots + x_n^{q+1} = 0.
\]
The automorphism group \(\text{Aut}(X) \subset \text{Aut}(\mathbb{P}^n) = \text{PGL}_{n+1}(k) \) of this hypersurface \(X \) is equal to \(\text{PGU}_{n+1}(\mathbb{F}_{q^2}) \).

We say that a point \(P \) of \(X \) is a special point if \(P \) satisfies the following equivalent conditions. Let \(\mathcal{T}_P \) be the hyperplane tangent to \(X \) at \(P \).

(i) \(P \) is an \(\mathbb{F}_{q^2} \)-rational point of \(X \).

(ii) \(\mathcal{T}_P \cap X \) is a cone.

We denote by \(\mathcal{P}_X \) the set of special points of \(X \). Then we have
\[
|\mathcal{P}_X| = \frac{1}{q} \left(\frac{q^{2(n+1)} - 1}{q^2 - 1} + \frac{(-q)^{n+1} - 1}{q + 1} \right),
\]
and \(\text{Aut}(X) = \text{PGU}_{n+1}(\mathbb{F}_{q^2}) \) acts on \(\mathcal{P}_X \) transitively. See [12, Chapter 23] or [23], for example.

A curve \(C \subset \mathbb{P}^n \) is said to be a rational normal curve if \(C \) is projectively equivalent to the image of the morphism \(\mathbb{P}^1 \to \mathbb{P}^n \) given by
\[
[x : y] \mapsto [x^{n+1} : x^n y : \cdots : xy^n : y^{n+1}].
\]
It is known that a curve \(C \subset \mathbb{P}^n \) is a rational normal curve if and only if \(C \) is non-degenerate (that is, there exist no hyperplanes of \(\mathbb{P}^n \) containing \(C \)), and \(\text{deg}(C) = n + 1 \).

We say that a rational normal curve \(C \) is totally tangent to the Hermitian variety \(X \) if \(C \) is tangent to \(X \) at distinct \(q + 1 \) points and the intersection multiplicity at each intersection point is \(n \).

A subset \(S \) of a rational normal curve \(C \) is a Baer subset if there exists a coordinate \(t : C \to \mathbb{P}^1 \) on \(C \) such that \(S \) is the inverse image by \(t \) of the set \(\mathbb{P}^1(\mathbb{F}_q) = \mathbb{F}_q \cup \{ \infty \} \) of \(\mathbb{F}_q \)-rational points of \(\mathbb{P}^1 \).

Theorem 3.1 ([24]). Suppose that \(n \not\equiv 0 \pmod{p} \) and \(2n \leq q \). Let \(\mathcal{Q}_X \) denote the set of rational normal curves totally tangent to \(X \).

(1) The set \(\mathcal{Q}_X \) is non-empty, and \(\text{Aut}(X) \) acts on \(\mathcal{Q}_X \) transitively with the stabilizer subgroup isomorphic to \(\text{PGL}_2(\mathbb{F}_q) \). In particular, we have
\[
|\mathcal{Q}_X| = |\text{PGU}_{n+1}(\mathbb{F}_{q^2})|/|\text{PGL}_2(\mathbb{F}_q)|.
\]
(2) For any $C \in \mathcal{Q}_X$, the points in $C \cap X$ form a Baer subset of C.
(3) Every $C \in \mathcal{Q}_X$ is defined over \mathbb{F}_{q^2}, and we have $C \cap X \subset \mathcal{P}_X$.

Remark 3.2. B. Segre obtained Theorem 3.1 for the case $n = 2$ in [22, n. 81].

4. HERMITIAN CURVES

In this section, we put $n = 2$ and consider the Hermitian curve

$$x^{q+1} + y^{q+1} + z^{q+1} = 0$$

of degree $q + 1$ in characteristic p. Then the condition (ii) above for $P \in X$ to be a special point of X is equivalent to $T_P \cap X = \{P\}$, and, by [8] and [16], it is further equivalent to the condition

(iii) P is a Weierstrass point of the curve X.

The number of special points of X is equal to $q^3 + 1$, and $\text{Aut}(X)$ acts on \mathcal{P}_X double-transitively.

A line $L \subset \mathbb{P}^2$ is a special secant line of X if L contains distinct two points of \mathcal{P}_X. If L is a special secant line, then L intersects X transversely, and we have $L \cap X \subset \mathcal{P}_X$. Let \mathcal{S}_X denote the set of special secant lines of X. We have

$$|\mathcal{S}_X| = q^4 - q^3 + q^2.$$

Suppose that p is odd and $q \geq 5$. Then we have $|Q_X| = q^2(q^3 + 1)$. Let $Q \in Q_X$ be a conic totally tangent to X. A special secant line L of X is said to be a special secant line of Q if L passes through two distinct points of $Q \cap X$. We denote by $\mathcal{S}(Q)$ the set of special secant lines of Q. Since $|Q \cap X| = q + 1$, we obviously have $|\mathcal{S}(Q)| = q(q + 1)/2$.

5. GEOMETRIC CONSTRUCTION BY THE HERMITIAN CURVE

In this section, we consider the Hermitian curve

$$X : x^6 + y^6 + z^6 = 0$$

of degree 6 in characteristic 5. We have

$$|\text{Aut}(X)| = 378000, \quad |\mathcal{P}_X| = 126, \quad |Q_X| = 3150, \quad |\mathcal{S}_X| = 525,$$

and for $Q \in Q_X$, we have $|Q \cap X| = 6$ and $|\mathcal{S}(Q)| = 15$.

Our construction proceeds as follows.

Proposition 5.1. Let G be the graph whose set of vertices is Q_X and whose set of edges is the set of pairs $\{Q, Q'\}$ of distinct conics in Q_X such that Q and Q' intersect transversely (that is, $|Q \cap Q'| = 4$) and $|\mathcal{S}(Q) \cap \mathcal{S}(Q')| = 3$. Then G has exactly 150 connected components, and each connected component is isomorphic to the triangular graph $T(7)$.
Let \mathcal{D} denote the set of connected components of the graph G.

Proposition 5.2. Let $D \in \mathcal{D}$ be a connected component of the graph G. Then $Q \cap Q' \cap X = \emptyset$ for any distinct conics Q, Q' in D. Since $|D| \times |Q \cap X| = |\mathcal{P}_X|$, each $D \in \mathcal{D}$ gives rise to a decomposition of \mathcal{P}_X into a disjoint union of 21 sets $Q \cap X$ of six points, where Q runs through D.

Proposition 5.3. Suppose that $Q \in \mathcal{Q}_X$ and $D' \in \mathcal{D}$ satisfy $Q \notin D'$. Then one of the following holds:

\[
\begin{align*}
\alpha) \quad |Q \cap Q' \cap X| &= \begin{cases}
2 & \text{for } 3 \text{ conics } Q' \in D', \\
0 & \text{for } 18 \text{ conics } Q' \in D'.
\end{cases} \\
\beta) \quad |Q \cap Q' \cap X| &= \begin{cases}
2 & \text{for } 1 \text{ conic } Q' \in D', \\
1 & \text{for } 4 \text{ conics } Q' \in D', \\
0 & \text{for } 16 \text{ conics } Q' \in D'.
\end{cases} \\
\gamma) \quad |Q \cap Q' \cap X| &= \begin{cases}
1 & \text{for } 6 \text{ conics } Q' \in D', \\
0 & \text{for } 15 \text{ conics } Q' \in D'.
\end{cases}
\end{align*}
\]

For $Q \in \mathcal{Q}_X$ and $D' \in \mathcal{D}$ satisfying $Q \notin D'$, we define $t(Q, D')$ to be α, β or γ according to the cases in Proposition 5.3.

Proposition 5.4. Suppose that $D, D' \in \mathcal{D}$ are distinct, and hence disjoint as subsets of \mathcal{Q}_X. Then one of the following holds:

\[
\begin{align*}
\beta^{21} \quad t(Q, D') &= \beta \quad \text{for all } Q \in D. \\
\gamma^{21} \quad t(Q, D') &= \gamma \quad \text{for all } Q \in D. \\
\alpha^{15}\gamma^6 \quad t(Q, D') &= \begin{cases}
\alpha & \text{for } 15 \text{ conics } Q \in D, \\
\gamma & \text{for } 6 \text{ conics } Q \in D.
\end{cases} \\
\alpha^3\gamma^{18} \quad t(Q, D') &= \begin{cases}
\alpha & \text{for } 3 \text{ conics } Q \in D, \\
\gamma & \text{for } 18 \text{ conics } Q \in D.
\end{cases}
\end{align*}
\]

For distinct $D, D' \in \mathcal{D}$, we define $T(D, D')$ to be $\beta^{21}, \gamma^{21}, \alpha^{15}\gamma^6$ or $\alpha^3\gamma^{18}$ according to the cases in Proposition 5.4.

Our main results are as follows.

Theorem 5.5. Let H be the graph whose set of vertices is \mathcal{D}, and whose set of edges is the set of pairs $\{D, D'\}$ such that $D \neq D'$ and $T(D, D') = \alpha^{15}\gamma^6$. Then H has exactly three connected components, and each connected component is the Hoffman-Singleton graph.

5
We denote by C_1, C_2, C_3 the set of vertices of the connected components of H. The orbit of an element $D \in \mathcal{D}$ by the subgroup $\text{PSU}_3(\mathbb{F}_{25}) \subset \text{Aut}(X)$ of index 3 is one of the connected component C_i of H.

Proposition 5.6. If D and D' are in the same connected component of H, then $T(D, D')$ is either γ^{21} or $\alpha^{15}\gamma^6$. If D and D' are in different connected components of H, then $T(D, D')$ is either β^{21} or $\alpha^3\gamma^{18}$.

Theorem 5.7. Let H' be the graph whose set of vertices is \mathcal{D}, and whose set of edges is the set of pairs $\{D, D'\}$ such that $D \neq D'$ and $T(D, D')$ is either β^{21} or $\alpha^{15}\gamma^6$. For any i and j with $i \neq j$, the restriction $H'|\{C_i \cup C_j\}$ of H' to $C_i \cup C_j$ is the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by Inoue [14] into a simpler form.

Let E_1 denote the set of edges of the Hoffman-Singleton graph $H|C_1$; that is,

$$E_1 := \{ \{D_1, D_2\} \mid D_1, D_2 \in C_1, \ T(D_1, D_2) = \alpha^{15}\gamma^6 \}.$$

We define a symmetric relation \sim on E_1 by setting $\{D_1, D_2\} \sim \{D'_1, D'_2\}$ if and only if $\{D_1, D_2\}$ and $\{D'_1, D'_2\}$ are disjoint and there exists an edge $\{D''_1, D''_2\} \in E_1$ that has a common vertex with each of the edges $\{D_1, D_2\}$ and $\{D'_1, D'_2\}$.

Theorem 5.8. Let H'' be the graph whose set of vertices is $E_1 \cup C_2 \cup C_3$, and whose set of edges consists of

- $\{E, E'\}$, where $E, E' \in E_1$ are distinct and satisfy $E \sim E'$,
- $\{E, D\}$, where $E = \{D_1, D_2\} \in E_1$, $D \in C_2 \cup C_3$, and both of $T(D_1, D)$ and $T(D_2, D)$ are $\alpha^3\gamma^{18}$, and
- $\{D, D'\}$, where $D, D' \in C_2 \cup C_3$ are distinct and satisfy and $T(D, D') = \alpha^{15}\gamma^6$ or $\alpha^3\gamma^{18}$.

Then H'' is the McLaughlin graph.

Proof of Theorems. We make the list of defining equations of the conics in Q_X, and calculate the adjacency matrices of G, H, H' and H''. We then show that $H|C_i$ is strongly regular of parameters $(50, 7, 0, 1)$, $H'|\{C_i \cup C_j\}$ is strongly regular of parameters $(100, 22, 0, 6)$, and H'' is strongly regular of parameters $(275, 112, 30, 56)$.

Remark 5.9. There are many other ways to define the edges of H and H'. For example, the classical 15-coclique construction of the Higman-Sims graph from the Hoffman-Singleton graph can be rephrased neatly in terms of the geometry of Q_X.

6
6. GROUP THEORETIC INTERPRETATION

The above construction can be expressed in terms of the structure of subgroups of $\text{Aut}(X) = \text{PGU}_3(\mathbb{F}_{25})$.

For an element a of a set A on which $\text{PGU}_3(\mathbb{F}_{25})$ acts, we denote by $\text{stab}(a)$ the stabilizer subgroup in $\text{PGU}_3(\mathbb{F}_{25})$ of a. By \mathfrak{S}_m and \mathfrak{A}_m, we denote the symmetric group and the alternating group of degree m, respectively.

Let Q be an element of Q_X. Then $\text{stab}(Q)$ is isomorphic to $\text{PGL}_2(\mathbb{F}_5) \cong \mathfrak{S}_5$.

Theorem 6.1. Let Q and Q' be distinct elements of Q_X. Then Q and Q' are adjacent in the graph G if and only if $\text{stab}(Q) \cap \text{stab}(Q')$ is isomorphic to \mathfrak{A}_4. Moreover, Q and Q' are in the same connected component of G if and only if the subgroup $\langle \text{stab}(Q), \text{stab}(Q') \rangle$ of $\text{PGU}_3(\mathbb{F}_{25})$ is isomorphic to \mathfrak{S}_5.

Proposition 6.2. For each $D \in D$, the action of $\text{stab}(D)$ on the triangular graph $D = T(7)$ identifies $\text{stab}(D)$ with the subgroup \mathfrak{A}_7 of $\text{Aut}(T(7)) \cong \mathfrak{S}_7$.

Theorem 6.3. Let D and D' be distinct elements of D. We identify $\text{stab}(D)$ with \mathfrak{A}_7 by Proposition 6.2. Then $T(D, D')$ is

\[
\begin{aligned}
\beta^{21} & \text{ if and only if } \text{stab}(D) \cap \text{stab}(D') \cong \text{PSL}_2(\mathbb{F}_7), \\
\gamma^{21} & \text{ if and only if } \text{stab}(D) \cap \text{stab}(D') \cong \mathfrak{A}_5, \\
\alpha^{15} \gamma^6 & \text{ if and only if } \text{stab}(D) \cap \text{stab}(D') \cong \mathfrak{A}_6, \\
\alpha^3 \gamma^{18} & \text{ if and only if } \text{stab}(D) \cap \text{stab}(D') \cong (\mathfrak{A}_4 \times 3) : 2.
\end{aligned}
\]

Remark 6.4. By ATLAS [6], we see that the maximal subgroups of \mathfrak{A}_7 are \mathfrak{A}_6, $\text{PSL}_2(\mathbb{F}_7)$, $\text{PSL}_2(\mathbb{F}_7)$, \mathfrak{S}_5, $(\mathfrak{A}_4 \times 3) : 2$.

7. SUPERSINGULAR K3 SURFACE

First we recall the definition of the Néron–Severi lattice of a smooth projective surface Y defined over an algebraically closed field. A divisor D on Y is **numerically equivalent to zero** if

\[D \cdot C = 0 \quad \text{for any curve } C \text{ on } Y, \]

where $D \cdot C$ is the intersection number of D and C on Y. Let S_Y be the \mathbb{Z}-module of numerical equivalence classes of divisors on Y. Then S_Y with the symmetric bilinear form $\langle \cdot, \cdot \rangle$ induced by the intersection pairing becomes a lattice, which is called the Néron–Severi lattice of Y.

A $K3$ surface Y is said to be **supersingular** if the rank of S_Y attains the possible maximum 22. Supersingular $K3$ surfaces exist only in positive characteristics. Suppose that Y is a supersingular $K3$ surface in characteristic $p > 0$.
Let \(S'_Y := \text{Hom}(S_Y, \mathbb{Z}) \) denote the dual lattice of \(S_Y \). Artin [1] proved that \(S'_Y / S_Y \) is a \(p \)-elementary abelian group of rank \(2\sigma \), where \(\sigma \) is an integer such that \(1 \leq \sigma \leq 10 \). This integer \(\sigma \) is called the Artin invariant of \(Y \). It is known that the isomorphism class of the lattice \(S_Y \) depends only on \(p \) and \(\sigma \) (Rudakov and Shafarevich [21]), and that a supersingular \(K3 \) surface with Artin invariant 1 in characteristic \(p \) exists and is unique up to isomorphisms (Ogus [19, 20], Rudakov and Shafarevich [21]).

We work over an algebraically closed field of characteristic 5, and consider the smooth surface \(Y \) defined by
\[
w^2 = x^6 + y^6 + z^6
\]
in the weighted projective space \(\mathbb{P}(3, 1, 1, 1) \). Then \(Y \) is a double cover of \(\mathbb{P}^2 \) branched along the Hermitian curve \(X \). Proposition 7.1. The surface \(Y \) is a supersingular \(K3 \) surface with Artin invariant 1. In particular, its Néron–Severi lattice \(S_Y \) is isomorphic to the unique lattice characterized by the following properties:

- \(S_Y \) is even and of signature \((1, 21)\),
- \(S'_Y / S_Y \cong (\mathbb{Z}/5\mathbb{Z})^2 \).

In fact, we can give a basis of \(S_Y \) explicitly. Let \(P \) be a special point of \(X \). Then the tangent line \(T_P \) to \(X \) at \(P \) intersects \(X \) at \(P \) with multiplicity 6. Hence the pullback of \(T_P \) by the double covering \(Y \to \mathbb{P}^2 \) splits into two smooth rational curves meeting at one point with multiplicity 3. Since the number of \(\mathbb{F}_{25} \)-rational points of \(X \) is 126, we obtain 252 smooth rational curves on \(Y \). There exist 22 curves among these 252 curves such that their numerical equivalence classes form a lattice of rank 22 and discriminant \(-25\). Therefore they generate \(S_Y \).

The class of the pull-back of a line of \(\mathbb{P}^2 \) is denoted by \(h_0 \in S_Y \). We have \(h_0^2 = 2 \). Then the automorphism group
\[
\text{Aut}(Y, h_0) := \{ g \in \text{Aut}(Y) \mid h_0^2 = h_0 \}
\]
of the polarized \(K3 \) surface \((Y, h_0)\) is isomorphic to \(\text{PGU}_3(\mathbb{F}_{25}) : 2 \) of order 756000, where the extra involution comes from \(\text{Gal}(Y/\mathbb{P}^2) \).

8. CONSTRUCTION BY THE NÉRON–SEVERI LATTICE

This construction stems from [15]. In an attempt to calculate the full automorphism group \(\text{Aut}(Y) \) by Borcherds method [3], we embedded \(S_Y \) into an even unimodular lattice \(L_{26} \) of signature \((1, 25)\). Note that the lattice \(L_{26} \) is unique up to isomorphisms. From the lattice data \((S_Y, h_0)\), the Hoffman-Singleton graph and Higman-Sims graph can be constructed.
Let U be the hyperbolic plane
\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix},
\]
and let Λ be the negative definite Leech lattice. As L_{26}, we use $U \oplus \Lambda$. Vectors of L_{26} are written as (a, b, λ), where $a, b \in \mathbb{Z}$, $(a, b) \in U$ and $\lambda \in \Lambda$. Let $\mathcal{P}(L_{26})$ be the connected component of $\{v \in L_{26} \otimes \mathbb{R} \mid v^2 > 0\}$ that contains $w_0 := (1, 0, 0)$ on its boundary. Each vector $r \in L_{26}$ with $r^2 = -2$ defines a reflection
\[
s_r : x \mapsto x + \langle x, r \rangle r.
\]
Let $W(L_{26})$ denote the subgroup of $O(L_{26})$ generated by these s_r. Then $W(L_{26})$ acts on $\mathcal{P}(L_{26})$. We put
\[
\mathcal{R}_0 := \{ r \in L_{26} \mid r^2 = -2, \langle r, w_0 \rangle = 1 \},
\]
\[
\mathcal{D}_0 := \{ x \in \mathcal{P}(L_{26}) \mid \langle x, r \rangle \geq 0 \text{ for any } r \in \mathcal{R}_0 \}.
\]
The map
\[
\lambda \mapsto r_\lambda := (-1 - \lambda^2/2, 1, \lambda)
\]
gives a bijection from Λ to \mathcal{R}_0, and the group $\text{Aut}(\mathcal{D}_0) := \{ g \in O(L_{26}) \mid \mathcal{D}_0^g = \mathcal{D}_0 \}$ is isomorphic to the Conway group Co_∞. Conway [5] proved the following:

Theorem 8.1. The domain \mathcal{D}_0 is a standard fundamental domain of the action of $W(L_{26})$ on $\mathcal{P}(L_{26})$.

By Nikulin [18], we see that there exists a primitive embedding $S_Y \hookrightarrow L_{26}$ unique up to $O(L_{26})$. The orthogonal complement R of S_Y in L_{26} has a Gram matrix
\[
\begin{bmatrix}
-2 & -1 & 0 & 1 \\
-1 & -2 & -1 & 0 \\
0 & -1 & -4 & -2 \\
1 & 0 & -2 & -4 \\
\end{bmatrix}.
\]
We denote by
\[
\text{pr}_S : L_{26} \rightarrow S_Y, \quad \text{pr}_R : L_{26} \rightarrow R,
\]
the orthogonal projections to S_Y and R, respectively.

Theorem 8.2 ([15]). There exists a primitive embedding $S_Y \hookrightarrow L_{26}$ such that $\text{pr}_S(w_0) = h_0$.

9
In the following, we use this primitive embedding. The set
\[V := \{ r_\lambda \in \mathcal{R}_0 \mid \langle \text{pr}_S(r_\lambda), h_0 \rangle = 1, \quad \langle \text{pr}_S(r_\lambda), \text{pr}_S(r_\lambda) \rangle = -8/5 \} \]
consists of 300 elements. For each \(r_\lambda \in V \), there exists a unique \(r'_\lambda \in V \) such that \(\langle r_\lambda, r'_\lambda \rangle = 3 \), and for any vector \(r_\mu \in V \) other than \(r_\lambda, r'_\lambda \), we have that \(\langle r_\lambda, r_\mu \rangle \) is 0 or 1.

Definition 8.3. Let \(F \) be the graph whose set of vertices is \(V \) and whose set of edges is the set of pairs \(\{r_\lambda, r_\mu\} \) such that \(\langle r_\lambda, r_\mu \rangle = 1 \).

The subset \(\text{pr}_R(V) \) of \(R \) consists of six elements \(\rho_1, \ldots, \rho_6 \). Their inner-products are given by
\[
\begin{bmatrix}
-2 & -1 & -1 & 1 & 1 & 2 \\
-1 & -2 & 1 & -1 & 2 & 1 \\
-1 & 1 & -2 & 2 & -1 & 1 \\
1 & -1 & 2 & -2 & 1 & -1 \\
1 & 2 & -1 & 1 & -2 & -1 \\
2 & 1 & 1 & -1 & -1 & -2
\end{bmatrix}
\]

We put
\[V_i := \text{pr}_R^{-1}(\rho_i) \cap V. \]
If \(r_\lambda \in V_i \), then the unique vector \(r'_\lambda \in V \) with \(\langle r_\lambda, r'_\lambda \rangle = 3 \) belongs to \(V_i' \), where \(\langle \rho_i, \rho_i' \rangle = 2/5 \).

Theorem 8.4. For each \(i \), \(F|V_i \) is the Hoffman-Singleton graph.
If \(\langle \rho_i, \rho_i' \rangle = -1/5 \), then \(F|(V_i \cup V_i') \) is the Higman-Sims graph.

References

E-mail address: shimada@math.sci.hiroshima-u.ac.jp