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Abstract. We present algebro-geometric constructions of the graphs of Hoffman-

Singleton, Higman-Sims, and McLaughlin by means of the configuration of

3150 smooth conics totally tangent to the Hermitian curve of degree 6 in char-

acteristic 5, and the Néron–Severi lattice of the supersingular K3 surface in

characteristic 5 with Artin invariant 1.

1. Introduction

The graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin are impor-

tant examples of strongly regular graphs. These three graphs are closely related.

Indeed, the Higman-Sims graph is constructed from the set of 15-cocliques in the

Hoffman-Singleton graph (see Hafner [10]), and the McLaughlin graph has been

constructed from the Hoffman-Singleton graph by Inoue [14] recently.

The fact that the automorphism group of the Hoffman-Singleton graph con-

tains the simple group PSU3(F25) as a subgroup of index 2 suggests that there is

a relation between these three graphs and the Hermitian curve of degree 6 over

F25. In fact, Benson and Losey [2] constructed the Hoffman-Singleton graph by

means of the geometry of P2(F25) equipped with a Hermitian polarity.

In this talk, we present two algebro-geometric constructions of these three

graphs. The one uses the set of smooth conics totally tangent to the Hermitian

curve of degree 6 in characteristic 5, and the other uses the Néron–Severi lattice

of the supersingularK3 surface in characteristic 5 with Artin invariant 1. See [25]

for the first construction, and [15] for the second construction.

2. Strongly regular graphs

Let Γ = (V,E) be a graph, where V is the set of vertices and E ⊂
(
V
2

)
is the

set of edges. We assume that V is finite. For p ∈ V , we put

L(p) := { p′ ∈ V | pp′ ∈ E }.
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We say that Γ is regular of degree k if k := |L(p)| does not depend on p ∈ V ,

and that Γ is strongly regular with the parameter (v, k, λ, µ) if Γ is regular of

degree k with |V | = v such that, for distinct vertices p, p′ ∈ V , we have

|L(p) ∩ L(p′)| =

{
λ if pp′ ∈ E,

µ otherwise.

Definition-Example 2.1. A triangular graph T (m) is defined to be the graph

(V,E) such that V =
(
[m]
2

)
, where [m] := {1, 2, . . . ,m}, and E is the set of pairs

{{i, j}, {i′, j′}} such that {i, j} ∩ {i′, j′} ̸= ∅. Then T (m) is a strongly regular

graph of parameters (v, k, λ, µ) = (m(m− 1)/2, 2(m− 2), m− 2, 4 ).

Definition-Theorem 2.1. (1) The Hoffman-Singleton graph is the unique strongly

regular graph of parameters (v, k, λ, µ) = (50, 7, 0, 1).

(2) The Higman-Sims graph is the unique strongly regular graph of parameters

(v, k, λ, µ) = (100, 22, 0, 6).

(3) The McLaughlin graph is the unique strongly regular graph of parameters

(v, k, λ, µ) = (275, 112, 30, 56).

Theorem 2.1. (1) The automorphism group of the Hoffman-Singleton graph

contains PSU3(F25) as a subgroup of index 2.

(2) The automorphism group of the Higman-Sims graph contains the Higman-

Sims group as a subgroup of index 2.

(3) The automorphism group of the McLaughlin graph contains the McLaughlin

group as a subgroup of index 2.

See [9], [11], [13], and [17]. See also [4] for constructions for these graphs.

Remark 2.2. Constructions of these graphs by the Leech lattice are known. Below

is a part of Table 10.4 of Conway-Sloane’s book [7]. See also Borcherds’ paper [3].

Name Order Structure

·533 24 · 32 · 53 · 7 PSU3(F25)

·7 29 · 32 · 53 · 7 · 11 HS

·1033 210 · 32 · 53 · 7 · 11 HS .2

·332 29 · 32 · 53 · 7 · 11 HS

·5 28 · 36 · 53 · 7 · 11 McL.2

·832 27 · 36 · 53 · 7 · 11 McL

·322 27 · 36 · 53 · 7 · 11 McL

·522 27 · 36 · 53 · 7 · 11 McL.2
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3. Hermitian varieties

In this and the next sections, we fix a power q := pν of a prime integer p. Let

k denote an algebraic closure of the finite field Fq2 . Every algebraic variety will

be defined over k.

Let n be an integer ≥ 2. We define the Hermitian variety X to be the hyper-

surface of Pn defined by

xq+1
0 + · · ·+ xq+1

n = 0.

The automorphism group Aut(X) ⊂ Aut(Pn) = PGLn+1(k) of this hypersurface

X is equal to PGUn+1(Fq2).

We say that a point P of X is a special point if P satisfies the following

equivalent conditions. Let TP ⊂ Pn be the hyperplane tangent to X at P .

(i) P is an Fq2-rational point of X.

(ii) TP ∩X is a cone.

We denote by PX the set of special points of X. Then we have

|PX | =
1

q

(
q2(n+1) − 1

q2 − 1
+

(−q)n+1 − 1

q + 1

)
,

and Aut(X) = PGUn+1(Fq2) acts on PX transitively. See [12, Chapter 23] or [23],

for example.

A curve C ⊂ Pn is said to be a rational normal curve if C is projectively

equivalent to the image of the morphism P1 ↪→ Pn given by

[x : y] 7→ [xn+1 : xny : · · · : xyn : yn+1].

It is known that a curve C ⊂ Pn is a rational normal curve if and only if C

is non-degenerate (that is, there exist no hyperplanes of Pn containing C), and

deg(C) = n+ 1.

We say that a rational normal curve C is totally tangent to the Hermitian

variety X if C is tangent to X at distinct q + 1 points and the intersection

multiplicity at each intersection point is n.

A subset S of a rational normal curve C is a Baer subset if there exists a

coordinate t : C →∼ P1 on C such that S is the inverse image by t of the set

P1(Fq) = Fq ∪ {∞} of Fq-rational points of P1.

Theorem 3.1 ([24]). Suppose that n ̸≡ 0 (mod p) and 2n ≤ q. Let QX denote

the set of rational normal curves totally tangent to X.

(1) The set QX is non-empty, and Aut(X) acts on QX transitively with the

stabilizer subgroup isomorphic to PGL2(Fq). In particular, we have

|QX | = |PGUn+1(Fq2)|/|PGL2(Fq)|.
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(2) For any C ∈ QX , the points in C ∩X form a Baer subset of C.

(3) Every C ∈ QX is defined over Fq2, and we have C ∩X ⊂ PX .

Remark 3.2. B. Segre obtained Theorem 3.1 for the case n = 2 in [22, n. 81].

4. Hermitian curves

In this section, we put n = 2 and consider the Hermitian curve

xq+1 + yq+1 + zq+1 = 0

of degree q + 1 in characteristic p. Then the condition (ii) above for P ∈ X to

be a special point of X is equivalent to TP ∩X = {P}, and, by [8] and [16], it is

further equivalent to the condition

(iii) P is a Weierstrass point of the curve X.

The number of special points of X is equal to q3 + 1, and Aut(X) acts on PX

double-transitively.

A line L ⊂ P2 is a special secant line of X if L contains distinct two points of

PX . If L is a special secant line, then L intersects X transversely, and we have

L ∩X ⊂ PX . Let SX denote the set of special secant lines of X. We have

|SX | = q4 − q3 + q2.

Suppose that p is odd and q ≥ 5. Then we have |QX | = q2(q3 + 1). Let

Q ∈ QX be a conic totally tangent to X. A special secant line L of X is said to

be a special secant line of Q if L passes through two distinct points of Q ∩ X.

We denote by S(Q) the set of special secant lines of Q. Since |Q ∩ Γ| = q + 1,

we obviously have |S(Q)| = q(q + 1)/2.

5. Geometric construction by the Hermitian curve

In this section, we consider the Hermitian curve

X : x6 + y6 + z6 = 0

of degree 6 in characteristic 5. We have

|Aut(X)| = 378000, |PX | = 126, |QX | = 3150, |SX | = 525,

and for Q ∈ QX , we have |Q ∩X| = 6 and |S(Q)| = 15.

Our construction proceeds as follows.

Proposition 5.1. Let G be the graph whose set of vertices is QX and whose set

of edges is the set of pairs {Q,Q′} of distinct conics in QX such that Q and Q′

intersect transversely (that is, |Q∩Q′| = 4) and |S(Q)∩S(Q′)| = 3. Then G has

exactly 150 connected components, and each connected component is isomorphic

to the triangular graph T (7).
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Let D denote the set of connected components of the graph G.

Proposition 5.2. Let D ∈ D be a connected component of the graph G. Then

Q∩Q′ ∩X = ∅ for any distinct conics Q,Q′ in D. Since |D| × |Q∩X| = |PX |,
each D ∈ D gives rise to a decomposition of PX into a disjoint union of 21 sets

Q ∩X of six points, where Q runs through D.

Proposition 5.3. Suppose that Q ∈ QX and D′ ∈ D satisfy Q /∈ D′. Then one

of the following holds:

(α) |Q ∩Q′ ∩X| =

{
2 for 3 conics Q′ ∈ D′,

0 for 18 conics Q′ ∈ D′.

(β) |Q ∩Q′ ∩X| =


2 for 1 conic Q′ ∈ D′,

1 for 4 conics Q′ ∈ D′,

0 for 16 conics Q′ ∈ D′.

(γ) |Q ∩Q′ ∩X| =

{
1 for 6 conics Q′ ∈ D′,

0 for 15 conics Q′ ∈ D′.

For Q ∈ QX and D′ ∈ D satisfying Q /∈ D′, we define t(Q,D′) to be α, β or γ

according to the cases in Proposition 5.3.

Proposition 5.4. Suppose that D,D′ ∈ D are distinct, and hence disjoint as

subsets of QX . Then one of the following holds:

(β21) t(Q,D′) = β for all Q ∈ D.

(γ21) t(Q,D′) = γ for all Q ∈ D.

(α15γ6) t(Q,D′) =

{
α for 15 conics Q ∈ D,

γ for 6 conics Q ∈ D.

(α3γ18) t(Q,D′) =

{
α for 3 conics Q ∈ D,

γ for 18 conics Q ∈ D.

For distinct D,D′ ∈ D, we define T (D,D′) to be β21, γ21, α15γ6 or α3γ18

according to the cases in Proposition 5.4.

Our main results are as follows.

Theorem 5.5. Let H be the graph whose set of vertices is D, and whose set of

edges is the set of pairs {D,D′} such that D ̸= D′ and T (D,D′) = α15γ6. Then

H has exactly three connected components, and each connected component is the

Hoffman-Singleton graph.
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We denote by C1, C2, C3 the set of vertices of the connected components of H.

The orbit of an element D ∈ D by the subgroup PSU3(F25) ⊂ Aut(X) of index

3 is one of the connected component Ci of H.

Proposition 5.6. If D and D′ are in the same connected component of H,

then T (D,D′) is either γ21 or α15γ6. If D and D′ are in different connected

components of H, then T (D,D′) is either β21 or α3γ18.

Theorem 5.7. Let H ′ be the graph whose set of vertices is D, and whose set of

edges is the set of pairs {D,D′} such that D ̸= D′ and T (D,D′) is either β21 or

α15γ6. For any i and j with i ̸= j, the restriction H ′|(Ci ∪ Cj) of H ′ to Ci ∪ Cj is
the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by

Inoue [14] into a simpler form.

Let E1 denote the set of edges of the Hoffman-Singleton graph H|C1; that is,

E1 := { {D1, D2} | D1, D2 ∈ C1, T (D1, D2) = α15γ6 }.

We define a symmetric relation ∼ on E1 by setting {D1, D2} ∼ {D′
1, D

′
2} if and

only if {D1, D2} and {D′
1, D

′
2} are disjoint and there exists an edge {D′′

1 , D
′′
2} ∈ E1

that has a common vertex with each of the edges {D1, D2} and {D′
1, D

′
2}.

Theorem 5.8. Let H ′′ be the graph whose set of vertices is E1 ∪ C2 ∪ C3, and
whose set of edges consists of

• {E,E ′}, where E,E ′ ∈ E1 are distinct and satisfy E ∼ E ′,

• {E,D}, where E = {D1, D2} ∈ E1, D ∈ C2 ∪ C3, and both of T (D1, D)

and T (D2, D) are α3γ18, and

• {D,D′}, where D,D′ ∈ C2 ∪ C3 are distinct and satisfy and T (D,D′) =

α15γ6 or α3γ18.

Then H ′′ is the McLaughlin graph.

Proof of Theorems. We make the list of defining equations of the conics in

QX , and calculate the adjacency matrices of G, H, H ′ and H ′′. We then show

that H|Ci is strongly regular of parameters (50, 7, 0, 1), H ′|(Ci ∪ Cj) is strongly

regular of parameters (100, 22, 0, 6), and H ′′ is strongly regular of parameters

(275, 112, 30, 56).

Remark 5.9. There are many other ways to define the edges of H and H ′. For

example, the classical 15-coclique construction of the Higman-Sims graph from

the Hoffman-Singleton graph can be rephrased neatly in terms of the geometry

of QX .
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6. Group theoretic interpretation

The above construction can be expressed in terms of the structure of subgroups

of Aut(X) = PGU3(F25).

For an element a of a set A on which PGU3(F25) acts, we denote by stab(a) the

stabilizer subgroup in PGU3(F25) of a. By Sm and Am, we denote the symmetric

group and the alternating group of degree m, respectively.

Let Q be an element of QX . Then stab(Q) is isomorphic to PGL2(F5) ∼= S5.

Theorem 6.1. Let Q and Q′ be distinct elements of QX . Then Q and Q′ are

adjacent in the graph G if and only if stab(Q) ∩ stab(Q′) is isomorphic to A4.

Moreover, Q and Q′ are in the same connected component of G if and only if the

subgroup ⟨stab(Q), stab(Q′)⟩ of PGU3(F25) is isomorphic to A7.

Proposition 6.2. For each D ∈ D, the action of stab(D) on the triangular

graph D ∼= T (7) identifies stab(D) with the subgroup A7 of Aut(T (7)) ∼= S7.

Theorem 6.3. Let D and D′ be distinct elements of D. We identify stab(D)

with A7 by Proposition 6.2. Then T (D,D′) is
β21 if and only if stab(D) ∩ stab(D′) ∼= PSL2(F7),

γ21 if and only if stab(D) ∩ stab(D′) ∼= A5,

α15γ6 if and only if stab(D) ∩ stab(D′) ∼= A6,

α3γ18 if and only if stab(D) ∩ stab(D′) ∼= (A4 × 3) : 2.

Remark 6.4. By ATLAS [6], we see that the maximal subgroups of A7 are

A6, PSL2(F7), PSL2(F7), S5, (A4 × 3) : 2.

7. Supersingular K3 surface

First we recall the definition of the Néron–Severi lattice of a smooth projec-

tive surface Y defined over an algebraically closed field. A divisor D on Y is

numerically equivalent to zero if

D · C = 0 for any curve C on Y ,

where D ·C is the intersection number of D and C on Y . Let SY be the Z-module

of numerical equivalence classes of divisors on Y . Then SY with the symmetric

bilinear form ⟨·, ·⟩ induced by the intersection pairing becomes a lattice, which

is called the Néron–Severi lattice of Y .

A K3 surface Y is said to be supersingular if the rank of SY attains the

possible maximum 22. Supersingular K3 surfaces exist only in positive charac-

teristics. Suppose that Y is a supersingular K3 surface in characteristic p > 0.
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Let S∨
Y := Hom(SY ,Z) denote the dual lattice of SY . Artin [1] proved that

S∨
Y /SY is a p-elementary abelian group of rank 2σ, where σ is an integer such

that 1 ≤ σ ≤ 10. This integer σ is called the Artin invariant of Y . It is

known that the isomorphism class of the lattice SY depends only on p and

σ (Rudakov and Shafarevich [21]), and that a supersingular K3 surface with

Artin invariant 1 in characteristic p exists and is unique up to isomorphisms

(Ogus [19, 20], Rudakov and Shafarevich [21]).

We work over an algebraically closed field of characteristic 5, and consider the

smooth surface Y defined by

w2 = x6 + y6 + z6

in the weighted projective space P(3, 1, 1, 1). Then Y is a double cover of P2

branched along the Hermitian curve X ⊂ P2 of degree 6.

Proposition 7.1. The surface Y is a supersingular K3 surface with Artin in-

variant 1. In particular, its Néron–Severi lattice SY is isomorphic to the unique

lattice characterized by the following properties:

• SY is even and of signature (1, 21),

• S∨
Y /SY

∼= (Z/5Z)2.

In fact, we can give a basis of SY explicitly. Let P be a special point of X.

Then the tangent line TP to X at P intersects X at P with multiplicity 6. Hence

the pullback of TP by the double covering Y → P2 splits into two smooth rational

curves meeting at one point with multiplicity 3. Since the number of F25-rational

points of X is 126, we obtain 252 smooth rational curves on Y . There exist 22

curves among these 252 curves such that their numerical equivalence classes form

a lattice of rank 22 and discriminant −25. Therefore they generate SY .

The class of the pull-back of a line of P2 is denoted by h0 ∈ SY . We have

h2
0 = 2. Then the automorphism group

Aut(Y, h0) := {g ∈ Aut(Y ) |hg
0 = h0}

of the polarized K3 surface (Y, h0) is isomorphic to PGU3(F25).2 of order 756000,

where the extra involution comes from Gal(Y/P2).

8. Construction by the Néron–Severi lattice

This construction stems from [15]. In an attempt to calculate the full auto-

morphism group Aut(Y ) by Borcherds method [3], we embedded SY into an even

unimodular lattice L26 of signature (1, 25). Note that the lattice L26 is unique up

to isomorphisms. From the lattice data (SY , h0), the Hoffman-Singleton graph

and Higman-Sims graph can be constructed.
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Let U be the hyperbolic plane (
0 1

1 0

)
,

and let Λ be the negative definite Leech lattice. As L26, we use U ⊕ Λ. Vectors

of L26 are written as (a, b, λ), where a, b ∈ Z, (a, b) ∈ U and λ ∈ Λ. Let P(L26)

be the connected component of {v ∈ L26 ⊗ R | v2 > 0} that contains

w0 := (1, 0, 0)

on its boundary. Each vector r ∈ L26 with r2 = −2 defines a reflection

sr : x 7→ x+ ⟨x, r⟩r.

Let W (L26) denote the subgroup of O(L26) generated by these sr. Then W (L26)

acts on P(L26). We put

R0 := { r ∈ L26 | r2 = −2, ⟨r, w0⟩ = 1 },
D0 := { x ∈ P(L26) | ⟨x, r⟩ ≥ 0 for any r ∈ R0 }.

The map

λ 7→ rλ := (−1− λ2/2, 1, λ)

gives a bijection from Λ toR0, and the group Aut(D0) := {g ∈ O(L26) | Dg
0 = D0}

is isomorphic to the Conway group Co∞. Conway [5] proved the following:

Theorem 8.1. The domain D0 is a standard fundamental domain of the action

of W (L26) on P(L26).

By Nikulin [18], we see that there exists a primitive embedding SY ↪→ L26

unique up to O(L26). The orthogonal complement R of SY in L26 has a Gram

matrix 
−2 −1 0 1

−1 −2 −1 0

0 −1 −4 −2

1 0 −2 −4

 .

We denote by

prS : L26 → S∨
Y , prR : L26 → R∨,

the orthogonal projections to S∨
Y and R∨, respectively.

Theorem 8.2 ([15]). There exists a primitive embedding SY ↪→ L26 such that

prS(w0) = h0.
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In the following, we use this primitive embedding. The set

V := { rλ ∈ R0 | ⟨prS(rλ), h0⟩ = 1, ⟨prS(rλ), prS(rλ)⟩ = −8/5 }

consists of 300 elements. For each rλ ∈ V , there exists a unique r′λ ∈ V such that

⟨rλ, r′λ⟩ = 3, and for any vector rµ ∈ V other than rλ, r
′
λ, we have that ⟨rλ, rµ⟩ is

0 or 1.

Definition 8.3. Let F be the graph whose set of vertices is V and whose set of

edges is the set of pairs {rλ, rµ} such that ⟨rλ, rµ⟩ = 1.

The subset prR(V) of R∨ consists of six elements ρ1, . . . , ρ6. Their inner-

products are given by

1

5



−2 −1 −1 1 1 2

−1 −2 1 −1 2 1

−1 1 −2 2 −1 1

1 −1 2 −2 1 −1

1 2 −1 1 −2 −1

2 1 1 −1 −1 −2


.

We put

Vi := pr−1
R (ρi) ∩ V .

If rλ ∈ Vi, then the unique vector r′λ ∈ V with ⟨rλ, r′λ⟩ = 3 belongs to Vi′ , where

⟨ρi, ρi′⟩ = 2/5.

Theorem 8.4. For each i, F |Vi is the Hoffman-Singleton graph.

If ⟨ρi, ρi′⟩ = −1/5, then F |(Vi ∪ Vi′) is the Higman-Sims graph.
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