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Abstract

In this talk, we explain how to use the lattice theory and computer in the
study of K3 surfaces.

1. Introduction
We work over C.

Definition 1.1. A smooth projective surface X is called a K3 surface if there exists
a nowhere vanishing holomorphic 2-form ωX on X and π1(X) = 1.

K3 surfaces are an important and interesting object, not only in algebraic geometry
but also in many other branches of mathematics including theoretical physics. We
consider the following geometric problems on K3 surfaces:

• enumerate elliptic fibrations on a given K3 surface,

• enumerate elliptic K3 surfaces up to certain equivalence relation (e.g., by the
type of singular fibers, . . . ),

• enumerate projective models of a fixed degree (e.g., sextic double planes, quartic
surfaces, . . . ) of a given K3 surface,

• enumerate projective models of a fixed degree of K3 surfaces up to certain equiv-
alence relation,

• determine the automorphism group of a given K3 surface,

• . . . .

There are many works on these problems. Thanks to the Torelli-type theorem due to
Piatetski-Shapiro and Shafarevich [15], some of these problems are reduced to com-
putational problems in lattice theory, and the latter can often be solved by means of
computer. It is important to clarify to what extent the geometric problems on K3
surfaces are solved by this method.

In this talk, we explain how to use lattice theory and computer in the study of
K3 surfaces. In particular, we present some elementary but useful algorithms about
lattices. We then demonstrate this method on the problems of constructing Zariski
pairs of projective plane curves (that is, a study of embedding topology of plane curves),
and of determining the automorphism group of a given K3 surface.

The methods can be applied to the supersingular K3 surfaces in positive charac-
teristics (see [8, 10, 23], for example). For simplicity, however, we restrict ourselves to
complex algebraic K3 surfaces.
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2. Lattice theory
The application of the lattice theory to the study ofK3 surfaces started with Nikulin [11].
A lattice is a free Z-module L of finite rank with a non-degenerate symmetric bilinear
form

⟨ , ⟩ : L× L→ Z.

For a lattice L, we denote by O(L) the orthogonal group of L, that is, the group of
automorphisms of L. A lattice L is canonically embedded into its dual lattice

L∨ := Hom(L,Z)

as a submodule of finite index. The finite abelian group

DL := L∨/L

is called the discriminant group of L. We say that L is unimodular if DL = 0. A lattice
L is even if v2 ∈ 2Z for any v ∈ L. Suppose that L is even. The Z-valued symmetric
bilinear form on L extends to a Q-valued symmetric bilinear form on L∨, and it defines
a finite quadratic form

qL : DL → Q/2Z, x̄ 7→ x2 mod 2Z,

which is called the discriminant form of L. A submodule M of L∨ containing L is said
to be an overlattice of L if the Q-valued symmetric bilinear form on L∨ takes values
in Z on M . There exists a canonical bijection between the set of even overlattices of L
and the set of isotropic subgroups of (DL, qL). The signature sgn(L) of a lattice L is
the signature of the real quadratic space L ⊗ R. We say that a lattice L of rank n is
negative-definite (resp. hyperbolic) if the signature of L is (0, n) (resp. (1, n− 1)).

Theorem 2.1. Suppose that a pair of non-negative integers (s+, s−) and a finite
quadratic form (D, q) are given. Then we can determine by an effective method whether
there exists an even lattice L such that sgn(L) = (s+, s−) and (DL, qL) ∼= (D, q).

See [11] or [6, Chapter 15] for the proof and the concrete description of the method.

A sublattice L of a lattice M is said to be primitive if M/L is torsion free. Let
M be an even unimodular lattice, and L a primitive sublattice of M with the orthog-
onal complement L⊥. Then we have (DL, qL) ∼= (DL⊥ ,−qL⊥). Conversely, if R is an
even lattice such that (DL, qL) ∼= (DR,−qR), then there exists an even unimodular
overlattice of L⊕R that contains L and R primitively.

Corollary 2.2. Let M be an even unimodular lattice. We can determine whether a
given lattice L is embedded primitively into M .

By a positive quadratic triple of n-variables, we mean a triple [Q, λ, c], where Q is
a positive-definite n × n symmetric matrix with entries in Q, λ is a column vector of
length n with entries in Q, and c is a rational number. An element of Rn is written
as a row vector v = [x1, . . . , xn]. A positive quadratic triple QT := [Q, λ, c] defines a
quadratic function FQT : Qn → Q by

FQT (v) := v Q tv + 2 v λ+ c.

We have an algorithm to calculate the finite set

E(QT ) := { v ∈ Zn | FQT (v) ≤ 0 }.



Let L be an even hyperbolic lattice. Then the space {x ∈ L⊗ R | x2 > 0} has two
connected components. Let PL be one of them, and we call it a positive cone of L. Let
O+(L) denote the subgroup of O(L) of index 2 that preserves PL. For v ∈ L⊗R with
v2 < 0, we put

(v)⊥ := { x ∈ PL | ⟨x, v⟩ = 0 },
which is a real hyperplane of PL.

Suppose that L is a hyperbolic lattice, and that we are given vectors h, v ∈ PL. For
a negative integer d, we can calculate the finite set

{ r ∈ L | ⟨r, h⟩ > 0, ⟨r, v⟩ < 0, ⟨r, r⟩ = d }.

By a chamber, we mean a closed subset

{ x ∈ PL | ⟨x, v⟩ ≥ 0 for all v ∈ ∆ }

of PL with non-empty interior defined by a set ∆ of vectors v ∈ L ⊗ R with v2 < 0.
Let D be a chamber. A hyperplane (v)⊥ of PL is a wall of D if (v)⊥ is disjoint from
the interior of D and (v)⊥ ∩D contains a non-empty open subset of (v)⊥.

We put
RL := { r ∈ L | r2 = −2 }.

Each r ∈ RL defines a reflection sr : x 7→ x+ ⟨x, r⟩r into (r)⊥, which is an element of
O+(L). We denote by W (L) the subgroup of O+(L) generated by all the reflections sr
with r ∈ RL. Then the closure in PL of each connected component of

PL \
∪

r∈RL
(r)⊥

is a chamber, and is a standard fundamental domain of the action of W (L) on PL.

3. K3 surface
Example 3.1. Let A be an abelian surface, and let ι be the inversion x 7→ −x of A.
Then the minimal resolution of the quotient A/⟨ι⟩ is a K3 surface, which is called the
Kummer surface associated with A, and is denoted by Km(A).

Example 3.2. A plane curve B is a simple sextic if B is of degree 6 and has only
simple singularities. Let B be a simple sextic. We denote by YB → P2 the double
covering branched along B. Then YB is a normal surface with only rational double
points as its singularities, and the minimal resolution XB of YB is a K3 surface.

3.1. Lattices associated with a K3 surface

Suppose that X is a K3 surface. Then H2(X,Z) with the cup product is an even
unimodular lattice of signature (3, 19), and hence is isomorphic to

U⊕3 ⊕ E−⊕2
8 ,

where U is the hyperbolic plane with a Gram matrix

(
0 1
1 0

)
, and E−

8 is the negative

definite root lattice of type E8. The Néron-Severi lattice

SX := H2(X,Z) ∩H1,1(X)

of cohomology classes of divisors on X is an even hyperbolic lattice of rank ≤ 20.
Moreover, as a sublattice of H2(X,Z), SX is primitive.



We denote by TX the orthogonal complement of SX in H2(X,Z), and call it the
transcendental lattice of X.

For various enumeration problems, the following corollary of the surjectivity of the
period map is important:

Theorem 3.3. Let S be a primitive hyperbolic sublattice of U⊕3 ⊕ E−⊕2
8 . Then there

exists a K3 surface X such that S ∼= SX .

Therefore, when we are given an even hyperbolic lattice S, we can determine by
Corollary 2.2 whether there exists a K3 surface X such that S ∼= SX .

3.2. Singular K3 surfaces

Definition 3.4. A K3 surface X is called singular if rank(SX) = 20.

If X is a singular K3 surface, then its transcendental lattice T (X) := TX is an even
positive-definite lattice of rank 2.

Theorem 3.5 (Shioda and Inose [24]). (1) The map X 7→ T (X) := TX is a bijection
from the set of isomorphism classes of singular K3 surfaces to the set of isomorphism
classes of oriented positive-definite even lattices of rank 2.

(2) Every singular K3 surface X is isomorphic to a double cover of Km(E × E ′),
where E and E ′ are isogenous elliptic curves with complex multiplications determined
by T (X).

In particular, every singular K3 surface X is defined over Q, and a Gram matrix
of SX is easily calculated from T (X).

4. Polarizations of a K3 surface
Let X be a K3 surface. We denote by P(X) the positive cone of SX ⊗R that contains
the class of an ample divisor, that is, P(X) contains the class of a hyperplane section
of X. We then put

N(X) := {x ∈ P(X) | ⟨x, [C]⟩ ≥ 0 for any curve C on X }.

By Riemann-Roch theorem on X, we have the following. See [16], for example.

Proposition 4.1. The closed subset N(X) of P(X) is a standard fundamental domain
of the action of W (SX) on P(X).

More precisely, let h0 be an interior point of N(X). Then, for r ∈ RSX
with

⟨r, h0⟩ > 0, the hyperplane (r)⊥ of P(X) is a wall of N(X) if and only if r is the class
of a smooth rational curve on X.

For v ∈ SX , we denote by Lv → X the corresponding line bundle.

Definition 4.2. Let d be an even positive integer. We say that a vector h ∈ SX is
a polarization of degree d if h2 = d and the complete linear system |Lh| is non-empty
and has no fixed-components.

Let h be a polarization of degree d. It is obvious that h ∈ N(X). Since |Lh| is base-
point free by [17], it defines a morphism Φh from X to a projective space of dimension
1 + d/2. We denote by

X
ϕh−→ Yh

ψh−→ P1+d/2

the Stein factorization of Φh. By [3, 4], the normal surface Yh has only rational double
points as its singularities, and ϕh is a contraction of an ADE-configuration of smooth
rational curves.



Example 4.3. In the situation of Example 3.2, we denote by

ρB : XB → YB → P2

the composite of the minimal resolution and the double covering. Then the class hB of
the pull-back of a line on P2 by ρB is a polarization of degree 2, and YB is the projective
model of (XB, hB).

Proposition 4.4. The ADE-type of Sing(Yh) is equal to the ADE-type of the root
system {r ∈ SX | ⟨h, r⟩ = 0, r2 = −2}.

For the polarization of degree 2, we have the following:

Proposition 4.5. Let h ∈ SX be a vector with h2 = 2. Then h is a polarization of
degree 2 if and only if h ∈ N(X) and there exist no vectors e ∈ SX with e2 = 0 and
⟨e, h⟩ = 1.

Suppose that we are given an ample class h0 ∈ SX . If we are given a vector h ∈ SX
with h2 = 2 and ⟨h, h0⟩ > 0, we can determine whether h is a polarization or not by
calculating the sets

{ r ∈ SX | ⟨r, h0⟩ > 0, ⟨r, h⟩ < 0, r2 = −2 },

and

{ e ∈ SX | ⟨e, h⟩ = 1, e2 = 0 }.

Moreover, if h is a polarization of degree 2, then we can determine the ADE-type of
the singularities of Yh by Proposition 4.4.

5. Application to simple sextics
5.1. Configuration types of simple sextics

Definition 5.1. For a simple sextic B, we denote by RB the ADE-type of SingB and
degsB the list of degrees of irreducible components of B. We say that B and B′ are of
the same configuration type and write B ∼cfg B

′ if degsB = degsB′, RB = RB′ , and
their intersection patterns of irreducible components are same.

Let B be a simple sextic with the associated projective model YB of (XB, hB) as in
Example 4.3. Let EB be the set of exceptional curves of XB → YB, and let

ΣB := ⟨ [E] | E ∈ EB ⟩ ⊕ ⟨hB⟩ ⊂ H2(XB,Z)

be the sublattice generated by the classes [E] of E ∈ EB and the polarization class hB.
Note that RB is the ADE-type of the root system {[E] |E ∈ EB}. It is obvious that
B ∼cfg B

′ implies ΣB
∼= ΣB′ . We denote by

ΣB ⊂ H2(XB,Z)

the primitive closure of ΣB. Then ΣB must be primitively embedded into H2(X,Z),
and satisfy RΣB

= RΣB
.

After partial results of Urabe [26], Yang [28] classified all such ΣB by computer,
and made the complete list of configuration types of simple sextics. In particular, we
see that the number of configuration types is 11159. See also Degtyarev [7].



5.2. Zariski pairs

We say that B and B′ have the same embedding topology and write B ∼emb B
′ if there

exists a homeomorphism
ψ : (P2, B) →∼ (P2, B′).

If B ∼emb B
′, then B ∼cfg B

′.

Definition 5.2. A Zariski pair of simple sextics is a pair [B,B′] of simple sextics such
that B ∼cfg B

′ but B ̸∼embB
′.

The notion of Zariski pairs was introduced by Artal [1], and many methods of
constructing Zariski pairs are known. See the survey paper [2].

Let ΘB denote the orthogonal complement of ΣB in H2(XB,Z).
Theorem 5.3. If B ∼emb B

′, then ΘB and ΘB′ are isomorphic.

Proof. In fact, ΘB is a topological invariant of the open surface

UB := ρ−1
B (P2 \B) ⊂ XB,

because we have
ΘB

∼= H2(UB,Z)/Ker,

where Ker := {v ∈ H2(UB) | ⟨v, x⟩ = 0 for all x ∈ H2(UB)}. Since UB and UB′ are
homeomorphic if B ∼emb B

′, Theorem 5.3 follows.

Note that (DΘB
, qΘB

) ∼= (DΣB
,−qΣB

). We consider the finite abelian group

G(B) := ΣB/ΣB.

Corollary 5.4. If B ∼emb B
′, then we have (DΣB

, qΣB
) ∼= (DΣB′ , qΣB′ ). In particular,

if B ∼cfg B
′ and |G(B)| ̸= |G(B′)|, then B ̸∼embB

′.

This corollary produces many examples of Zariski pairs of simple sextics. In fact,
we can enumerate all Zariski pairs of this type. See [21].

Example 5.5. Let B be a simple sextic defined by f 3 + g2 = 0, where f and g are
general polynomials of degrees 2 and 3, respectively. Then degsB = [6], RB = 6A2.
We see that π1(P2 \ B) is isomorphic to the free product Z/(2) ∗ Z/(3) of Z/(2) and
Z/(3). Zariski [29] showed that there exists B′ with degsB′ = [6], RB′ = 6A2 such
that π1(P2 \B′) ∼= Z/(2)× Z/(3). See also Oka [14].

For this pair, we have G(B) ∼= Z/3Z and G(B′) = 0. The group G(B) is generated
by [C] mod ΣB, where [C] ∈ ΣB is the class of the conic C passing though the six cusps
of B.

Example 5.6. We have three simple sextics of degree 6

B1 = C1 +Q1, B2 = C2 +Q2, B4 = C4 +Q4,

where Qi is a quartic curve with one tacnode and Ci is a smooth conic tangent to Qi

at two points with multiplicity 4, so that we have degsBi = [2, 4] and RBi
= A3+2A7.

Let ν : Ei → Qi be the normalization of Qi. Then Ei is of genus 1 and has four special
points p, q, s, t such that ν(p) = ν(q) is the tacnode of Qi, and ν(s) and ν(t) are the
intersection points with Ci. The order of [p+q−s−t] in Pic0(Ei) is 1, 2 and 4 according
to i = 1, 2, 4. We have

G(B1) ∼= Z/2Z, G(B2) ∼= Z/4Z, G(B4) ∼= Z/8Z.

Hence they are topologically distinct.



5.3. Arithmetic Zariski pairs

Definition 5.7. A Zariski pair [B,B′] is said to be arithmetic if B and B′ are defined
over Q and conjugate by some σ ∈ Gal(Q/Q).

A simple sextic is said to be maximizing if its total Milnor number is 19. If B is
a maximizing simple sextic, then XB is a singular K3 surface with T (XB) ∼= ΘB, and
can be defined over Q.

Theorem 5.8 (Schütt [18] and S. [20]). Let X and X ′ be singular K3 surfaces defined
over Q such that T (X) and T (X ′) have isomorphic discriminant forms. Then there
exists σ ∈ Gal(Q/Q) such that X ′ ∼= Xσ.

Corollary 5.9. Let B be a maximizing sextic defined over Q. If the genus containing
T (XB) contains more than one isomorphism class of lattices, then there exists σ ∈
Gal(Q/Q) such that B ̸∼embB

σ.

Example 5.10. We consider the configuration type of maximizing sextics B = L+Q,
where Q is a quintic curve with one A10-singular point, and L is a line tangent to Q
at one point with multiplicity 5, so that RB = A9 + A10 and degsB = [5, 1]. Such
maximizing sextics are projectively isomorphic to

z · (G(x, y, z)±
√
5 ·H(x, y, z)) = 0,

where G(x, y, z) and H(x, y, z) are homogenizations of

g(x, y) := −9x4 − 14x3y + 58 x3 − 48x2y2 − 64x2y

+10 x2 + 108 xy3 − 20xy2 − 44 y5 + 10 y4,

h(x, y) := 5x4 + 10 x3y − 30x3 + 30x2y2 +

+20 x2y − 40xy3 + 20 y5.

respectively. The genus corresponding to (DΣB
,−qΣB

) and signature (2, 0) (that is, the
genus containing T (XB)) consists of[

2 1
1 28

]
,

[
8 3
3 8

]
,

and they correspond to the choice of the sign of
√
5 in the defining equation of B.

See [19] for more examples.

6. Automorphism group
We have a natural homomorphism

φX : Aut(X) → O(SX).

It is known that this homomorphism has only a finite kernel. Sterk [25] proved that
Aut(X) is finitely generated. We put

Aut(N(X)) := { g ∈ O+(SX) | N(X)g = N(X) }.

It is obvious that the image of φX is contained in Aut(N(X)). We regard a non-zero
holomorphic 2-form ωX on X as a vector of TX ⊗ C, and put

CX := { g ∈ O(TX) | ωgX = λωX for some λ ∈ C× }.



Since H := H2(X,Z) is unimodular, the subgroup H/(SX ⊕ TX) of the discriminant
group DSX

⊕DTX of SX ⊕ TX is the graph of an isomorphism

δST : (DSX
, qSX

) →∼ (DTX ,−qTX ),

which induces an isomorphism

δST∗ : O(qSX
) →∼ O(qTX ).

In general, for an even lattice L, we have a natural homomorphism ηL : O(L) → O(qL).
Since O(qTX ) is finite, the subgroup

GX := { g ∈ O+(SX) | δST∗(ηSX
(g)) ∈ ηTX (CX) }

of O+(SX) has finite index. As a corollary of the Torelli-type theorem due to Piatetski-
Shapiro and Shafarevich [15], we have the following:

Theorem 6.1 (Piatetski-Shapiro and Shafarevich [15]). The image of φX is equal to
Aut(N(X)) ∩GX .

6.1. Borcherds method

Therefore, the calculation of the image of φX is reduced to the following lattice-theoretic
problem.

Problem 6.2. Suppose that the following objects are given: an even hyperbolic lattice
S and a positive cone P(S) of S ⊗R, a standard fundamental domain N of the action
of W (S) on P(S), and a subgroup G of O+(S) with finite index. Calculate a finite set
of generators of the group Aut(N) ∩G.

Remark 6.3. The lattices for which Aut(N) is finite are classified by Nikulin [12, 13]
and Vinberg [27]. Therefore we will be concerned with the cases where Aut(N) is
infinite.

Let Ln be the even hyperbolic unimodular lattice of rank n = 10, 18 or 26. Then
Ln is unique up to isomorphisms. A standard fundamental domain of the action of
W (Ln) on P(Ln) is called a Conway chamber. Let D be a Conway chamber. We say
that a vector w ∈ Ln is a Weyl vector of D if the set of walls of D is given by

{ (r)⊥ | r2 = −2, ⟨w, r⟩ = 1 }.

Theorem 6.4 (Conway [5]). A Weyl vector exists.

In fact, Conway [5] gave an explicit description of Weyl vectors.

Example 6.5. Let U denote the hyperbolic plane and let Λ be the negative-definite
Leech lattice. Then we have L26

∼= U ⊕Λ. Under this isomorphism, we denote vectors
of L26 by (x, y, λ), where (x, y) ∈ U and λ ∈ Λ. Then w0 := (1, 0, 0) is a Weyl vector
of the Conway chamber

D0 := { x ∈ P(L26) | ⟨x, rλ⟩ ≥ 0 for any λ ∈ Λ },

where rλ := (−1 − λ2/2, 1, λ) ∈ L26. Hence Aut(D0) ⊂ O+(L26) is isomorphic to the
Conway group Co∞.



We assume that S is embedded in Ln primitively, and that any element of G can
be extended to an isometry of Ln. Moreover, when n = 26, we further assume that the
orthogonal complement of S in L26 cannot be embedded into Λ.

A Conway chamberD is said to be S-nondegenerate ifD := D∩P(S) contains a non-
empty open subset of P(S). In this case, we say that D is an induced chamber. Since
P(Ln) is tiled by Conway chambers, P(S) is tiled by induced chambers. Moreover,
since RS ⊂ RLn , the given standard fundamental domain N of the action of W (S) on
P(S) is a union of induced chambers. Two induced chambers D and D′ are said to be
G-congruent if there exists g ∈ G such that D′ = Dg.

Proposition 6.6 ([22]). (1) The number of G-congruence classes of induced chambers
is finite. (2) The number of walls of an induced chamber D = D ∩ P(S) is finite, and
we can calculate the set of walls of D from the Weyl vector of D.

Hence Aut(D)∩G = {g ∈ G |Dg = D} is finite for any induced chamber D. More-
over, for two induced chambers D and D′, we can determine whether D and D′ are
G-congruent or not.

Borcherds method makes a complete set

D := {D0, . . . , Dm}

of representatives of all G-congruence classes of induced chambers contained in N . We
start from an induced chamber D0 contained in N , set Γ := {} and D := [D0], and
proceed as follows. For an induced chamber Di ∈ D = [D0, . . . , Dk], we calculate the
set of walls of Di and the finite group Aut(Di) ∩ G. We append a set of generators
of Aut(Di) ∩ G to Γ. For each wall (v)⊥ of Di that is not a wall of N , we calculate
the induced chamber D′ adjacent to Di along (v)⊥, and determine whether D′ is G-
congruent to some Dj ∈ D. If there are no such Dj, then we set Dk+1 := D′ and
append it to D as a representative of a new G-congruence class. If there exist Dj ∈ D
and g ∈ G such that D′ = Dg

j , then we append g to Γ. We repeat this process until we
reach the end of the list D. By Proposition 6.6, this algorithm terminates. Then the
group Aut(N) ∩G is generated by the elements in the finite set Γ.

Example 6.7 (Kondo [9]). Let C be a generic genus 2 curve, and Jac(C) its Jacobian.
For X = Km(Jac(C)), we have rank(SX) = 17. The subgroup GX is of index 32 in
O+(SX). We have D = {D0}, and |Aut(D0) ∩ GX | = 32. The induced chamber D0

has 316 walls, which are decomposed by the action of Aut(D0) ∩GX into 23 orbits as

316 = 32× 1 + 4× 15 + 32× 7.

The first orbit consists of 32 walls of N(X). From the other 22 orbits, we obtain extra
automorphisms. Hence the image of φX is generated by Aut(D0) ∩ GX and 22 extra
automorphisms.

Example 6.8. Let X be a K3 surface with rank(SX) = 20 and

TX =

[
2 1
1 6

]
,

which is unique up to isomorphisms. Then we have |D| = 1098. The output Γ consists
of 789 elements.
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