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1 Introduction
1.1 Abstract
▼ We are studying:

◦ geometry of left-invariant metrics on Lie groups,

from the viewpoint of the space of left-invariant metrics.

▼ Our Results:

◦ A study of this space providesMilnor-type theorems,

a generalization of Milnor frames .

◦ They provide several existence and nonexistence results of

“distinguished” left-invariant metrics.
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1.2 Contents
▼ This talk is organized as follows:

§1: Introduction

§2: How to get Milnor-type theorems

§3: Trivial case

§4: Three-dimensional case

§5: Higher-dimensional examples

§6: A pseudo-Riemannian version

§7: Summary and Problems
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1.3 Theme : Left-invariant metrics (1/2)

▼ Our theme:

◦ Left-invariant Riemannian metrics g on Lie groupsG.

▼ They can be studied in terms of:

◦ (g, ⟨, ⟩) : the corresponding metric Lie algebras.

◦ The Levi-Civita connection∇ : g × g → g satisfies

2⟨∇XY, Z⟩ = ⟨[X,Y], Z⟩ + ⟨[Z, X],Y⟩ + ⟨X, [Z,Y]⟩.

▼ They provide examples of:

◦ Einstein :⇔ Ric = c · id (∃c ∈ R),

◦ algebraic Ricci soliton

:⇔ Ric = c · id + D (∃c ∈ R, ∃D ∈ Der(g)),

◦ Ricci soliton :⇔ ric = cg + LXg (∃c ∈ R, ∃X ∈ X(G)).
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1.4 Theme : Left-invariant metrics (2/2)

▼ Fact:

◦ Einstein⇒ algebraic Ricci soliton⇒ Ricci soliton.

▼ Example (Heisenberg Lie algebra):

◦ h3 := span{e1, e2, e3} with [ e1, e2] = e3, [e1, e3] = [e2, e3] = 0.

◦ ⟨, ⟩ : canonical inner product ({e1, e2, e3} : o.n.b.)

⇒ ◦ Ric =
1

2


−1 0 0

0 −1 0

0 0 1

.

◦ Der(h3) =




a ∗ 0

∗ b 0

∗ ∗ a+ b

 | a, b ∈ R

.
◦ Hence, (h3, ⟨, ⟩) is an algebraic Ricci soliton (Ric= c · id + D).
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1.5 Problem : The existence of distinguished metrics (1/2)

▼ Problem:

◦ For a given Lie group G, examine

whether G admits a “distinguished” left-invariant metric.

(e.g., Einstein, (algebraic) Ricci soliton)

▼ Philosophy:

◦ This would be related to algebraic structure of the Lie group.

((Alekseevskii conjecture)G : noncompact Einstein⇒ solvable)

◦ This is also related to GIT. (cf. Lauret)

▼ Known results:

◦ Classification for low dimensional ones.

(Einstein when dim ≤ 5, alg. Ricci soliton when dim≤ 4, ...)

◦ Some higher-dimensional examples.
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1.6 Problem : The existence of distinguished metrics (2/2)

▼ Problem:

◦ Examine whetherG admits a distinguished left-invariant metric.

▼ Note:

◦ In general, this problem is difficult.

◦ One of the reasons: there are so many left-invariant metrics...

M̃ := {left-invariant metrics on G}
� {inner products on g}
� GL n(R)/O(n).

(Note that n := dim G, and g.⟨·, ·⟩ := ⟨g−1·, g−1·⟩)
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1.7 Approach : The space of left-invariant metrics (1/1)

▼ Recall:

◦ M̃ := {⟨, ⟩ : an inner product on g} � GL n(R)/O(n).

▼ Observation:

◦ R×Aut(g)↷ M̃ preserves all Riemannian geometric properties.

◦ Hence, in order to examine the existence of distinguished metrics,

we have only to study the orbit spaceR×Aut(g)\M̃.

▼ Def.:

◦ PM := R×Aut(g)\M̃ (the orbit space) is called themoduli space.
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1.8 Result : a generalization of Milnor frames (1/2)

▼ Thm.:

◦ An expression ofPM = R×Aut(g)\M̃
⇒ A “Milnor-type theorem” for g.

▼ Thm. (Milnor 1976):

◦ g : 3-dimensional unimodular

◦ ⟨, ⟩ : any inner product on g

⇒ ∃ {x1, x2, x3} : o.n.b. w.r.t. ⟨, ⟩, ∃ λ1, λ2, λ3 ∈ R :

[x1, x2] = λ3x3, [x2, x3] = λ1x1, [x3, x1] = λ2x2.

▼ Remark:

◦ {x1, x2, x3} is called the Milnor frame .

◦ For eachg, possible values ofλ1, λ2, λ3 are determined.

◦ All inner products on g can be studied using up to 3 parameters.
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1.9 Result : a generalization of Milnor frames (2/2)

▼ Thm.:

◦ An expression ofPM = R×Aut(g)\M̃
⇒ A “Milnor-type theorem” for g.

▼ A format of Milnor-type theorems:

◦ ⟨, ⟩ : any inner product on g

⇒ ∃k > 0, ∃{x1, . . . , xn} : o.n.b. w.r.t. k⟨, ⟩ :

the bracket relations contain only l (:= dim PM) parameters.

▼ Comment:

◦ All inner products on g can be studied usingl parameters.

(Note: l = dim PM << dim M̃ in general.)

◦ We can obtain several existence and nonexistence results.
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2 How to get Milnor-type theorems
2.1 How to get Milnor-type theorems (1/3)

▼ Recall:

◦ g : a Lie algebra, dim g = n.

◦ M̃ := {⟨, ⟩ : an inner product on g} � GL n(R)/O(n).

◦ PM := R×Aut(g)\M̃ (the orbit space) : the moduli space.

▼ Def.:

◦ ⟨, ⟩0 : the origin.

◦ GL n(R) ⊃ U : a set of representativesof PM

:⇔ PM = {R×Aut(g).(g.⟨, ⟩0) | g ∈ U}.
(⇔ {g.⟨, ⟩0 | g ∈ U} intersects all orbits)
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2.2 How to get Milnor-type theorems (2/3)

▼ Thm. (Hashinaga-T.-Terada, preprint):

◦ {e1, . . . , en} : o.n.b. of g w.r.t. ⟨, ⟩0
◦ GL n(R) ⊃ U : a set of representatives ofPM

◦ ⟨, ⟩ : an arbitrary inner product

⇒ ∃k > 0, ∃φ ∈ Aut(g), ∃g ∈ U :

{φge1, . . . , φgen} is orthonormal w.r.t. k⟨, ⟩.

▼ A sketch of the proof:

◦ By assumption, ∃g ∈ U : ⟨, ⟩ ∈ R×Aut(g).(g.⟨, ⟩0).

◦ By definition, ∃cφ ∈ R×Aut(g) : ⟨, ⟩ = (cφg).⟨, ⟩0.
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2.3 How to get Milnor-type theorems (3/3)

▼ Recall:

◦ GL n(R) ⊃ U : a set of representatives ofPM

◦ ⟨, ⟩ : an arbitrary inner product

⇒ ∃k > 0, ∃φ ∈ Aut(g), ∃g ∈ U :

{φge1, . . . , φgen} is orthonormal w.r.t. k⟨, ⟩.

▼ Comment:

◦ {φge1, . . . , φgen} is a generalized Milnor frame.

◦ Note: φ preserves a bracket product.

◦ l := dim U

⇒ the bracket relations among them contain onlyl variables.
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3 Trivial case
3.1 Trivial case (1/3)

▼ It may happen:

◦ PM := R×Aut(g)\M̃ = {pt} (i.e., R×Aut(g)↷ M̃ : transitive.)

▼ Def.:

◦ gRHn := span{e1, . . . , en} with [ e1, ej ] = ej ( j ≥ 2)

is called the Lie algebra ofRHn.

▼ Fact:

◦ so(1, n) = k ⊕ a ⊕ n : Iwasawa decomposition

⇒ gRHn � a ⊕ n.
◦ GRHn : the simply-connected Lie group with Lie algebra gRHn

⇒ GRHn ↷ RHn : simply transitive (henceGRHn � RHn).
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3.2 Trivial case (2/3)

▼ Thm. (Lauret 2003, Kodama-Takahara-T. 2011):

◦ A Lie algebra g satisfiesPM = {pt}
⇔ (1) Rn : abelian,

(2) gRHn := span{e1, . . . , en} with [ e1, ej ] = ej ( j ≥ 2),

(3) h3 ⊕ Rn−3 := span{e1, . . . , en} with [ e1, e2] = e3.

▼ Comment:

◦ PM = {pt}
⇔ a left-invariant metric is unique up to isometry and scaling

⇔ R×Aut(g)↷ M̃ : transitive.
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3.3 Trivial case (3/3)

▼ Thm.:

◦ ⟨, ⟩ : an arbitrary inner product on gRHn

⇒ ∃k > 0, {x1, . . . , xn} : o.n.b. w.r.t. k⟨, ⟩:
[x1, x j ] = x j ( j ≥ 2).

▼ Cor. (cf. Milnor 1976):

◦ ∀⟨, ⟩ on gRHn has a constant curvaturec < 0.

▼ Comment:

◦ This was first proved by Milnor (1976),

but the original proof is very direct and not short.

◦ A Milnor-type theorem provides a very simple proof.
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4 Three-dimensional case
4.1 Three-dimensional case (1/3)

▼ Comment:

◦ g : solvable Lie algebra, dimg = 3 (not necessary unimodular).

◦ We ([Hashinaga-T.]) constructed Milnor-type theorems for allg.

◦ Here we mention some of them.

▼ Consider:

◦ r′3,a := span{e1, e2, e3} (a ≥ 0)

where [e1, e2] = ae2 − e3, [e1, e3] = e2 + ae3.

◦ Note: r′3,a is solvable.

◦ Note: r′3,a is unimodular ⇔ a = 0.
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4.2 Three-dimensional case (2/3)

▼ Thm. (Hashinaga-T.):

◦ ⟨, ⟩ : an (arbitrary) inner product on r′3,a

⇒ ∃k > 0, ∃λ ≥ 1, ∃{x1, x2, x3} : o.n.b. w.r.t. k⟨, ⟩ :

[x1, x2] = ax2 − λx3, [x1, x3] = (1/λ)x2 + ax3.

▼ Proof:

◦ U := {diag(1, 1, 1/λ) | λ ≥ 1} is a set of representatives ofPM.

▼ Cor.:

◦ r′3,a admits a left-invariant Einstein metric.

(It corresponds to the caseλ = 1.)
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4.3 Three-dimensional case (3/3)

▼ Recall (whena = 0):

◦ ⟨, ⟩ : an (arbitrary) inner product on r′3,0

⇒ ∃k > 0, ∃λ ≥ 1, ∃{x1, x2, x3} : o.n.b. w.r.t. k⟨, ⟩ :

[x1, x2] = −λx3, [x1, x3] = (1/λ)x2.

▼ Recall (Milnor’s Theorem):

◦ ⟨, ⟩ : an (arbitrary) inner product on r′3,0

⇒ ∃λ1, λ2 > 0, ∃{y1, y2, y3} : o.n.b. w.r.t. ⟨, ⟩ :

[y1, y2] = 0, [y2, y3] = λ1y1, [y3, y1] = λ2y2.

▼ Our theorem recovers Milnor’s theorem for r′3,0:

◦ It is enough to put (and suitable change of indices)

yi := k−1/2xi , λ1 := 0, λ2 := λ−1k−1/2, λ3 := λk−1/2.
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5 Higher dimensional examples
5.1 Higher dimensional examples (1/3)

▼ Comment:

◦ In general, it is not easy to expressPM.

◦ We here mention some Milnor-type theorems forg,

whereg is higher dimensional, but dimPM = 1.

▼ Fact (Berndt-Br ück 2002):

◦ M : a Hadamard manifold (e.g.,M = M̃)

◦ H ↷ M : of cohomogeneity one

⇒ H\M � R or [0,+∞).

▼ Recall:

◦ U := {diag(1, 1, 1/λ) | λ ≥ 1} � [1,+∞) for r′3,a.
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5.2 Higher dimensional examples (2/3)

▼ Consider:

◦ gn
1,1

:= span{e1, . . . , en},
where [ei , en] = ei (for i = 1, . . . , n − 2),

[en−1, en] = e1 + en−1.

▼ Thm. (Taketomi-T.):

◦ ⟨, ⟩ : an arbitrary inner product on gn
1,1

⇒ ∃k > 0, ∃λ > 0, ∃{x1, . . . , xn} : o.n.b. w.r.t. k⟨, ⟩ :

[xi , xn] = xi (for i = 1, . . . , n − 2),

[xn−1, xn] = λx1 + xn−1.

▼ Cor.:

◦ The abovegn
1,1

does not admit left-invariant Ricci solitons.
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5.3 Higher dimensional examples (3/3)

▼ Prop. (Taketomi-T.):

◦ R×Aut(gn
1,1

)↷ M̃ satisfies:

◦ The orbit space� R>0.

◦ All orbits R×Aut(gn
1,1

).⟨, ⟩ are hypersurfaces inM̃.

◦ More strongly, all orbits are congruent to each other.

(Looks like a horosphere foliation.)

▼ Comment:

◦ Our expectation: ⟨, ⟩ is special⇔ R×Aut(g).⟨, ⟩ is special?

◦ The above observation certificates this expectation.

(∄ Ricci soliton, ∄ special orbits)
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6 A pseudo-Riemannian version
6.1 A pseudo-Riemannian version (1/4)

▼ Def:

◦ g : ( p+ q)-dim. Lie algebra

◦ M̃(p,q) := {⟨, ⟩ : an inner product on g with signature (p, q)}
� GL p+q(R)/O(p, q).

◦ PM(p,q) := R×Aut(g)\M̃(p,q) : the Moduli space.

▼ Thm. (Kubo-Onda-Taketomi-T.):

◦ A set of representatives ofPM(p,q)

⇒ a pseudo-Riemannian version Milnor-type theorem

(by the same procedure)
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6.2 A pseudo-Riemannian version (2/4)

▼ Consider:

◦ gRHn : the Lie algebra ofRHn (n = p+ q).

▼ Thm. (Kubo-Onda-Taketomi-T.):

◦ ⟨, ⟩ : an arbitrary inner product on gRHn with signature (p, q)

⇒ ∃k > 0, ∃λ ∈ {0, 1, 2},
∃{x1, . . . , xn} : pseudo-o.n.b. w.r.t.k⟨, ⟩ :

[x1, x j ] = x j , [x1, xn] = −λx1 + xn, [x j , xn] = −λx j

(for j ≥ 2)

▼ Idea of Proof:

◦ The orbit spacePM(p,q) := R×Aut(g)\M̃(p,q) consists of 3 points.
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6.3 A pseudo-Riemannian version (3/4)

▼ Recall:

◦ #PM(p,q) = 3 for g = gRHn.

▼ Cor.:

◦ g := gRHn

⇒ ∀⟨, ⟩ : pseudo-Riemannian, it has a constant curvaturec.

(c can take any signature,c > 0, c = 0, c < 0)

▼ Comment:

◦ Lorentz version of this corollary has been known (Nomizu 1979).

◦ The (pseudo-Riemannian version of) Milnor-type theorem

simplifies the proof, and extends it to an arbitrary signature.
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6.4 A pseudo-Riemannian version (4/4)

▼ Question:

◦ Why #PM(p,q) = 3 for g = gRHn ?

▼ In general:

◦ PM(p,q) := R×Aut(g)\M̃(p,q) � O(p, q)\(GL p+q(R)/R×Aut(g)).

▼ For g = gRHn:

◦ R×Aut(g) is parabolic so that GLp+q(R)/R×Aut(g) � RPp+q−1.

◦ The above 3 orbits correspond to

{[u] ∈ RPp+q−1} with u : timelike, lightlike, spacelike.

▼ Comment:

◦ This is a very special case...

◦ For further studies, we need to know actions on GLp+q(R)/O(p, q).
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7 Summary and Problems
7.1 Summary

▼ Story:

◦ The space of left-invariant metrics

(both Riemannian and pseudo-Riemannian settings)

⇒ the moduli space (= the orbit space)

⇒ Milnor-type theorems

⇒ one can examineALL left-invariant metrics.

◦ This can be applied to the existence and nonexistence problem of

distinguished (e.g., Einstein, Ricci soliton) metrics.

▼ Point:

◦ Actions on symmetric spaces play important roles.
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7.2 Problems
▼ Problem 1:

◦ A continuation of this study, i.e.,

• Get more Milnor-type theorems,

• Study isometric actions on symmetric spaces

(both Riemannian and pseudo-Riemannian cases).

▼ Problem 2:

◦ Apply our method to other geometric structures, e.g.,

• left-invariant complex structures,

• left-invariant symplectic structures, ...
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▼ Closing:

◦ ご清聴ありがとうございました.

◦ 松江セミナー第 100回おめでとうございます.

◦ 今後益々のご発展をお祈りいたします.
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