左不変計量の成す空間 — ミルナー枠の一般化について

田丸 博士 (広島大学)

松江セミナー 兼 談話会 島根大学 2013/07/17

1 Introduction

1.1 Abstract

- ▼ We are studying:
 - geometry of left-invariant metrics on Lie groups,

from the viewpoint of the space of left-invariant metrics.

Our Results:

- A study of this space provides <u>Milnor-type theorems</u>, a generalization of <u>Milnor frames</u>.
- They provide several existence and nonexistence results of "distinguished" left-invariant metrics.

1.2 Contents

- ▼ This talk is organized as follows:
 - **§1: Introduction**
 - **§2:** How to get Milnor-type theorems
 - **§3:** Trivial case
 - **§4:** Three-dimensional case
 - **§5: Higher-dimensional examples**
 - **§6:** A pseudo-Riemannian version
 - **§7: Summary and Problems**

1.3 Theme : Left-invariant metrics (1/2)

- **•** Our theme:
 - Left-invariant Riemannian metrics g on Lie groups G.
- ▼ They can be studied in terms of:
 - $(\mathfrak{g}, \langle, \rangle)$: the corresponding metric Lie algebras.
 - The Levi-Civita connection $\nabla : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfies $2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle + \langle X, [Z, Y] \rangle.$
- **•** They provide examples of:
 - **Einstein** : \Leftrightarrow Ric = $c \cdot id$ ($\exists c \in \mathbb{R}$),
 - algebraic Ricci soliton

: \Leftrightarrow Ric = $c \cdot id + D$ ($\exists c \in \mathbb{R}, \exists D \in Der(g)$),

• Ricci soliton : \Leftrightarrow ric = $cg + \mathfrak{L}_X g$ ($\exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(G)$).

1.4 Theme : Left-invariant metrics (2/2)

Fact:

- Einstein \Rightarrow algebraic Ricci soliton \Rightarrow Ricci soliton.
- Example (Heisenberg Lie algebra):

• $\mathfrak{h}^3 := \operatorname{span}\{e_1, e_2, e_3\}$ with $[e_1, e_2] = e_3$, $[e_1, e_3] = [e_2, e_3] = 0$. • \langle,\rangle : canonical inner product ({ e_1, e_2, e_3 } : o.n.b.) $\Rightarrow \circ \operatorname{Ric} = \frac{1}{2} \left| \begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right|.$ $\circ \operatorname{Der}(\mathfrak{h}^3) = \left\{ \left| \begin{array}{ccc} a & * & 0 \\ * & b & 0 \\ \hline * & * & a+b \end{array} \right| | a, b \in \mathbb{R} \right\}.$ • Hence, $(\mathfrak{h}^3, \langle, \rangle)$ is an algebraic Ricci soliton (Ric = $c \cdot id + D$). **1.5 Problem : The existence of distinguished metrics (1/2)**

v Problem:

For a given Lie group G, examine
 whether G admits a "distinguished" left-invariant metric.
 (e.g., Einstein, (algebraic) Ricci soliton)

• Philosophy:

- This would be related to algebraic structure of the Lie group.
 ((Alekseevskii conjecture) G : noncompact Einstein ⇒ solvable)
- This is also related to GIT. (cf. Lauret)
- **Known results:**
 - Classification for low dimensional ones.

(Einstein when dim \leq 5, alg. Ricci soliton when dim \leq 4, ...)

• Some higher-dimensional examples.

1.6 Problem : The existence of distinguished metrics (2/2)

v Problem:

- Examine whether G admits a distinguished left-invariant metric.
- ▼ Note:
 - In general, this problem is difficult.
 - - \cong {inner products on g}

 $\cong \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n).$

(Note that $n := \dim G$, and $g.\langle \cdot, \cdot \rangle := \langle g^{-1} \cdot, g^{-1} \cdot \rangle$)

1.7 Approach : The space of left-invariant metrics (1/1)

Recall:

• $\widetilde{\mathfrak{M}} := \{\langle, \rangle : \text{ an inner product on } \mathfrak{g}\} \cong \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n).$

Observation:

- $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ preserves all Riemannian geometric properties.
- Observe the existence of distinguished metrics,
 we have only to study the orbit space ℝ[×]Aut(g)\M.

Def.:

• $\mathfrak{PM} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}$ (the orbit space) is called the moduli space.

1.8 Result : a generalization of Milnor frames (1/2)

▼ Thm.:

- An expression of $\mathfrak{PM} = \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}$
 - \Rightarrow A "Milnor-type theorem" for g.
- **Thm.** (Milnor 1976):
 - g: 3-dimensional unimodular
 - \langle, \rangle : any inner product on g ⇒ ∃ { x_1, x_2, x_3 }: o.n.b. w.r.t. \langle, \rangle , ∃ $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$: [x_1, x_2] = $\lambda_3 x_3$, [x_2, x_3] = $\lambda_1 x_1$, [x_3, x_1] = $\lambda_2 x_2$.

Remark:

- $\{x_1, x_2, x_3\}$ is called the Milnor frame.
- For each g, possible values of λ_1 , λ_2 , λ_3 are determined.
- All inner products on g can be studied using up to 3 parameters.

1.9 Result : a generalization of Milnor frames (2/2)

▼ Thm.:

• An expression of $\mathfrak{PM} = \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}$

 \Rightarrow A "Milnor-type theorem" for g.

- ▼ A format of Milnor-type theorems:
 - ⟨,⟩: any inner product on g

$$\Rightarrow \exists k > 0, \exists \{x_1, \ldots, x_n\} : \text{o.n.b. w.r.t. } k \langle, \rangle :$$

the bracket relations contain only l (:= dim \mathfrak{PM}) parameters.

Comment:

- All inner products on g can be studied using *l* parameters.
 (Note: *l* = dim \$M\$ << dim \$\tilde{M}\$ in general.)
- We can obtain several existence and nonexistence results.

2 How to get Milnor-type theorems

2.1 How to get Milnor-type theorems (1/3)

Recall:

•
$$g$$
: a Lie algebra, dim $g = n$.

- $\widetilde{\mathfrak{M}} := \{\langle, \rangle : \text{ an inner product on } \mathfrak{g}\} \cong \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n).$
- $\mathfrak{PM} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}$ (the orbit space) : the moduli space.

• Def.:

- \langle,\rangle_0 : the origin.
- $\operatorname{GL}_n(\mathbb{R}) \supset \mathfrak{U}$: a set of representatives of \mathfrak{PM} : $\Leftrightarrow \mathfrak{PM} = \{\mathbb{R}^{\times}\operatorname{Aut}(\mathfrak{g}).(g.\langle,\rangle_0) \mid g \in \mathfrak{U}\}.$

 $(\Leftrightarrow \{g.\langle,\rangle_0 \mid g \in \mathfrak{U}\} \text{ intersects all orbits})$

2.2 How to get Milnor-type theorems (2/3)

- **Thm.** (Hashinaga-T.-Terada, preprint):
 - $\{e_1,\ldots,e_n\}$: o.n.b. of g w.r.t. \langle,\rangle_0
 - $\operatorname{GL}_n(\mathbb{R}) \supset \mathfrak{U}$: a set of representatives of \mathfrak{PM}
 - <, > : an arbitrary inner product
 - $\Rightarrow \exists k > 0, \exists \varphi \in \operatorname{Aut}(\mathfrak{g}), \exists g \in \mathfrak{U}:$

 $\{\varphi g e_1, \ldots, \varphi g e_n\}$ is orthonormal w.r.t. $k\langle, \rangle$.

- ▼ A sketch of the proof:
 - By assumption, $\exists g \in \mathfrak{U} : \langle, \rangle \in \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}).(g.\langle, \rangle_0).$
 - By definition, $\exists c\varphi \in \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) : \langle, \rangle = (c\varphi g) . \langle, \rangle_0$.

2.3 How to get Milnor-type theorems (3/3)

Recall:

- $\operatorname{GL}_n(\mathbb{R}) \supset \mathfrak{U}$: a set of representatives of \mathfrak{PM}
- <, > : an arbitrary inner product

 $\Rightarrow \exists k > 0, \ \exists \varphi \in \operatorname{Aut}(\mathfrak{g}), \ \exists g \in \mathfrak{U}:$

 $\{\varphi g e_1, \ldots, \varphi g e_n\}$ is orthonormal w.r.t. $k\langle, \rangle$.

Comment:

- $\{\varphi g e_1, \ldots, \varphi g e_n\}$ is a generalized Milnor frame.
- Note: φ preserves a bracket product.
- $\circ \ l := \dim \mathfrak{U}$

 \Rightarrow the bracket relations among them contain only *l* variables.

3 Trivial case

3.1 Trivial case (1/3)

▼ It may happen:

 $\circ \mathfrak{PM} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}} = \{ pt \} \text{ (i.e., } \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \frown \widetilde{\mathfrak{M}} : \text{transitive.})$

V Def.:

• $\mathfrak{g}_{\mathbb{R}H^n} := \operatorname{span}\{e_1, \dots, e_n\}$ with $[e_1, e_j] = e_j$ $(j \ge 2)$ is called the Lie algebra of $\mathbb{R}H^n$.

Fact:

• $\mathfrak{so}(1, n) = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$: Iwasawa decomposition

 $\Rightarrow \mathfrak{g}_{\mathbb{R}\mathrm{H}^n} \cong \mathfrak{a} \oplus \mathfrak{n}.$

• $G_{\mathbb{R}H^n}$: the simply-connected Lie group with Lie algebra $\mathfrak{g}_{\mathbb{R}H^n}$ $\Rightarrow G_{\mathbb{R}H^n} \curvearrowright \mathbb{R}H^n$: simply transitive (hence $G_{\mathbb{R}H^n} \cong \mathbb{R}H^n$).

3.2 Trivial case (2/3)

▼ Thm. (Lauret 2003, Kodama-Takahara-T. 2011):

• A Lie algebra g satisfies $\mathfrak{PM} = \{pt\}$

 \Leftrightarrow (1) \mathbb{R}^n : abelian,

(2) $\mathfrak{g}_{\mathbb{R}H^n} := \operatorname{span}\{e_1, \dots, e_n\}$ with $[e_1, e_j] = e_j \ (j \ge 2)$, (3) $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3} := \operatorname{span}\{e_1, \dots, e_n\}$ with $[e_1, e_2] = e_3$.

Comment:

- $\circ \mathfrak{PM} = \{pt\}$
 - $\Leftrightarrow \text{ a left-invariant metric is unique up to isometry and scaling} \\ \Leftrightarrow \mathbb{R}^{\times} \text{Aut}(\mathfrak{g}) \frown \widetilde{\mathfrak{M}} : \text{transitive.}$

Thm.:

•
$$\langle, \rangle$$
: an arbitrary inner product on $\mathfrak{g}_{\mathbb{R}H^n}$
 $\Rightarrow \exists k > 0, \{x_1, \dots, x_n\}$: o.n.b. w.r.t. $k\langle, \rangle$:
 $[x_1, x_j] = x_j \ (j \ge 2).$

Cor. (cf. Milnor 1976):

• $\forall \langle, \rangle$ on $\mathfrak{g}_{\mathbb{R}\mathbf{H}^n}$ has a constant curvature c < 0.

Comment:

- This was first proved by Milnor (1976), but the original proof is very direct and not short.
- A Milnor-type theorem provides a very simple proof.

4 Three-dimensional case

4.1 Three-dimensional case (1/3)

Comment:

- g: solvable Lie algebra, dim g = 3 (not necessary unimodular).
- We ([Hashinaga-T.]) constructed Milnor-type theorems for all g.
- Here we mention some of them.

Consider:

• $\mathfrak{r}'_{3,a} := \operatorname{span}\{e_1, e_2, e_3\} \ (a \ge 0)$

where $[e_1, e_2] = ae_2 - e_3$, $[e_1, e_3] = e_2 + ae_3$.

- Note: $\mathfrak{r}'_{3,a}$ is solvable.
- Note: $\mathfrak{r}'_{3,a}$ is unimodular $\Leftrightarrow a = 0$.

4.2 Three-dimensional case (2/3)

Thm. (Hashinaga-T.):

•
$$\langle, \rangle$$
: an (arbitrary) inner product on $\mathfrak{r}'_{3,a}$
⇒ $\exists k > 0, \exists \lambda \ge 1, \exists \{x_1, x_2, x_3\}$: o.n.b. w.r.t. $k\langle, \rangle$:
 $[x_1, x_2] = ax_2 - \lambda x_3, [x_1, x_3] = (1/\lambda)x_2 + ax_3.$

Proof:

• $\mathfrak{U} := \{ \operatorname{diag}(1, 1, 1/\lambda) \mid \lambda \ge 1 \}$ is a set of representatives of \mathfrak{PM} .

▼ Cor.:

• $\mathfrak{r}'_{3,a}$ admits a left-invariant Einstein metric. (It corresponds to the case $\lambda = 1$.)

4.3 Three-dimensional case (3/3)

Recall (when a = 0):

•
$$\langle, \rangle$$
: an (arbitrary) inner product on $\mathfrak{r}'_{3,0}$
 $\Rightarrow \exists k > 0, \exists \lambda \ge 1, \exists \{x_1, x_2, x_3\}$: o.n.b. w.r.t. $k\langle, \rangle$:
 $[x_1, x_2] = -\lambda x_3, \quad [x_1, x_3] = (1/\lambda)x_2.$

Recall (Milnor's Theorem):

• \langle, \rangle : an (arbitrary) inner product on $\mathfrak{r'}_{3,0}$ $\Rightarrow \exists \lambda_1, \lambda_2 > 0, \exists \{y_1, y_2, y_3\}$: o.n.b. w.r.t. \langle, \rangle : $[y_1, y_2] = 0, [y_2, y_3] = \lambda_1 y_1, [y_3, y_1] = \lambda_2 y_2.$

V Our theorem recovers Milnor's theorem for $\mathfrak{r}'_{3,0}$:

• It is enough to put (and suitable change of indices) $y_i := k^{-1/2} x_i, \ \lambda_1 := 0, \ \lambda_2 := \lambda^{-1} k^{-1/2}, \ \lambda_3 := \lambda k^{-1/2}.$

5 Higher dimensional examples

5.1 Higher dimensional examples (1/3)

- **Comment:**
 - In general, it is not easy to express \$M.
 - We here mention some Milnor-type theorems for g, where g is higher dimensional, but dim PM = 1.
- Fact (Berndt-Brück 2002):
 - M: a Hadamard manifold (e.g., $M = \widetilde{\mathfrak{M}}$)
 - $H \sim M$: of cohomogeneity one

 $\Rightarrow H \backslash M \cong \mathbb{R} \text{ or } [0, +\infty).$

Recall:

• $\mathfrak{U} := \{ \operatorname{diag}(1, 1, 1/\lambda) \mid \lambda \geq 1 \} \cong [1, +\infty) \text{ for } \mathfrak{r'}_{3,a}.$

5.2 Higher dimensional examples (2/3)

Consider:

•
$$\mathfrak{g}_{1,1}^n := \operatorname{span}\{e_1, \dots, e_n\},$$

where $[e_i, e_n] = e_i$ (for $i = 1, \dots, n-2$),
 $[e_{n-1}, e_n] = e_1 + e_{n-1}.$

Thm. (Taketomi-T.):

$$\langle , \rangle : \text{ an arbitrary inner product on } \mathfrak{g}_{1,1}^{n} \Rightarrow \exists k > 0, \exists \lambda > 0, \exists \{x_1, \dots, x_n\} : \text{ o.n.b. w.r.t. } k \langle , \rangle : [x_i, x_n] = x_i \qquad (\text{for } i = 1, \dots, n-2), [x_{n-1}, x_n] = \lambda x_1 + x_{n-1}.$$

• The above $g_{1,1}^n$ does not admit left-invariant Ricci solitons.

5.3 Higher dimensional examples (3/3)

- **Prop.** (Taketomi-T.):
 - $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}_{1,1}^n) \curvearrowright \widetilde{\mathfrak{M}}$ satisfies:
 - The orbit space $\cong \mathbb{R}_{>0}$.
 - All orbits $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}_{1,1}^n)$. \langle, \rangle are hypersurfaces in $\widetilde{\mathfrak{M}}$.
 - More strongly, all orbits are congruent to each other. (Looks like a horosphere foliation.)
- **Comment:**
 - Our expectation: \langle,\rangle is special $\Leftrightarrow \mathbb{R}^{\times}Aut(\mathfrak{g}).\langle,\rangle$ is special?
 - The above observation certificates this expectation.

(**∄** Ricci soliton, **∄** special orbits)

6 A pseudo-Riemannian version

6.1 A pseudo-Riemannian version (1/4)

V Def:

Thm. (Kubo-Onda-Taketomi-T.):

• A set of representatives of
$$\mathfrak{PM}_{(p,q)}$$

⇒ a pseudo-Riemannian version Milnor-type theorem(by the same procedure)

6.2 A pseudo-Riemannian version (2/4)

Consider:

• $\mathfrak{g}_{\mathbb{R}H^n}$: the Lie algebra of $\mathbb{R}H^n$ (n = p + q).

Thm. (Kubo-Onda-Taketomi-T.):

•
$$\langle, \rangle$$
: an arbitrary inner product on $\mathfrak{g}_{\mathbb{R}H^n}$ with signature (p, q)
 $\Rightarrow \exists k > 0, \exists \lambda \in \{0, 1, 2\},$
 $\exists \{x_1, \dots, x_n\}$: pseudo-o.n.b. w.r.t. $k\langle, \rangle$:
 $[x_1, x_j] = x_j, [x_1, x_n] = -\lambda x_1 + x_n, [x_j, x_n] = -\lambda x_j$
(for $j \ge 2$)

▼ Idea of Proof:

• The orbit space $\mathfrak{PM}_{(p,q)} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}_{(p,q)}$ consists of 3 points.

6.3 A pseudo-Riemannian version (3/4)

Recall:

•
$$\#\mathfrak{PM}_{(p,q)} = 3$$
 for $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}H^n}$.

Cor.:

 $\circ \mathfrak{g} := \mathfrak{g}_{\mathbb{R}\mathbf{H}^n}$

 $\Rightarrow \forall \langle, \rangle : \text{pseudo-Riemannian, it has a constant curvature } c.$ (c can take any signature, c > 0, c = 0, c < 0)

- **Comment:**
 - Lorentz version of this corollary has been known (Nomizu 1979).
 - The (pseudo-Riemannian version of) Milnor-type theorem simplifies the proof, and extends it to an arbitrary signature.

6.4 A pseudo-Riemannian version (4/4)

V Question:

• Why $\#\mathfrak{PM}_{(p,q)} = 3$ for $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}H^n}$?

▼ In general:

• $\mathfrak{PM}_{(p,q)} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}_{(p,q)} \cong \mathcal{O}(p,q) \setminus (\operatorname{GL}_{p+q}(\mathbb{R})/\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g})).$

For $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}\mathbf{H}^n}$:

- \mathbb{R}^{\times} Aut(g) is parabolic so that $GL_{p+q}(\mathbb{R})/\mathbb{R}^{\times}$ Aut(g) $\cong \mathbb{R}P^{p+q-1}$.
- The above 3 orbits correspond to

 $\{[v] \in \mathbb{R}P^{p+q-1}\}$ with v: timelike, lightlike, spacelike.

Comment:

- This is a very special case...
- For further studies, we need to know actions on $GL_{p+q}(\mathbb{R})/O(p,q)$.

7.1 Summary

Story:

• The space of left-invariant metrics

(both Riemannian and pseudo-Riemannian settings)

- \Rightarrow the moduli space (= the orbit space)
- ⇒ Milnor-type theorems
- \Rightarrow one can examine ALL left-invariant metrics.
- This can be applied to the existence and nonexistence problem of distinguished (e.g., Einstein, Ricci soliton) metrics.

Point:

• Actions on symmetric spaces play important roles.

7.2 Problems

- **v** Problem 1:
 - A continuation of this study, i.e.,
 - Get more Milnor-type theorems,
 - Study isometric actions on symmetric spaces (both Riemannian and pseudo-Riemannian cases).
- **Problem 2:**
 - Apply our method to other geometric structures, e.g.,
 - left-invariant complex structures,
 - left-invariant symplectic structures, ...

Closing:

- 。ご清聴ありがとうございました.
- 。 松江セミナー第 100 回おめでとうございます.
- 今後益々のご発展をお祈りいたします.