Left-invariant metrics on Lie groups and submanifold geometry

Hiroshi Tamaru (Hiroshima University)

International Workshop on Special Geometry and Minimal Submanifolds, Tohoku University, 09/August/2013

1 Introduction

1.1 Abstract

We propose a framework to study

• geometry of <u>left-invariant metrics on Lie groups</u>, from the view point of <u>submanifold geometry</u>.

This talk is organized as follows:

- §1: Introduction
- §2: Preliminaries on submanifold geometry
- §3: Three-dimensional case
- **§4:** Higher-dimensional examples
- §5: A pseudo-Riemannian version
- **§6: Summary and Problems**

1.2 Theme: Left-invariant metrics (1/2)

Our theme:

 \circ Left-invariant Riemannian metrics g on Lie groups G.

They can be studied in terms of:

- \circ (g, \langle , \rangle): the corresponding metric Lie algebras.
- ∘ The Levi-Civita connection ∇ : $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfies $2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle + \langle X, [Z, Y] \rangle$.

They provide examples of:

- $\bullet \quad \mathbf{Einstein} \qquad : \Leftrightarrow \quad \mathbf{Ric} = c \cdot \mathbf{id} \quad (\exists c \in \mathbb{R}),$
- algebraic Ricci soliton

$$\Rightarrow$$
 Ric = $c \cdot id + D$ ($\exists c \in \mathbb{R}, \exists D \in Der(\mathfrak{g})$),

 \circ Ricci soliton : \Leftrightarrow ric = $cg + \mathfrak{L}_X g$ ($\exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(G)$).

(Fact: Einstein ⇒ algebraic Ricci soliton ⇒ Ricci soliton)

1.3 Theme: Left-invariant metrics (2/2)

Example (Heisenberg Lie algebra):

- $\circ \mathfrak{h}^3 := \operatorname{span}\{e_1, e_2, e_3\} \text{ with } [e_1, e_2] = e_3, [e_1, e_3] = [e_2, e_3] = 0.$
- $\circ \langle , \rangle$: canonical inner product $(\{e_1, e_2, e_3\} : \text{o.n.b.})$

$$\Rightarrow \circ \text{Ric} = \frac{1}{2} \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

$$\bullet \ \mathbf{Der}(\mathfrak{h}^3) = \left\{ \left[\begin{array}{c|cc} a & * & 0 \\ & * & b & 0 \\ \hline & * & a+b \end{array} \right] \mid a,b \in \mathbb{R} \right\}.$$

• Hence, $(\mathfrak{h}^3, \langle, \rangle)$ is an algebraic Ricci soliton (Ric = $c \cdot id + D$).

(:) Ric =
$$-\frac{3}{2} \cdot id + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
.

1.4 Problem: The existence of distinguished metrics (1/2)

Problem:

For a given Lie group G, examine
 whether G admits a "distinguished" left-invariant metric.
 (e.g., Einstein, (algebraic) Ricci soliton)

Note:

- In general, this problem is difficult.
- Reason: there are so many left-invariant metrics...

```
\widetilde{\mathfrak{M}}:=\{\text{left-invariant metrics on }G\}
\cong \{\text{inner products on }\mathfrak{g}\}
\cong \mathrm{GL}_n(\mathbb{R})/\mathrm{O}(n).
(Note that n:=\dim G, and g.\langle\cdot,\cdot\rangle:=\langle g^{-1}\cdot,g^{-1}\cdot\rangle)
```

1.5 Problem: The existence of distinguished metrics (2/2)

Problem:

• Examine whether G admits a distinguished left-invariant metric.

Philosophy:

- It would be related to the algebraic structure of the Lie group.
- \circ (Alekseevskii conjecture) G: noncompact Einstein \Rightarrow solvable.

Related studies:

- (Lauret) Approach from GIT (alg. Ricci soliton for solvable case).
- Classification for low-dimensional cases.
- Some higher-dimensional examples have been known.

1.6 Strategy: Approach from submanifold geometry (1/2)

Recall:

- \circ Examine whether G admits a distinguished left-invariant metric.
- \circ It would be related to the algebraic structure of G.

Opportunistic hope:

• Are there any invariants (based on the algebraic structure) which determine the existence of distinguished metrics?

Observation:

- Aut(g) is an (algebraic) invariant of a Lie algebra g.
 (This is a strong invariant, but not so useful...)
- $\circ \widetilde{\mathfrak{M}} := \{ \text{left-invariant metrics on } G \} \cong \mathrm{GL}_n(\mathbb{R})/\mathrm{O}(n).$
- $Aut(\mathfrak{g}) \curvearrowright \mathfrak{M}$ gives an isometry (hence preserves curvatures).

1.7 Strategy: Approach from submanifold geometry (2/2)

We consider:

- $\circ \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}} = \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n).$
- This gives "isometry up to scalar",
 and hence preserves all Riemannian geometric properties.

Def:

- $\circ \mathbb{R}^{\times}$ Aut(g). \langle, \rangle : the isometry and scaling class of \langle, \rangle .
- The orbit space $\mathfrak{PM} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}$: the moduli space.

Remark:

- $\circ \mathbb{R}^{\times}$ Aut(g). \langle, \rangle is an invariant of (G, \langle, \rangle) .
- \circ PM (or \mathbb{R}^{\times} Aut(g) \sim $\widetilde{\mathfrak{M}}$) is an (algebraic) invariant of G.

1.8 Result :

Expectation:

- ⋄ ⟨,⟩ is distinguished (as Riemannian metrics)
 - $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$ is distinguished (as submanifolds)?

Our Results:

• In some cases, our expectation is true.

One of Thm. (Hashinaga-T.):

- \circ Let g: solvable, dim = 3.
- \circ (g, \langle , \rangle): an algebraic Ricci soliton
 - $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$: a minimal submanifold.

2 Preliminaries on submanifold geometry

2.1 Cohomogeneity one actions (1/3)

Note:

- $\circ \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}.$
- $\circ \ \widetilde{\mathfrak{M}} = \mathrm{GL}_n(\mathbb{R})/\mathrm{O}(n)$: a noncompact symmetric space.
- Well-studied for "cohomogeneity one" case.

Def.:

- \circ $H \sim (M, g)$: of cohomogeneity one
 - :⇔ maximal dimensional orbits have codimension one
 - (\Leftrightarrow the orbit space $H\backslash M$ has dimension one).

2.2 Cohomogeneity one actions (2/3) - on $\mathbb{R}H^2$

Fact (due to Cartan):

- $H \curvearrowright \mathbb{R}H^2$: cohomogeneity one action (with H connected)
 - ⇒ this is orbit equivalent to the actions of

$$K = SO(2), A = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \mid a > 0 \right\}, N = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \right\}$$

Picture:

2.3 Cohomogeneity one actions (3/3) - geometry of orbits

Recall:

Thm. (Berndt-Brück 2002, Berndt-T. 2003):

- \circ M: noncompact symmetric space, irreducible.
- \circ $H \sim M$: cohomogeneity one (H : connected)
 - ⇒ (type (K)) ∃1 singular orbit,
 (type (A)) ∄ singular orbit, ∃1 minimal orbit, or
 (type (N)) ∄ singular orbit, all orbits are congruent.

3 Three-dimensional case

3.1 Three-dimensional case (1/4) - table

Fact:

• $g = \text{span}\{e_1, e_2, e_3\}$: 3-dim. solvable (non abelian) is isomorphic to one of the following:

name	comment	brackets
\mathfrak{h}^3	Heisenberg	$[e_1,e_2]=e_3$
$\mathfrak{r}_{3,1}$	$\mathfrak{g}_{\mathbb{R}\mathrm{H}^3}$	$[e_1, e_2] = e_2, [e_1, e_3] = e_3$
\mathfrak{r}_3		$[e_1, e_2] = e_2 + e_3, [e_1, e_3] = e_3$
$\mathfrak{r}_{3,a}$	$-1 \le a < 1$	$[e_1, e_2] = e_2, [e_1, e_3] = ae_3$
r' _{3,a}	$a \geq 0$	$[e_1, e_2] = ae_2 - e_3, [e_1, e_3] = e_2 + ae_3$

3.2 Three-dimensional case (2/4) - action

Recall:

Prop. (Hashinaga-T.):

name	$(\mathbb{R}^{\times}\operatorname{Aut}(\mathfrak{g}))^{0} \curvearrowright \widetilde{\mathfrak{M}}$	comment
\mathfrak{h}^3	transitive	\mathbb{R}^{\times} Aut(g): parabolic
$\mathfrak{r}_{3,1}$	transitive	\mathbb{R}^{\times} Aut(g): parabolic
\mathfrak{r}_3	type (N)	all orbits are congruent
$\mathfrak{r}_{3,a}$	type (A)	∄ singular orbit, ∃1 minimal orbit
$r'_{3,a}$	type (K)	31 singular orbit

3.3 Three-dimensional case (3/4) - metric

Recall:

Prop.:

name	action	metric
\mathfrak{h}^3	transitive	algebraic Ricci soliton
$\mathfrak{r}_{3,1}$	transitive	const. negative curvature
\mathfrak{r}_3	type (N)	∄ Ricci soliton
$\mathfrak{r}_{3,a}$	type (A)	algebraic Ricci soliton ⇔ minimal
$r'_{3,a}$	type (K)	Einstein ⇔ singular

3.4 Three-dimensional case (4/4) - Theorem

Recall:

Thm. (Hashinaga-T.):

- \circ g: solvable, dim = 3.
- \circ (g, \langle , \rangle): an algebraic Ricci soliton
 - $\Leftrightarrow \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}).\langle,\rangle : \text{minimal in } \widetilde{\mathfrak{M}} = \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n).$

4 Higher dimensional examples

4.1 Higher dimensional examples (1/4)

Note:

- g: three-dimensional solvable
 - \Rightarrow \mathbb{R}^{\times} Aut(g) $\sim \widetilde{\mathfrak{M}}$: cohomogeneity at most one,
 - \langle,\rangle : algebraic Ricci soliton $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$: minimal.

Natural question:

- How are the higher dimensional cases?
- Still \mathbb{R}^{\times} Aut(g) $\sim \widetilde{\mathfrak{M}}$ can be of cohomogeneity one?

4.2 Higher dimensional examples (2/4)

Recall:

Thm. (Hashinaga-T.-Terada):

- $\circ \forall n \geq 4, \exists g : solvable, dim g = n$
 - s.t. \mathbb{R}^{\times} Aut(g) $\sim \widetilde{\mathfrak{M}}$: cohomogeneity one, type (K),
 - \langle,\rangle : Ricci soliton $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$: singular.

4.3 Higher dimensional examples (3/4)

Recall:

Thm. (Taketomi-T.):

- $\circ \forall n \geq 4, \exists g : solvable, dim g = n$
 - s.t. \mathbb{R}^{\times} Aut(g) $\sim \widetilde{\mathfrak{M}}$: cohomogeneity one, type (N),
 - ∄⟨,⟩: Ricci soliton.

4.4 Higher dimensional examples (4/4)

Expectation:

- ⋄ ⟨,⟩ is distinguished (as Riemannian metrics)
 - $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$ is distinguished (as submanifolds)?

Comments:

- This expectation is true for several cases.
- All results are "experimentally".
- Are there any theoretical reason behind?

5 A pseudo-Riemannian version

5.1 A pseudo-Riemannian version (1/4) - the moduli space

Note:

 Our framework can also be applied to left-invariant pseudo-Riemannian metrics.

Def:

- \circ g: (p+q)-dim. Lie algebra
- $\circ \widetilde{\mathfrak{M}}_{(p,q)} := \{\langle, \rangle : \text{ an inner product on } \mathfrak{g} \text{ with signature } (p,q) \}$ $\cong \operatorname{GL}_{p+q}(\mathbb{R})/\operatorname{O}(p,q).$
- $\circ \mathfrak{PM}_{(p,q)} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \backslash \widetilde{\mathfrak{M}}_{(p,q)} : \text{the Moduli space.}$

5.2 A pseudo-Riemannian version (2/4) - preliminary

Def.:

∘ $\mathfrak{g}_{\mathbb{R}\mathbf{H}^n}$:= span{ e_1, \ldots, e_n } with $[e_1, e_j] = e_j$ ($j \ge 2$) is called the Lie algebra of $\mathbb{R}\mathbf{H}^n$.

Thm.:

• $\forall \langle, \rangle$: Riemannian on $\mathfrak{g}_{\mathbb{R}\mathbf{H}^n}$, $(\mathfrak{g}_{\mathbb{R}\mathbf{H}^n}, \langle, \rangle)$ has constant curvature c < 0.

Comments on Proof:

- Original Proof: Milnor (1976).
- Another Proof: Lauret (2003).
- Simpler Proof using $\mathfrak{PM} = \{pt\}$: Kodama-Takahara-T. (2011).

5.3 A pseudo-Riemannian version (3/4) - our result

Thm. (Kubo-Onda-Taketomi-T.):

∀⟨,⟩: pseudo-Riemannian on g_{ℝHⁿ},
(g_{ℝHⁿ},⟨,⟩) has constant curvature c.
(c can take any signature, c > 0, c = 0, c < 0)

Comments on Proof:

• Lorentz case has been known.

(Nomizu 1979; his proof is very direct.)

- Our proof: $\#\mathfrak{PM}_{(p,q)} = 3$.
- \circ Recall: \bullet $\mathfrak{PM}_{(p,q)} := \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \setminus \widetilde{\mathfrak{M}}_{(p,q)}$.

•
$$\widetilde{\mathfrak{M}}_{(p,q)} = \mathrm{GL}_{p+q}(\mathbb{R})/\mathrm{O}(p,q)$$
.

5.4 A pseudo-Riemannian version (4/4) - comments

Our result:

• It is only on $\mathfrak{g}_{\mathbb{R}H^n}$, and a little bit more...

Comment:

 \circ For further studies, we need to know the geometry of isometric actions $H \curvearrowright \mathrm{GL}_{p+q}(\mathbb{R})/\mathrm{O}(p,q)$. (submanifold geometry in pseudo-Riem. symmetric spaces...)

6 Summary and Problems

6.1 Summary

Story:

- We are interested in geometry of left-invariant metrics (both Riemannian and pseudo-Riemannian)
- An approach from submanifold geometry
 - one can study all metrics efficiently,
 - left-invariant metrics ↔ properties of submanifolds?

Results:

- In several cases,
 - \langle , \rangle : (algebraic) Ricci soliton $\Leftrightarrow \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle , \rangle$: distinguished.

6.2 Problems

Problem 1:

- A continuation of this study, i.e.,
 - check the correspondence for other cases,
 ((algebraic) Ricci soliton ↔ distinguished orbit?)
 - are there any theoretical reason behind?

Problem 2:

- Apply our method to other geometric structures, e.g.,
 - left-invariant pseudo-Riemannian metrics (have just started),
 - left-invariant complex structures,
 - left-invariant symplectic structures, ...