Group actions on symmetric spaces related to left-invariant geometric structures

Hiroshi Tamaru
Hiroshima University

RIMS Workshop
“Development of group actions and submanifold theory”
25/June/2014
Abstract

In view of left-invariant geometric structures, the following actions are interesting:

(I, II) isometric actions on noncpt Riem. symmetric sp.
(III) nonisometric actions on (symmetric) R-spaces.
(IV) isometric actions on pseudo-Riem. symmetric sp.

Aim of this talk

In this talk, we
- mention our framework and results.
- propose some problems on groups actions.
We are interested in left-invariant geometric structures.

Good Point (1)
Relatively easier to treat.
Many arguments can be reduced to the Lie algebra level.

Good Point (2)
Left-invariant geometric structures provide examples of
- Einstein / Ricci soliton metrics,
- (generalized) complex / symplectic structures, ...
Central Problem
For a given Lie group, determine whether it admits a “good” left-invariant geometric structure or not.

Remark
For a given Lie group and a given geometric structure, one can directly study its property, e.g.,
- calculate the curvatures of a left-invariant metric,
- check the integrability condition of an almost complex structure, ...

But this does not mean that the above problem is easy.
Central Problem (recall)

For a given Lie group, determine whether it admits a “good” left-invariant geometric structure or not.

What is difficult? (1)

There are so many Lie algebras...

\[
\{ G : \text{simply-connected Lie group with } \dim G = n \} \\
\cong \{ g : \text{Lie algebra with } \dim g = n \} \\
\cong \{ [,] \in \wedge^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n : \text{satisfying Jacobi identity} \}.
\]
What is difficult? (2)

The space of the left-invariant structures on G is large. For examples, if $\dim G = n$ then

$$\{\text{left-invariant Riem. metrics on } G\}$$

$$\cong \{\text{inner products on } g := \text{Lie}(G)\}$$

$$\cong \text{GL}_n(\mathbb{R})/\text{O}(n).$$

$$\{\text{left-invariant metrics on } G \text{ with signature } (p, q)\}$$

$$\cong \text{GL}_n(\mathbb{R})/\text{O}(p, q).$$

These spaces are symmetric spaces. We study our problem in terms of groups actions!
Slogan

Left-invariant metrics vs isom. actions on $\text{GL}_n(\mathbb{R})/\text{O}(n)$.

Problem (I)

$M = G/K$: Riem. symmetric space of noncompact type.
Consider $H \curvearrowright G/K$: isometric action.
Then, what the orbit space $H \backslash M$ can be?

Note

In this section, we mention:

- What are known?
- How related to the study of left-invariant metrics?
Consider $K, A, N \sim \mathbb{R}H^2 = \text{SL}_2(\mathbb{R})/\text{SO}(2)$, where

$$K = \text{SO}(2),$$

$$A = \left\{ \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \mid a > 0 \right\},$$

$$N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\}.$$

Then the orbits look like

- type (K)
- type (A)
- type (N)
Riemannian metrics (I) - (3/9)

Picture for $\mathbb{R}H^2$

- type (K)
- type (A)
- type (N)

Theorem (Berndt-Brück (2001))

$M = G/K$: Riem. symmetric space of noncompact type.
$H \lhd G/K$: cohomogeneity one (with H connected).
$\Rightarrow H \backslash M \cong \mathbb{R}$ or $[0, +\infty)$.
Fix G: Lie group with $\dim G = n$.
We now consider left-invariant Riemannian metrics on G.

Def.
The space of left-invariant Riemannian metrics:
\[
\widehat{M} := \{\text{left-invariant Riem. metrics on } G\}
\cong \{\text{inner products on } g := \text{Lie}(G)\}
\cong \text{GL}_n(\mathbb{R})/\text{O}(n).
\]

Note
\[
\text{GL}_n(\mathbb{R}) = \text{GL}(g) \curvearrowright \widehat{M} \text{ by } g.\langle \cdot, \cdot \rangle := \langle g^{-1}(\cdot), g^{-1}(\cdot) \rangle.
\]
\[\mathbb{R}^\times := \{ c \cdot \text{id} \in \text{GL}_n(\mathbb{R}) \mid c \in \mathbb{R} \neq 0 \}, \]
\[\text{Aut}(g) := \{ \varphi \in \text{GL}_n(\mathbb{R}) \mid \varphi[\cdot, \cdot] = [\varphi(\cdot), \varphi(\cdot)] \}. \]

Def.

The **moduli space of left-invariant Riem. metrics**:

\[\mathcal{PM} := \mathbb{R}^\times \text{Aut}(g) \backslash \widetilde{M} \quad \text{(orbit space)}. \]

Remark

\[\mathbb{R}^\times \text{Aut}(g) \curvearrowright \widetilde{M} \text{ gives rise to an isometry up to scaling.} \]
Prop. (Hashinaga-T. (preprint))

\(\mathfrak{g} := (\mathbb{R}^3, [, ,]) \) with \([e_1, e_2] = e_2\) (others = 0).

\(\langle , \rangle_0 : \) the canonical inner product.

\[\Rightarrow \]

\(\mathbb{R} \times \text{Aut}(\mathfrak{g}) \curvearrowright \tilde{M} \) is of cohomogeneity one.

\[\mathcal{PM} = \{ \mathbb{R} \times \text{Aut}(\mathfrak{g}).(\begin{pmatrix} 1 & 1 \\ \lambda & 1 \end{pmatrix} . \langle , \rangle_0 | \lambda \in \mathbb{R} \} \].

Proof

Very direct matrix calculations.
A general theory gives a certification.
Cor. (Hashinaga-T. (preprint))

\[g := (\mathbb{R}^3, [,]) \] with \([e_1, e_2] = e_2 \) (others = 0).
\[
\langle , \rangle : \text{any inner product.}
\Rightarrow
\exists \lambda \in \mathbb{R}, \exists k > 0, \exists \{x_1, x_2, x_3\} \text{ o.n.b. w.r.t. } k\langle , \rangle:
\]

\[[x_1, x_2] = x_2 - \lambda x_3, \quad \text{others} = 0. \]

Note

\{x_1, x_2, x_3\} is a generalization of “Milnor frames”.
Hence, this is called a Milnor-type theorem.
Result (Hashinaga-T.-Terada)

∀n ≥ 3,

- we construct g of dimension n such that $\mathbb{R} \times \text{Aut}(g) \curvearrowright \mathcal{M}$: cohomogeneity one.
- we determine all possible Ricci signatures on them.

Result (Hashinaga-T.)

∀g : 3-dim., solvable,

- we construct Milnor-type theorems for g.
- we (re)classify left-invariant Ricci soliton metrics.

Key Point: for cohomogeneity one actions, \mathcal{PM} is easy!
Problem (I)-1
For Riemannian symmetric spaces of noncompact type, classify (possible topological type of) orbit spaces of
- cohomogeneity two actions,
- (hyper)polar actions, ...

Problem (I)-2
Classify g such that $\mathbb{R}^\times \text{Aut}(g) \curvearrowright \tilde{M}$ are
- cohomogeneity one or two actions,
- (hyper)polar actions, ...
(∃ examples by Taketomi (2014))
Riemannian metrics (II) - (1/8)

Slogan
Left-invariant metrics vs isom. actions on $\mathbb{GL}_n(\mathbb{R})/O(n)$.

Problem (II)
$M = G/K$: Riem. symmetric space of noncompact type.
Consider $H \ltimes G/K$: isometric action.
Then, are there “distinguished” orbits?

Note
In this section, we mention:
- What are known?
- How related to the study of left-invariant metrics?
Thm. (Berndt-T. (2003))

\[M = G/K : \text{irr. Riem. symmetric space of noncpt type.} \]

\[H \curvearrowright G/K : \text{cohomogeneity one (with } H \text{ connected).} \]

\[\Rightarrow \text{it satisfies one of the following:} \]

\((K) \) \(\exists! \) singular orbit.

\((A) \) \(\nexists \) singular orbit, \(\exists! \) minimal orbit.

\((N) \) \(\nexists \) singular orbit, all orbits are congruent.

\[\begin{align*}
\text{type (K)} & \quad [0, +\infty) \\
\text{type (A)} & \quad \mathbb{R} \quad \mathbb{R} \\
\text{type (N)} & \quad \mathbb{R}
\end{align*} \]
This picture fits very nicely to “algebraic Ricci solitons”.

Def.

\[(\mathfrak{g}, \langle \cdot, \cdot \rangle) : \text{algebraic Ricci soliton (ARS)} \]
\[\Leftrightarrow \exists c \in \mathbb{R}, \exists D \in \text{Der}(\mathfrak{g}) : \text{Ric} = c \cdot \text{id} + D.\]

\[\text{Der}(\mathfrak{g}) := \{ D \in \mathfrak{gl}(\mathfrak{g}) \mid D[\cdot, \cdot] = [D(\cdot), \cdot] + [\cdot, D(\cdot)]\}.\]

Note

- left-invariant Einstein \(\Rightarrow\) algebraic Ricci soliton.
- algebraic Ricci soliton \(\Rightarrow\) Ricci soliton (next page).

(in many cases, the converse also holds)
Prop. (Lauret (2011))

Let us consider

- \((g, \langle \cdot, \cdot \rangle)\) : algebraic Ricci soliton \((\text{Ric} = c \cdot \text{id} + D)\),
- \((G, g)\) : corresponding simply-connected one.

Then one has

- \(\exp(tD) \in \text{Aut}(g)\) for \(\forall t \in \mathbb{R}\),
- \(\exists \varphi_t \in \text{Aut}(G) : (d \varphi_t)_e = \exp(tD)\),
- \(X \in \mathfrak{X}(G)\) by \(X_p := \frac{d}{dt} \varphi_t(p)|_{t=0}\),
- \(\text{ric}_g = cg - (1/2)\mathcal{L}_X g\) (i.e., Ricci soliton).
Thm. (Hashinaga-T.)

\(\mathfrak{g} \): 3-dimensional, solvable. Then,
\[\langle \cdot, \cdot \rangle \text{ on } \mathfrak{g} \text{ is an algebraic Ricci soliton (ARS)} \]
\[\Leftrightarrow \tilde{\mathcal{M}} \supset \mathbb{R}^\times \text{Aut}(\mathfrak{g}).\langle \cdot, \cdot \rangle: \text{ minimal}. \]

Note

- \(\tilde{\mathcal{M}} = \text{GL}_n(\mathbb{R})/\text{O}(n) \) is a Riem. symmetric space (w.r.t. a natural \(\text{GL}_n(\mathbb{R}) \)-invariant metric).
- In these cases, \(\mathbb{R}^\times \text{Aut}(\mathfrak{g}) \bowtie \tilde{\mathcal{M}} \) is of cohom. \(\leq 1 \).
Thm. (Hashinaga-T.): more precise

Let g : 3-dimensional, solvable. Then,

- (K)-type: $\text{ARS} \iff \mathbb{R}^\times \text{Aut}(g).\langle,\rangle : \text{singular}$.
- (A)-type: $\text{ARS} \iff \mathbb{R}^\times \text{Aut}(g).\langle,\rangle : \text{minimal}$.
- (N)-type: $\not\exists \text{ARS}$.
Fact

For all known g with $\mathbb{R}^\times \text{Aut}(g) \curvearrowright \hat{\mathcal{M}}$ cohom. one, we have checked that “ARS \Leftrightarrow minimal”.

Thm. (Hashinaga (to appear))

$\exists g : 4\text{-dim.}, \text{solvable} :$
both implications of “ARS \Leftrightarrow minimal” do not hold.

Expectation

ARS $\Leftrightarrow \mathbb{R}^\times \text{Aut}(g).\langle,\rangle$ is “distinguished” in some sense? (cf. \langle,\rangle : biinvariant $\Rightarrow \mathbb{R}^\times \text{Aut}(g).\langle,\rangle$ is totally geod.)
Problem (II)-1

For Riemannian symmetric spaces of noncompact type, study the geometry of orbits of
- cohomogeneity one actions (with H not connected),
- cohomogeneity two actions, (hyper)polar actions, ...

Problem (II)-2

Property of \mathfrak{g} can be understood by group actions?
- ARS can be characterized by submanifolds?
- Tasaki-Umehara invariant for 3-dim. Lie algebras?
Def.

L : semisimple Lie group, with trivial center,
$L \supset Q$: parabolic subgroup.
Then $M := L/Q$ is called an **R-space**.

Problem (III)

Let $M = L/Q : R$-space, $H \subset L$.
Study the action $H \curvearrowright M = L/Q$.

Note

In this section, we mention: An easy example.
(Motivation will be mentioned in the next section.)
Example

$\mathbb{R}P^n$ is an R-space:

$$\mathbb{R}P^{n-1} = \text{SL}_n(\mathbb{R})/\left\{ \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & * \end{pmatrix} \right\}.$$

Side Remark

- R-spaces can be realized as orbits of s-reps.
- $\mathbb{R}P^{n-1}$ is an orbit of the s-rep. of $\text{SL}_n(\mathbb{R})/\text{SO}(n)$.
Set Up

We consider $SO(p, q) \curvearrowright \mathbb{R}P^{n-1}$ (with $n = p + q$).

- $\mathbb{R}P^{n-1} = SL_n(\mathbb{R})/Q$, and
- $SL_n(\mathbb{R}) \supset SO(p, q)$: symmetric.

(an analogy of “Hermann actions”?)

Remark

\langle , \rangle_0: canonical inner product on \mathbb{R}^n, signature (p, q). Then, $SO(p, q) \curvearrowright \mathbb{R}^n$ preserves \langle , \rangle_0.
Prop.

$\text{SO}(p, q) \ltimes \mathbb{RP}^{n-1}$ has three orbits:

$O^+ := \{ [v] \in \mathbb{RP}^{n-1} \mid \langle v, v \rangle_0 > 0 \},$

$O^0 := \{ [v] \in \mathbb{RP}^{n-1} \mid \langle v, v \rangle_0 = 0 \},$

$O^- := \{ [v] \in \mathbb{RP}^{n-1} \mid \langle v, v \rangle_0 < 0 \}.$

Note

O^+, O^- are open.
Problem (III)-1

Let $M = L/Q : \text{R-space}$, $H \subset L$. Study the action $H \ltimes M = L/Q$.

- Construct interesting examples.
- What happens if $L \supset H$ is symmetric?
- When it has an open orbit?

Problem (III)-2

Let $M = L/Q : \text{R-space}$, $H \subset L$.

- Study the geometry of orbits.
- $H.p$ can be inhomogeneous w.r.t. $\text{Isom}(M)$, but have some “nice” properties?
Slogan
Left-invariant pseudo-Riemannian metrics vs isometric actions on $\text{GL}_n(\mathbb{R})/\text{O}(p, q)$.

Problem (IV)

$M = G/K$: pseudo-Riemannian symmetric space.
Study isometric actions $H \curvearrowright M$.

In this section, we mention:

- An easy example.
- How related to left-invariant pseudo-Riem. metrics.
- How related to R-spaces.
The following action has exactly three orbits:

\[
Q := \left\{ \begin{pmatrix}
* & * & \cdots & * \\
0 & \ddots & & \\
\vdots & & * & \\
0 & & & \\
\end{pmatrix} \right\} \curvearrowright \frac{\text{GL}_{p+q}(\mathbb{R})}{O(p, q)}.
\]

Proof

The orbit space coincides with the orbit space of

\[
O(p, q) \curvearrowright \frac{\text{GL}_{p+q}(\mathbb{R})}{Q} = \mathbb{RP}^{p+q-1}.
\]
Fix G : Lie group with $\dim G = n = p + q$.

Def.

The **space of left-inv. metrics with signature** (p, q):

$$\widetilde{M}_{p,q} := \{\text{left-invariant metrics on } G \text{ with } (p, q)\}$$

$$\cong \{\text{inner products on } g := \text{Lie}(G) \text{ with } (p, q)\}$$

$$\cong \text{GL}_n(\mathbb{R})/\text{O}(p, q).$$

The **moduli space of left-inv. metrics with** (p, q):

$$\mathcal{PM}_{p,q} := \mathbb{R}^\times \text{Aut}(g) \backslash \widetilde{M}_{p,q} \quad \text{(orbit space)}.$$
Lem.

Let \(g \) be one of the following:

- \(H^3 \): Heisenberg group.
- \(G_{RH^n} \): the group acting simply-transitively on \(RH^n \).

Then \(\mathbb{R}^\times \text{Aut}(g) \) is parabolic (\(= \) the previous \(Q \)).

Thm. (Kubo-Onda-Taketomi-T.)

On the above Lie groups,

\[
\forall (p, q) \in \mathbb{N}^2 \text{ with } n = p + q,
\exists \text{ exactly three left-invariant metrics with } (p, q).
\]
Thm. (Kubo-Onda-Taketomi-T.): recall

On the above Lie groups,
\[\forall (p, q) \in \mathbb{N}^2 \text{ with } n = p + q, \]
\[\exists \text{ exactly three left-invariant metrics with } (p, q). \]

Comments

- \(H^3 \): known by Rahmani (1992), method is different.
- \(G_{RH^n} \): known by Nomizu (1979) for Lorentzian case. The case of generic signature is new.

Side Remark

For \(G_{RH^n} \), any left-invariant metric has const. curvature.
Problem (IV)-1

\[M = G/K : \text{pseudo-Riemannian symmetric space.} \]

Study isometric actions \(H \curvearrowright M \).

- First of all, study the case when \(H \) is parabolic.

(\(\Leftrightarrow \) symmetric actions on R-spaces.)

Problem (IV)-2

\[M = G/K : \text{pseudo-Riemannian symmetric space.} \]

- Construct “nice” actions on \(M = G/K \).
- Let \(M' = G/K' : \text{Riemannian symmetric.} \)

 If \(H \curvearrowright M' \) is nice, then so is \(H \curvearrowright M \)?
Comment

Our framework is

- left-inv. metrics vs actions on symmetric spaces.
- theory of symmetric spaces is quite useful.

This would also be useful to study

- left-invariant complex structures:
 \[\{ \text{almost complex strs} \} \cong \text{GL}_{2n}(\mathbb{R})/\text{GL}_n(\mathbb{C}). \]
- left-invariant symplectic structures:
 \[\{ \text{nondegenerate 2-forms} \} \cong \text{GL}_{2n}(\mathbb{R})/\text{Sp}_{2n}(\mathbb{R}). \]
- and so on...
Our framework motivates to study:
- isometric actions on noncompact Riem. symmetric sp.
- nonisometric actions on (symmetric) R-spaces.
- isometric actions on pseudo-Riem. symmetric sp.

This would provide:
- new examples of actions (from \text{Aut}(g)).
- particular examples of actions with applications.
- new ideas or new notions?
References

Thank you!