The space of left-invariant metrics and submanifold geometry

Hiroshi Tamaru

Hiroshima University, JAPAN

AMS Special Session on Ricci Curvature for Homogeneous Spaces and Related Topics, San Antonio (Texas, USA), 12/January/2015

Abstract

Our theme is

geometry of left-invariant metrics on Lie groups.
 (Einstein/(algebraic) Ricci soliton metrics)

Our study is from the viewpoint of

• submanifolds in noncompact symmetric spaces.

In this talk we mention that

 for 3-dim. solvable case, ∃ a nice correspondence: algebraic Ricci solitons ←→ submanifold geometry.

Introduction - (1/3)

Contents

- §1: Introduction (to left-invariant metrics)
- §2: Cohomogeneity One Actions
- §3: Main Result
- §4: Some Remarks

Notation

Throughout this talk, we denote by

- (G, \langle, \rangle) : a simply-connected Lie group with a left-invariant Riemannian metric.
- $(\mathfrak{g}, \langle, \rangle)$: the corresponding metric Lie algebra.

Introduction - (2/3)

Def.

$$(G, \langle, \rangle)$$
 or $(\mathfrak{g}, \langle, \rangle)$ is

- Einstein : $\Leftrightarrow \text{Ric} = c \cdot \text{id} \ (\exists c \in \mathbb{R}).$
- algebraic Ricci soliton

$$:\Leftrightarrow \operatorname{Ric} = c \cdot \operatorname{id} + D \ (\exists c \in \mathbb{R}, \ \exists D \in \operatorname{Der}(\mathfrak{g}))$$

Ricci soliton

$$:\Leftrightarrow \mathrm{ric}=c\langle,\rangle+\mathfrak{L}_X\langle,\rangle\; (\exists c\in\mathbb{R},\;\exists X\in\mathfrak{X}(G)).$$

Fact. (Lauret (2001, 2011))

Einstein \Rightarrow algebraic Ricci soliton \Rightarrow Ricci soliton.

Introduction - (3/3)

General Problem

Examine whether *G* admits a "distinguished" left-invariant metric or not.

Our Approach

We study left-invariant metrics in terms of submanifold geometry in noncompact symmetric spaces.

Cohomogeneity One Actions - (1/2)

Def.

An isom. action $H \curvearrowright (M,g)$ is of **cohomogeneity one** :⇔ a regular orbit has codimension one.

Ex.

Consider $SL(2,\mathbb{R}) = KAN$: the Iwasawa decomposition. Then, $K, A, N \curvearrowright \mathbb{R}H^2$ is of cohomogeneity one, and their orbits are as follows:

type (K)

type (N)

Cohomogeneity One Actions - (2/2)

Thm. (Berndt-T., 2003, 2013)

M : irr. Riem. symmetric space of noncompact type.

 $H \curvearrowright M$: cohomogeneity one (with H connected).

Then, it is of type (K), (A), or (N):

(K): ∃1 singular orbit.

(A): $\not\exists$ singular orbit, \exists 1 minimal orbit.

(N): ∄ singular orbit, all orbits are congruent.

type (K)

type (A)

type (N)

Main Result - (1/7)

Framework

For each $(\mathfrak{g}, \langle, \rangle)$, we have a submanifold in a noncompact Riemannian symmetric space.

Symmetric spaces:

Let G be given, and put $n := \dim G = \dim \mathfrak{g}$. Then we have a noncompact Riemannian symmetric space:

$$\widetilde{\mathfrak{M}}:=\{\langle,\rangle: \text{an inner product on }\mathfrak{g}\}$$

 $\cong \mathrm{GL}(n,\mathbb{R})/\mathrm{O}(n).$

 $\widetilde{\mathfrak{M}}\cong \{\langle,
angle$: a left-invariant Riemannian metric on $G\}.$

Main Result - (2/7)

Submanifolds:

For each \langle,\rangle , we have a (homogeneous) submanifold:

$$\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle,\rangle \subset \widetilde{\mathfrak{M}}$$

Note

 $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle,\rangle$ is the isometry and scaling class of \langle,\rangle . This action preserves Einstein/(algebraic) Ricci soliton.

Note

In some cases, the uniqueness (up to $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g})$) holds. (e.g., Einstein/algebraic Ricci solitons on solvable \mathfrak{g} .)

Main Result - (3/7)

Problem

```
\langle,\rangle is a "distinguished" left-invariant metric on G \Leftrightarrow \mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}).\langle,\rangle is a "distinguished" submanifold in \widetilde{\mathfrak{M}}?
```

Main Thm. (Hashinaga-T.)

Let \mathfrak{g} be a solvable Lie algebra of dimension three. Then, \langle, \rangle is an **algebraic Ricci soliton** on \mathfrak{g} $\Leftrightarrow \mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}).\langle, \rangle$ is a **minimal** submanifold in $\widetilde{\mathfrak{M}}$.

Key

 $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is of cohomogeneity at most one.

Main Result - (4/7)

Prop.

If $\mathfrak{g} = \mathbb{R}^3$, \mathfrak{h}^3 , $\mathfrak{g}_{\mathbb{R}H^3}$, then $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}) \curvearrowright \mathfrak{M}$ is transitive.

- \mathbb{R}^3 : abelian,
- \mathfrak{h}^3 : Heisenberg,
- $\mathfrak{g}_{\mathbb{R}\mathrm{H}^3}$: the Lie algebra of $\mathbb{R}\mathrm{H}^3$.

Otherwise, $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \mathfrak{M}$ is of cohomogeneity one.

Rem.

Main Theorem is true for $\mathfrak{g}=\mathbb{R}^3,\mathfrak{h}^3,\mathfrak{g}_{\mathbb{R}H^3},$ since

- $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle,\rangle = \widetilde{\mathfrak{M}}$, which is minimal in $\widetilde{\mathfrak{M}}$.
- $\forall \langle, \rangle$ is known to be an algebraic Ricci soliton.

Main Result - (5/7)

It remains to study 3 families of Lie algebras, \mathfrak{r}_3 , $\mathfrak{r}_{3,a}$, $\mathfrak{r}_{3,a}'$.

Prop.

$$\mathfrak{g}:=\mathfrak{r}_3=\mathrm{span}\{e_1,e_2,e_3\}$$
 with $[e_1,e_2]=e_2+e_3,\ [e_1,e_3]=e_3,\ [e_2,e_3]=0.$

Then we have

- $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is of type (N).
- $\not\exists \langle, \rangle$: ARS on \mathfrak{g} .

 \mathbb{R}

Main Result - (6/7)

Prop.

$$\mathfrak{g} := \mathfrak{r}_{3,a} = \mathrm{span}\{e_1, e_2, e_3\} \text{ with } -1 \leq a < 1,$$
 $[e_1, e_2] = e_2, [e_1, e_3] = ae_3, [e_2, e_3] = 0.$

Then we have

- $(\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^0 \curvearrowright \widetilde{\mathfrak{M}}$ is of type (A).
- \langle,\rangle is ARS $\Leftrightarrow \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle,\rangle$ is a minimal orbit.



Main Result - (7/7)

Prop.

$$\mathfrak{g} := \mathfrak{r}'_{3,a} = \operatorname{span}\{e_1, e_2, e_3\} \text{ with } a \geq 0,$$
 $[e_1, e_2] = ae_2 - e_3, [e_1, e_3] = e_2 + ae_3, [e_2, e_3] = 0.$

Then we have

- $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is of type (K).
- \langle, \rangle is ARS (in fact, Einstein) $\Leftrightarrow \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}). \langle, \rangle$ is a singular orbit.

 \mathbb{R}

ne (K)

type (Δ)

type (N)

Some Remarks - (1/2)

Rem. 1

Main Theorem gives a nice correspondence between geometric structures (ARS) \longleftrightarrow submanifold geometry.

Rem. 2

Main Theorem would lead to study invariants of \mathfrak{g} :

- Properties of $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}) \curvearrowright \mathfrak{M}$ are invariants of \mathfrak{g} .
- Properties of $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle,\rangle$ are invariants of \langle,\rangle .

They are interesting, because it is believed that $\exists \langle, \rangle$: distinguished \Rightarrow restrictions on algebraic structures on \mathfrak{g} .

Some Remarks - (2/2): recent works

Thm. (Hashinaga-T.-Terada (to appear))

An expression of the orbit space $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g})\backslash\mathfrak{M}$ derives a generalization of "Milnor frames".

Thm. (Taketomi-T.)

 $\forall n \geq 3$, $\exists G$ of dimension n:

- $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \mathfrak{M}$ is of type (N),
- $\not\supseteq$ left-invariant Ricci solitons on G.

Thm. (Hashinaga 2014)

"ARS \leftrightarrow minimal" is true for 4-dim. nilpotent case, but not true in general for 4-dim. solvable ones.

References

- Berndt, J., Tamaru, H.: JDG (2003)
- Berndt, J., Tamaru, H.: Crelle (2013)
- Mashinaga, T.: Hiroshima Math. J. (2014)
- Hashinaga, T., Tamaru, H.: preprint
- Hashinaga, T., Tamaru, H., Terada, K.: J. Math. Soc. Japan, to appear (arXiv:1501.02485)
- 6 Kodama, H., Takahara, A., Tamaru, H.: Manuscripta Math. (2011)
- Lauret, J.: Math. Ann. (2001)
- 🔞 Lauret, J.: Crelle (2011)
- Milnor, J.: Adv. Math. (1976)
- 10 Taketomi, Y., Tamaru, H.: in preparation

Thank you!