

Left-invariant metrics and submanifold geometry

TAMARU, Hiroshi

Hiroshima University

Differential Geometry, Lie Theory and Low-Dimensional Topology (La Trobe University, Melbourne), 20/Dec./2016

Abstract (1/2)

Background

- Left-invariant (Riemannian) metrics on Lie group:
- ∃ many "nice" such metrics, e.g., Einstein, Ricci soliton, ...

Our Framework

- A left-invariant metric (,) defines a submanifold [(,)], in some noncompact Riemannian symmetric space M.
- Expectation: a "nice" metric corresponds to a "nice" submfd.

Abstract

The above expectation is true for several cases.

Case 1

Case 2

Case 3

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Summary

Abstract (2/2)

Contents

- Introduction (to our framework)
- Case 1: Easy cases
- Case 2: Low-dim. solvable Lie groups
- Case 3: Some general cases
- Summary

Case 1

Case 2

Case 3

Summary

Intro (1/6)

Our Framework (recall)

• \langle, \rangle : a left-inv. metric on $G \longrightarrow [\langle, \rangle]$: a submfd in $\widetilde{\mathfrak{M}}$.

Basic Fact

- \exists 1-1 correspondence between
 - a left-inv. (Riemannian) metric on G,
 - a (positive definite) inner product ⟨, ⟩ on g := Lie(G).

Def. (the ambient space)

The **space of left-inv. metrics** on *G* is defined by

• $\mathfrak{M} := \{\langle, \rangle : an \text{ inner product on } \mathfrak{g}\}.$

	Intro (2/6)
	Recall
	• $\widetilde{\mathfrak{M}} := \{\langle, \rangle : an \text{ inner product on } \mathfrak{g}\}.$
	Prop. (well-known)
I	If dim $G = n$, then • $\widetilde{\mathfrak{M}} \cong \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n)$ where $\operatorname{GL}_n(\mathbb{R}) \curvearrowright \widetilde{\mathfrak{M}}$ by $g.\langle \cdot, \cdot \rangle := \langle g^{-1}(\cdot), g^{-1}(\cdot) \rangle$; • Hence $\widetilde{\mathfrak{M}}$ is a noncompact Riemannian symmetric space.
I	Note
	• Finding a nice left-inv. metric on G

Case 2

 \leftrightarrow Finding a nice point on $\widetilde{\mathfrak{M}}...?$

Case 1

Intro

...but every point on $\widetilde{\mathfrak{M}}$ looks the same.

Case 1

Case 2

Case 3

Summary

Intro (3/6)

Def.

Let $\langle , \rangle_1, \langle , \rangle_2 \in \widetilde{\mathfrak{M}}$. We say $\langle , \rangle_1 \sim \langle , \rangle_2$ (isometric up to scalar) : $\Leftrightarrow \exists \varphi \in \operatorname{Aut}(\mathfrak{g}), \exists c > 0 : c\varphi. \langle , \rangle_1 = \langle , \rangle_2.$

Note

 $\langle,\rangle_1\sim\langle,\rangle_2$ $\Rightarrow\,$ all Riemannian geometric properties of them are the same.

Def. (the submfd)

We define the **corresponding submfd** of \langle,\rangle by

• $[\langle,\rangle] :=$ "the isometry and scaling class of \langle,\rangle " $(\subset \widetilde{\mathfrak{M}})$.

Case 1

Case 2

Case 3

Summary

Intro (4/6)

Recall

- $\langle,\rangle_1 \sim \langle,\rangle_2 :\Leftrightarrow \exists \varphi \in \operatorname{Aut}(\mathfrak{g}), \ \exists c > 0: \ c\varphi.\langle,\rangle_1 = \langle,\rangle_2.$
- $[\langle,\rangle] :=$ "the isometry and scaling class of \langle,\rangle " $(\subset \widetilde{\mathfrak{M}})$.

Prop. (cf. Kodama-Takahara-T. 2011)

• $[\langle,\rangle] = \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}).\langle,\rangle,$

where $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \subset \operatorname{GL}_n(\mathbb{R})$ acts naturally on $\widetilde{\mathfrak{M}} = \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n)$.

We got:

- $\mathfrak{M} \cong \mathrm{GL}_n(\mathbb{R})/\mathrm{O}(n)$: a noncpt Riem. symmetric space.
- $\widetilde{\mathfrak{M}} \supset [\langle, \rangle]$: a homogeneous submanifold.

Intro Case 1 Case 2 Case 3 Summary

Note

- Finding a nice left-inv. metric on $\stackrel{~}{\sim}$
 - $\leftrightarrow \mathsf{Finding} \text{ a nice submfd } [\langle,\rangle] \text{ in } \widetilde{\mathfrak{M}}...$

Note that $[\langle, \rangle_1]$ and $[\langle, \rangle_2]$ are different in general.

Note (why this framework would be interesting)

- This connects two different areas:
 - geometry of left-inv. metrics vs submfd geometry.

• Both have been studied actively in these years.

Case 1

Summary

Intro (6/6)

Note (Both have been studied actively)

Geometry of left-inv. metrics:

• Among others, Nikolayevsky, Nikonorov, T., ...

Homog. submfds (isometric actions) in noncpt symmetric spaces:

• Berndt, DíazRamos, DomínguezVázquez, Kollross, T., ...

We hope that

- characterize nice left-inv. metrics in terms of submfds...
- obtain nice submfds (isom. actions) from left-inv. metrics...

Case 1

Case 2

Case 1: Easy cases (1/5)

Recall (our expectation)

• A "nice" metric \langle,\rangle corresponds to a "nice" submfd [\langle,\rangle].

Ex. (Sec $\equiv 0$)

For $\mathfrak{g} = \mathbb{R}^n$ (abelian),

- $\forall \langle, \rangle$ is flat.
- ∀⟨, ⟩, one has [⟨, ⟩] = ℝ[×]Aut(𝔅).⟨, ⟩ = ̃𝔅.
 (i.e., ℝ[×]Aut(𝔅) ∧ ̃𝔅 is transitive)

Case 1

Case 2

Case 1: Easy cases (2/5)

Ex. (Nice metric; including the case $Sec \equiv c > 0$)

Let $\mathfrak g$ be compact simple, and \langle,\rangle_K the Killing metric. Then

- $\langle,\rangle_{\rm K}$ is Einstein, ${\rm Sec}\geq$ 0.
- [⟨,⟩_K] = ℝ[×]Aut(𝔅).⟨,⟩_K = ℝ[×].⟨,⟩_K ≅ ℝ : geodesic.
 (since it is bi-inv.; other orbits have larger dimensions)

Note

- $[\langle,\rangle]$ contains information of
 - how large the symmetry of \langle,\rangle is ...

 $(\mathsf{large symmetry} \leftrightarrow \mathrm{Aut}(\mathfrak{g})_{\langle,\rangle} \mathsf{ is large} \leftrightarrow [\langle,\rangle] \mathsf{ is small})$

• also the "position" of \langle,\rangle .

Case 1

Case 2

Case 1: Easy cases (3/5)

Prop. (Nice action; Lauret 2003, Kodama-Takahara-T. 2011) The action $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is transitive $\Leftrightarrow \mathfrak{g} = \mathbb{R}^{n}, \mathfrak{g}_{\mathbb{R}H^{n}}, \mathfrak{h}^{3} \oplus \mathbb{R}^{n-3}.$

Ex. (Sec $\equiv c < 0$; Milnor 1976, Lauret 2003, KTT 2011)

For
$$\mathfrak{g} = \mathfrak{g}_{\mathbb{R}\mathrm{H}^n} = \mathrm{span}\{e_1, \ldots, e_n\}$$
 with $[e_1, e_j] = e_j$,

∀⟨, ⟩ is const. negative sectional curvature;

•
$$\forall \langle, \rangle$$
, one has $[\langle, \rangle] = \widetilde{\mathfrak{M}}$.

Case 1

Case 2

Case 1: Easy cases (4/5)

Recall

• $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is transitive $\Leftrightarrow \mathfrak{g} = \mathbb{R}^{n}$, $\mathfrak{g}_{\mathbb{R}H^{n}}$, $\mathfrak{h}^{3} \oplus \mathbb{R}^{n-3}$.

Note

- \mathfrak{h}^3 : 3-dim. Heisenberg;
- $\forall \langle, \rangle$ on $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$ is a non-Einstein (algebraic) Ricci soliton.

Def.

 $(\mathfrak{g}, \langle, \rangle)$ is an algebraic Ricci soliton (ARS) : $\Rightarrow \exists c \in \mathbb{R}, \exists D \in \operatorname{Der}(\mathfrak{g}) : \operatorname{Ric}_{\langle, \rangle} = c \cdot \operatorname{id} + D.$

Case 1: Easy cases (5/5)

Recall

• $(\mathfrak{g}, \langle, \rangle)$: **ARS** : $\Leftrightarrow \exists c \in \mathbb{R}, \exists D \in \operatorname{Der}(\mathfrak{g}) : \operatorname{Ric}_{\langle, \rangle} = c \cdot \operatorname{id} + D.$

Fact (Lauret 2001, 2011, Jablonski 2014)

ARS is "almost" equivalent to Ricci soliton;

- (𝔅, ⟨, ⟩) : ARS
 ⇒ the corresponding simply-conn. (𝔅, ⟨, ⟩) is Ricci soliton.
- (G, ⟨, ⟩) is left-inv. Ricci soliton
 ⇒ it is "isometric" to ARS (as Riem. mfd).

Note

A (complete) Riemannian manifold is said to be **Ricci soliton** : $\Leftrightarrow \exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(M) : \operatorname{Ric}_g = c \cdot \operatorname{id} + \mathcal{L}_X g.$

	÷	r	

Case 2: Low-dim. solvable Lie groups (1/5)

Recall (our expectation)

• A "nice" metric \langle,\rangle corresponds to a "nice" submfd [$\langle,\rangle].$

Thm. (Hashinaga-T.)

Let ${\mathfrak g}$ be a 3-dim. solvable Lie algebra. Then

• \langle,\rangle is ARS \Leftrightarrow [\langle,\rangle] is minimal.

Idea of Proof

Study them case-by-case... In fact,

- One knows the classification of 3-dim. solvable Lie algebras.
- We can see $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is of cohomogeneity at most one.

	÷	r.	

Case 2: Low-dim. solvable Lie groups (2/5)

More on 3-dim. case

Let \mathfrak{g} be a 3-dim. solvable Lie algebra with $[\langle,\rangle] \neq \mathfrak{M}$.

- ∃ 3 families of such g.
- Consider $H := (\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^0 \curvearrowright \widetilde{\mathfrak{M}}.$
- Then, for each \mathfrak{g} , $H \curvearrowright \mathfrak{M}$ satisfies one of the following:

Note

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Intro	Case 1	Case 2	Case 3	Summa

Case 2: Low-dim. solvable Lie groups (4/5)

Thm. (recall, 3-dim. solvable case)

```
• \langle,\rangle is ARS \Leftrightarrow [\langle,\rangle] is minimal.
```

```
Note (for higher dim. case; good news)
```

We know that

• \exists several \mathfrak{g} satisfying the above " \Leftrightarrow ".

Note (for 4-dim. case; bad news)

Hashinaga (2014) proved that

- $\exists \mathfrak{g}$: the above " \Leftarrow " does not hold.
- $\exists \mathfrak{g}$: the above " \Rightarrow " does not hold.

|--|

Case 2: Low-dim. solvable Lie groups (5/5)

Recall

Our expectation is:

• a "nice" metric \langle,\rangle corresponds to a "nice" submfd $[\langle,\rangle]$.

Note

Our studies imply that

• the minimality of $[\langle,\rangle]$ is not enough, in general.

Intro Case 1 Case 2 Case 3 Summary

Case 3: Some general cases (1/5)

Recall

 \mathfrak{g} : 3-dim. solvable, $(\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^0 \curvearrowright \widetilde{\mathfrak{M}}$ of type (K) $\Rightarrow [\langle, \rangle]$ is a singular orbit iff \langle, \rangle is ARS.

Picture (recall)

type (K)

type (A)

type (N)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Case 3: Some general cases (2/5)

Claim

• For actions of type (K), we can generalize it.

Thm. (Taketomi)

Let \mathfrak{g} be any Lie algebra, and assume that

•
$$0 \neq \forall \xi \in T^{\perp}_{\langle,\rangle}([\langle,\rangle]), \exists \varphi \in \operatorname{Aut}(\mathfrak{g}) : (d\varphi)_{\langle,\rangle} \xi \neq \xi$$

Then \langle,\rangle is ARS.

Cor.

Let ${\mathfrak g}$ be any Lie algebra, and assume that

- $\mathbb{R}^{ imes} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is a cohomogeneity one action of type (K),
- $[\langle,\rangle]$ is a singular orbit.

Then \langle,\rangle is ARS.

Case 2

Case 3: Some general cases (3/5)

Recall (Assumption by Taketomi)

• \forall nonzero normal vector of $[\langle,\rangle]$ can be moved by $Aut(\mathfrak{g})$.

$\mathsf{Idea} \text{ of } \mathsf{Proof} + \alpha$

- The above assumption yields that [(,)] is minimal.
 (the mean curv. vector is a normal vector, fixed by Aut(g))
- The above assumption yields that ric[⊥]_p = 0 (∀p ∈ [⟨, ⟩]). (Hence ric is tangential to [⟨, ⟩] at any point)

Intro Case 1 Case 2 Case 3 Summary

Case 3: Some general cases (4/5)

Recall

 \mathfrak{g} : 3-dim. solvable, $(\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^{0} \curvearrowright \widetilde{\mathfrak{M}}$ of type (*N*) $\Rightarrow \exists \langle, \rangle$ which is ARS.

Picture (recall)

type (K)

type (A)

type (N)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Case 1

Case 2

Case 3: Some general cases (5/5)

Conjecture (Taketomi-T., to appear)

All orbits of $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g})$ are congruent to each other $\Rightarrow \exists \langle, \rangle$ which is ARS.

Note

The assumption of the conjecture means that

• all orbits are looks the same (i.e., no distinguished orbit)...

Prop. (Taketomi-T., to appear)

 $\forall n \geq 3, \exists \mathfrak{g} : \text{Lie algebra of dim. } n :$

- all orbits of $\mathbb{R}^{ imes} \mathrm{Aut}(\mathfrak{g})$ are congruent to each other, and
- $\not\exists \langle, \rangle$ on \mathfrak{g} which is ARS.

Case 1

Case 2

Summary

Summary (1/4)

Our Framework/Expectation

- \langle,\rangle on \mathfrak{g} defines a submfd $[\langle,\rangle] \subset \widetilde{\mathfrak{M}}$.
- Does a "nice" \langle,\rangle corresponds to a "nice" submfd [$\langle,\rangle]...?$

Our Results

For 3-dim. solvable case,

• there is a very nice correspondence.

For 4-dim. solvable case,

not so nice as the 3-dim. case...

For general cases,

- Taketomi obtained a sufficient condition for \langle,\rangle to be ARS;
- We conjecture an obstruction for the existence of ARS.

Summary (2/4)

• (Taketomi 2015)

Constructed examples of \mathfrak{g} s.t. $\mathbb{R}^{ imes} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$: hyperpolar.

(Kubo-Onda-Taketomi-T. 2016)
 A study on left-inv. pseudo-Riem. metrics.

Problems (1/3)

Can we characterize ARS in terms of $[\langle, \rangle]...?$

- Certainly, the minimality is not enough.
- Taketomi's sufficient condition cannot be a necessary cond.
- So, what else?
- What happens for some other Lie algebras?
 - need to select a nice class of Lie algebras.

Summary

Summary (3/4)

Problems (2/3)

Find special classes: can we classify

- \mathfrak{g} such that $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is special
 - (e.g., cohomogeneity one, hyperpolar, polar, ...)
- $(\mathfrak{g}, \langle, \rangle)$ such that $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}), \langle, \rangle$ is special

(e.g., totally geodesic, minimal, austere, ...)

Problems (3/3)

For the existence of a left-inv. "nice" metric (on a given \mathfrak{g}),

- a necessary and sufficient condition seems to be very hard;
- so, can we get an obstruction?

 our conjecture is one possibility, but the condition is not easy to check.

Summary (4/4)

Ref. (just for our papers)

- Hashinaga, T.: Hiroshima Math. J. (2014)
- Hashinaga, T., Tamaru, H.: arXiv:1501.05513
- Hashinaga, T., Tamaru, H., Terada, K.: J. Math. Soc. Japan (2016)
- Kodama, H., Takahara, A., Tamaru, H.: Manuscripta Math. (2011)
- Kubo, A., Onda, K., Taketomi, Y., Tamaru, H.: Hiroshima Math. J. (2016)
- Taketomi, Y.: Topology Appl. (2015)
- Taketomi, Y.: submitted
- Taketomi, Y., Tamaru, H.: Transf. Groups, to appear

Thank you very much!