Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces

Hiroshi Tamaru

Hiroshima University

The 11th OCAMI-RIRCM Joint Differential Geometry
Workshop on Submanifolds and Lie Theory
(Osaka City University)
2016/March/21

Preface (1/2)

Question (contact geometry)

For a simply-connected contact (κ, μ) -space,

- nongradient Ricci soliton $\Rightarrow (\kappa, \mu) = (0, 4)$.
- Does the converse hold?

Main Result (submanifold geometry)

(0,4)-space can be realized as a homogeneous hypersurfaces in $G_2^*(\mathbb{R}^n)$ (noncompact Grassmann).

Corollary (left-invariant Ricci solitons)

(0, 4)-space is a Ricci soliton.

Preface (2/2)

Note

This talk is based on a joint work with

- Jong Taek Cho (Chonnam National University)
- Takahiro Hashinaga (National Inst. Tech., Kitakyushu College)
- Akira Kubo (Hiroshima Shudo University)
- Yuichiro Taketomi (Hiroshima University)

Contact (κ, μ) -spaces (1/8)

Contents

- §1: Contact (κ, μ) -spaces
 - We recall some facts on contact (κ, μ) -spaces.
- (§2: Homogeneous hypersurfaces in $G_2^*(\mathbb{R}^n)$)
- (§3: Left-invariant Ricci solitons)

Contact (κ, μ) -spaces (2/8)

Def.

```
(M^{2n+1}; \eta, \xi, \varphi, g) is contact metric mfd

:\Leftrightarrow (contact form) \eta : 1-form;

(characteristic vector field) \xi \in \mathfrak{X}(M), \ \eta(\xi) = 1;

\varphi : (1,1)-tensor, \varphi^2(X) = -X + \eta(X)\xi;

g : Riem. metric, g(\varphi(\cdot), \varphi(\cdot)) = g - \eta \otimes \eta;

(fundamental 2-form) \Phi := g(\cdot, \varphi(\cdot)) = d\eta.
```

Contact (κ,μ) -spaces (3/8)

Def. (Blair-Koufogiorgos-Papantoniou, 1995)

$$(M; \eta, \xi, \varphi, g)$$
 is a (κ, μ) -space $(\kappa, \mu \in \mathbb{R})$
: $\Leftrightarrow \forall X, Y \in \mathfrak{X}(M)$,

$$R(X,Y)\xi = (\kappa \operatorname{id} + (\mu/2)\mathcal{L}_{\xi}\varphi)(\eta(Y)X - \eta(X)Y).$$

 \exists interesting examples of (κ, μ) -spaces.

Ex. (1/3)

Sasakian \Rightarrow (κ, μ) -space. (with $\kappa = 1$, $\mathcal{L}_{\xi} \varphi = 0$)

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽9<<

Contact (κ, μ) -spaces (4/8)

 \exists interesting examples of (κ, μ) -spaces.

Ex. (2/3)

 $M := T_1(M_n(c))$ is a (c(2-c), -2c)-space, where

- $M_n(c)$: the space of const. curvature c,
- $T_1(\cdot)$: the unit sphere bundle,

Note: $c = 1 \Rightarrow \mathsf{Sasakian}$.

Ex. (3/3)

G: 3-dim. nonabelian unimodular Lie group

 $\Rightarrow \exists (\eta, \xi, \varphi, g)$ which is left-invariant (κ, μ) -space.

Contact (κ, μ) -spaces (5/8)

Non-Sasakian (κ , μ)-spaces have been classified.

Prop. (Blair-Koufogiorgos-Papantoniou, 1995)

Let $(M; \eta, \xi, \varphi, g)$ be a (κ, μ) -space. Then

- $\kappa \leq 1$.
- $\kappa = 1 \Leftrightarrow \mathsf{Sasakian}$.

Prop. (Boeckx, 2000)

 $\forall (\kappa, \mu)$ with $\kappa < 1$,

- $\exists (M; \eta, \xi, \varphi, g)$ which is a (κ, μ) -space;
- it is unique if conn., simply-conn., and complete.

Contact (κ, μ) -spaces (6/8)

 \exists study on Ricci soliton (κ, μ) -spaces. (Ricci soliton : $\Leftrightarrow \operatorname{Ric}_g = c \cdot \operatorname{id} + \mathcal{L}_X g$)

Thm. (Ghosh-Sharma, 2014)

 (κ,μ) -space is

- gradient Ricci soliton \Leftrightarrow (0,0)-space;
- non-gradient Ricci soliton \Rightarrow (0, 4)-space.

Rem.

- (0,4)-space with dimension n is
 - $n = 3 \Rightarrow Sol$, non-gradient Ricci soliton;
 - $n > 5 \Rightarrow ?$

Contact (κ, μ) -spaces (7/8)

(0,4)-space (with $\dim \geq 5$) is of our interest.

Prop. (Boeckx, 2000)

The Lie group $G_{0,2}$ of $\mathfrak{g}_{0,2}$ becomes a (0,4)-space, where

•
$$\mathfrak{g}_{0,2} := \operatorname{span}_{\mathbb{R}} \{ \xi, X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n \}$$
,

$$[\xi, Y_i] = 2X_i$$
 $(i \ge 1)$
 $[Y_2, Y_i] = 2Y_i$ $(i \ne 2)$
 $[X_2, Y_2] = 2\xi$
 $[X_2, Y_i] = 2X_i$ $(i \ne 2)$
 $[X_i, Y_i] = -2X_2 + 2\xi$ $(i \ne 2)$

Contact (κ, μ) -spaces (8/8)

Summary of this section.

A question

(0,4)-space with dim ≥ 5 is a Ricci soliton?

A question (modified)

What is the Lie group $G_{0,2}$ (or the Lie algebra $\mathfrak{g}_{0,2}$)?

Test

- dim $\mathfrak{g}_{0,2} = 2n + 1$, $\mathfrak{n} := [\mathfrak{g}_{0,2}, \mathfrak{g}_{0,2}] : 2n$ -dim.
- $\dim[\mathfrak{n},\mathfrak{n}] = n$, $\dim[\mathfrak{n},[\mathfrak{n},\mathfrak{n}]] = 1$.
- Conclusion: $\mathfrak{g}_{0,2}$ is solvable, \mathfrak{n} is of 3-step nilpotent.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (1/9)

Contents

- (§1: Contact (κ, μ) -spaces)
- §2: Homogeneous hypersurfaces in $G_2^*(\mathbb{R}^n)$
 - We recall some general results (by Berndt-T.); and show that $G_{0,2} \subset G_2^*(\mathbb{R}^{n+3})$ as homog. hypersurface.
- (§3: Left-invariant Ricci solitons)

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (2/9)

We review some results on homog. hypersurfaces in symmetric spaces of noncompact type.

• Ref. Berndt-T.: JDG 2003, Crelle 2013.

Def.

 $H \curvearrowright (M,g)$ is of cohomogeneity one

:\(\Rightarrow\) regular orbits have codimension one.

Def.

- regular orbits := orbits of maximal dim.
- singular orbits := orbits of smaller dim.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (3/9)

Prop.

 $\mathrm{SL}(2,\mathbb{R})=\mathit{KAN}$: Iwasawa dec.

Then, $K, A, N \curvearrowright \mathbb{R}H^2 = \mathrm{SL}(2, \mathbb{R})/\mathrm{SO}(2)$ satisfies

(K): ∃1 singular orbit.

(A): $\not\exists$ singular orbit, \exists 1 minimal orbit.

(N): ∄ singular orbit, all orbits are congruent.

type (N)

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (4/9)

Thm. (Berndt-T. 2003, 2013)

M : irreducible symmetric space of noncpt type.

 $H \curvearrowright M$: cohomogeneity one (with H connected).

Then, it is of type (K), (A), or (N):

(K): ∃1 singular orbit.

(A): $\not\exists$ singular orbit, \exists 1 minimal orbit.

(N): ∄ singular orbit, all orbits are congruent.

type (K)

type (A)

type (N)

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (5/9)

Classification of actions of type (N).

Set Up

- M = G/K: irr. symmetric space of noncpt type.
- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}$: Iwasawa dec.

Thm, (Berndt-T., 2003)

Take $0 \neq X \in \mathfrak{a}$, and put $\mathfrak{s}_X := (\mathfrak{a} \ominus \mathbb{R}X) \oplus \mathfrak{n}$. Then

- $S_X \curvearrowright M$: cohomogeneity one of type (N).
- \forall cohomogeneity one action of type (N) can be obtained in this way, up to orbit equivalence.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (6/9)

Examples of actions of type (N). (rank one)

Ex.

Assume that rk(M) = 1. Then

- dim $\mathfrak{a} = 1$.
- Thus $0 \neq X \in \mathfrak{a}$ satisfies $\mathfrak{s}_X = \mathfrak{n}$.
- $N \curvearrowright M$ induces a horosphere foliation.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (7/9)

Iwasawa dec. of $SO_{2,n+1}^0$.

Ex.

$$M = G_2^*(\mathbb{R}^{n+3}) = SO_{2,n+1}^0/SO_2SO_{n+1}$$
. Then

- The root system Σ is of type B_2 (= C_2).
- $\alpha_1 := \varepsilon_1 \varepsilon_2$, $\alpha_2 := \varepsilon_2$.
- $\Sigma = \pm \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2\}.$
- $\mathfrak{n}=\mathfrak{n}^1\oplus\mathfrak{n}^2\oplus\mathfrak{n}^3$, where $\mathfrak{n}^1=\mathfrak{g}_{\alpha_1}\oplus\mathfrak{g}_{\alpha_2}$, $\mathfrak{n}^2=\mathfrak{g}_{\alpha_1+\alpha_2}$, $\mathfrak{n}^3=\mathfrak{g}_{\alpha_1+2\alpha_2}$.
- Note: dim $\mathfrak{n}^1 = n$, dim $\mathfrak{n}^2 = n 1$, dim $\mathfrak{n}^3 = 1$.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (8/9)

It relates to contact (0,4)-space $G_{0,2}$.

Thm. (Cho-Hashinaga-Kubo-Taketomi-T.)

Consider $M = G_2^*(\mathbb{R}^{n+3})$. Then

• $\exists X \in \mathfrak{a} : (S_X).o \cong G_{0,2}$ as contact metric mfds.

Recall

M: Kähler mfd., $M \supset M'$: a real hypersurface. Then

• \exists almost contact metric str. (η, ξ, φ, g) on M'.

Homog. hypersurfaces in $G_2^*(\mathbb{R}^n)$ (9/9)

Some comments.

Idea of Proof

We establish the "solvable model" of $G_2^*(\mathbb{R}^{n+3})$.

• i.e., o.n.b. of \mathfrak{s} with explicit bracket relations.

Note (Berndt-Suh (PAMS 2015))

They classified CMC contact hypersurfaces in $G_2^*(\mathbb{R}^{n+3})$.

- Our hypersurface is contained in their list.
- ("a horosphere whose center at infinity is the equivalence class of an A-principal geodesic")

Left-invariant Ricci solitons (1/5)

Contents

- (§1: Contact (κ, μ) -spaces)
- (§2: Homogeneous hypersurfaces in $G_2^*(\mathbb{R}^n)$)
- §3: Left-invariant Ricci solitons
 - A general theory shows that $G_{0,2}$ is a Ricci soliton.

Left-invariant Ricci solitons (2/5)

A general theory shows that $G_{0,2}$ is a Ricci soliton.

• Ref. Lauret: Math. Ann. 2001, Crelle 2011.

Def.

A metric Lie algebra $(\mathfrak{g}, \langle, \rangle)$ is algebraic Ricci soliton $:\Leftrightarrow \exists c \in \mathbb{R}, \exists D \in \mathrm{Der}(\mathfrak{g}) : \mathrm{Ric} = c \cdot \mathrm{id} + D.$

Note

$$Der(\mathfrak{g}) := \{ D \in \mathfrak{gl}(\mathfrak{g}) \mid D[\cdot, \cdot] = [D(\cdot), \cdot] + [\cdot, D(\cdot)] \}$$
$$= Lie(Aut(\mathfrak{g})).$$

Left-invariant Ricci solitons (3/5)

Prop. (Lauret, 2001, 2011)

```
(\mathfrak{g},\langle,\rangle) is an algebraic Ricci soliton
```

 \Rightarrow the corresponding (G, \langle, \rangle) is a Ricci soliton.

```
(G : simply-connected)
```

Comment

 \exists many (G, \langle, \rangle) : Ricci soliton, not Einstein.

- Interesting case: g is solvable.
- Note: \mathfrak{g} is solvable $\Leftrightarrow [\mathfrak{g}, \mathfrak{g}]$ is nilpotent.

Left-invariant Ricci solitons (4/5)

A construction of ARS (:= algebraic Ricci soliton).

Notation

- $(\mathfrak{s}, \langle, \rangle)$: a solvable metric Lie algebra.
- $\mathfrak{n} := [\mathfrak{s}, \mathfrak{s}]$, which is nilpotent.
- $\mathfrak{a} := \mathfrak{n}^{\perp}$.

Prop. (Lauret 2011, CHKTT)

Assume $(\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}, \langle, \rangle)$ is Einstein with c < 0

 $\Rightarrow \forall \mathfrak{a}' \subset \mathfrak{a}$ (subspace), $(\mathfrak{a}' \oplus \mathfrak{n}, \langle, \rangle)$ is an ARS.

Left-invariant Ricci solitons (5/5)

Prop. (Recall)

Assume $(\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}, \langle, \rangle)$ is Einstein with c < 0

 $\Rightarrow \forall \mathfrak{a}' \subset \mathfrak{a}$ (subspace), $(\mathfrak{a}' \oplus \mathfrak{n}, \langle, \rangle)$ is an ARS.

Cor.

The contact (0,4)-space $G_{0,2}$ is a Ricci soliton.

 $G_2^*(\mathbb{R}^{n+3}) \cong AN$: Einstein, solvable, c < 0.

 $\exists X \in \mathfrak{a} : \mathfrak{g}_{0,2} \cong (\mathfrak{a} \ominus \mathbb{R}X) \oplus \mathfrak{n}.$

Hence the above prop. proves the assertion.

Summary

Question (contact geometry):

• What are the contact (0, 4)-spaces?

Answer (submanifold geometry):

• They are homogeneous hypersurfaces in $G_2^*(\mathbb{R}^{n+3})$.

Corollary (left-invariant metrics):

• They are left-invariant Ricci solitons.

Further Plans

- submfds / groups actions on symmetric spaces;
- geometry of left-inv. metrics;
- and their combinations.

Thank you very much for your attention!