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Preface (1/2)

Preface
@ TG := totally geodesic.

@ d many studies on TG-submfds in symmetric spaces.

Our studies are very influenced by

@ Naitoh: a survey talk in Yuzawa 2009.
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Preface (2/2)

Main Result:
§1: TG-surfaces in symmetric spaces

Its applications:
§2: TG-complex curves in Hermitian symm. sp.
§3: TG-submfds in symmetric spaces of type Al

| A

Note
This talk is based on joint works with

@ Kentaro Kimura, Takayuki Okuda (Hiroshima U.)

@ Akira Kubo (Hiroshima Shudo U.)
@ Katsuya Mashimo (Hosei U.
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Introduction (1/3)
(M,g) D M is TG (totally geodesic)
< [Second Fundamental Form] =0

& "y geodesic in M = v : geodesic in M.

We always assume that M is connected, complete.

Fundamental Problem

For a given (irreducible) symmetric space (M, g),
classify TG-submfds (up to isometric congruence).
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Introduction (2/3)

Classifications of TG-submfds are known only for
o rk(M) = 1 by Wolf (1963),

@ rk(M) = 2 by Klein (2008-10).
Other cases would remain open.

| A

Note
It is hence natural to study particular TG-submfds:

@ cplx (in Hermitian) by Satake (1965), lhara (1967),
o reflective by Leung (1973-79),

@ symmetric TG-submfds by Naitoh (1984-86),

@ cf. Chen-Nagano, |kawa-Tasaki, Berndt-Olmos, ...
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Introduction (3/3)

Our starting point

Mashimo (cf. Hashimoto et. al) studies T G-surfaces:
e in M = G/K : symmetric space of cpt type,
@ in terms of representations su(2) — g.

What we thought

We study TG-surfaces in M of noncpt type,

@ the problem is essentially the same as the cpt case.
An advantage is

@ one can use lwasawa dec., solvable groups, ...
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TG-surfaces in symmetric spaces (1/7)

M = G/K : irreducible symmetric sp. of noncpt type. J

Problem
Classify TG-surfaces in M.

Problem (almost equivalent)

Classify nonflat TG-surfaces in M.

Problem (almost equivalent)

Classify nonabelian 2-dim. LTS in p.

o g=todp : the Cartan decomposition.

e p O V : Lie triple system :< [[V, V], V] C V.
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TG-surfaces in symmetric spaces (2/7)

Thm. (primitive version)

There is a correspondence between
@ nonabelian 2-dim. LTS in p,
e X € n)\ {0} satisfying
(C1) [0X, X] € a™;
(C2) dc > 0 : [[6X, X], X] = X.

@ 0 :g— g : the Cartan involution.

@ g=¢tdadn: the lwasawa decomposition.
@ a' :=[positive closed Weyl chamber].
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TG-surfaces in symmetric spaces (3/7)

Recall

There is a correspondence between
@ nonabelian 2-dim. LTS in p,
o X € n)\ {0} satisfying
(C1) [0X, X] € a™;
(C2) dc > 0 : [[6X, X], X] = X.

(<) For such X, LTS is Xx := Span{[6X, X], (1 —6)X}.
(—) It follows from the congruency of a, a*, ... []

v
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TG-surfaces in symmetric spaces (4/7)

Simplest Case

M = SL(n,R)/SO(n) = everything is linear algebra:
0 X = —X, p=Sym’(n,R).
@ n = {upper triangular},
e a = {diagonal | tr = 0},
o at ={diag(ay,...,a,) €Eala >--->a,}.

Prop. (Fujimaru-Kubo-T.)

In SL(n,R)/SO(n), up to isometric congruence,
@ n =3 = d exactly 2 nonflat TG-surfaces;
@ n =4 = d exactly 4 nonflat TG-surfaces.
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TG-surfaces in symmetric spaces (5/7)

1 correspondence between
@ nonabelian 2-dim. LTS in p,
e X €n)\ {0} satisfying (C1), (C2).

Note (general theory behind)
Mostow (1955):

@ nonabelian 2-dim. LTS < subalgebras sl(2,R) C g.
Jacobson-Morozov theorem:

@ such subalgebras <+ nilpotent orbits in g.
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TG-surfaces in symmetric spaces (6/7)

Thm. (sophisticated version)

G := Isom(M)
= 1 one-to-one correspondence between
o {nonflat TG-surfaces in M} /G;

o {nilpotent orbits Adg(X) of g}/{£1}.

For nilpotent orbits,
@ {Adgo(X)} is well studied.
o {Ad¢(X)} is understandable, for some M.
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TG-surfaces in symmetric spaces (7/7)

Cor.

Let M := SL(n,R)/SO(n).

Then d one-to-one correspondence between
{nonflat TG-surface in M} /Isom(M)

{partition of n} \ {[1"]}.

Ex.
o n=3: #{[3],[2,1]} = 2.
o n=4: #{[4],[3,1],[2,2],[2,1,1]} = 4.
@ n=>5:

#{[51,[4,11. (3,2, 3,1, 1], [2,2,1], 2,1, 1, 1]} =6. |
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TG-complex curves (1/6)

Topic of this section

@ M : irr. Hermitian symmetric space of noncpt type.
© M > M : TG-complex curve.
(i.e., dim¢ M =1, dimg M = 2, J-invariant.)

Thm. (Kubo-Okuda-T.)

Let M be as above. Then
o # ({TG-cplx curves in M}/Isom(M)) = rk(M).
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TG-complex curves (2/6)

# ({TG-cplx curves in M} /Isom(M)) = rk(M).

(1) rk(CH") =1, .
(2) 31 TG-complex curve (up to Isom(M))
(TG-cplx submfds are CH” > CH"! > --- D CH?).
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TG-complex curves (3/6)

# ({TG-cplx curves in M}/Isom(M)) = rk(M).

Ex. (M := G}(R"), n > 4)
(1) k(G5 (R")) = 2, .
(2) 3 two TG-complex curves (up to Isom(M)):
o M D Gj(R*) = CH! x CH! : TG-complex submfd.
@ TG-complex curves are:
CH! x {pt}, and “diagonal CH"".
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TG-complex curves (4/6)

Step 1 (cf. Satake (1966), Hermann (1962))
M : Hermitian, r := rk(M)
= IM (TG-complex submfd) : M = (CH')".

(".") By taking the strongly orthogonal roots. []

Step 2 (construction)

One can construct r TG-maps ¢ : CH! — (CH?)",
@ The image lives in k € {1,2,...,r} components.

@ Note: Their sectional curvatures are different.
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TG-complex curves (5/6)

Step 3 (they exhaust all)

M > M : TG-complex curve. Then

e IX en: T,M = Span{[0X, X],(1 —0)X}.
Since T,M is J-invariant, we have

@ X is in a good position (i.e., (1 —0)X € J(a)).
By looking at the root spaces, we conclude

@ M € {previous examples}.
Note that, in particular, M C (CH?)".
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TG-complex curves (6/6)

Recall

# ({TG-cplx curves in M}/Isom(M)) = rk(M).

Comment

M > M : TG-complex curve. Then
e M C (CH!)" is actually known by Satake (1966).
@ We determined the isometry classes.

Key Tool (recall)

1 correspondence between

@ nonabelian 2-dim. LTS in p,
o X € n\ {0} satisfying
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TG-submfds in Al (1/7)

In this section,
@ we propose a procedure to classify TG-submfds,
@ and apply it to SL(n,R)/SO(n) with n = 3, 4.

Procedure

(Step 1) Classify all nonflat TG-surfaces ¥ in M.
(This is a topic of the previous sections.)
(Step 2) For each ¥, classify nonflat TG-submfds (D X).

VY nonflat TG-submfd contains nonflat T G-surface. \
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TG-submfds in Al (2/7)

Thm. (Klein, cf. Kimura)

V max. TG-submfd in SL(3,R)/SO(3) is congruent to
e [SL(2,R)/SO(2)] x R*, or
e S0°(1,2)/S(0(1) x O(2)).

RH? = SL(2, R)/SO(2)
>~ S0°(1,2)/S(0(1) x O(2)).
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TG-submfds in Al (3/7)

Step 1 of Proof (Fujimaru-Kubo-T.)
3 exactly 2 nonflat TG-surfaces in SL(3, R)/SO(3)
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TG-submfds in Al (4/7)

Consider £! (ToDo: Classify LTS £ (2 £1)):
00 -1
o [ch e[ 00 0 | =X
10 0
@ £ must be adx-invariant.
o adx-weight space dec.: p & £ = V(0) & V?(%i).
o Candidates: £ = £! @ V1(0) or £! & V?(+i).
@ The former is LTS, but the latter is not.

2016/March/05 23 / 28



TG-submfds in Al (5/7)

Step 2 of Proof (Continued)

Consider £2 (ToDo: Classify LTS £ (2 £2)):
@ By similar calculations, A such £.

V max. TG-submfd in SL(3,R)/SO(3) is congruent to
e [SL(2,R)/SO(2)] x R*, or
e S0%(1,2)/S(0(1) x O(2)).

Both TG-submfds are reflective. \
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TG-submfds in Al (6/7)

Thm. (Kimura)
V max. TG-submfd in SL(4,R)/SO(4) is congruent to
e [SL(3,R)/SO(3)] x R,
o Sp(2,R)/U(2),
e [SL(2,R)/SO(2)] x [SL(2,R)/SO(2)] x R,
e S0°(2,2)/S(0(2) x 0O(2)),
e SO°(1,3)/S(0(1) x O(3)).

This would be a new result. (rk (SL(4,R)/SO(4)) =3) |




TG-submfds in Al (7/7)

(Step 1) Recall: 3 exactly 4 nonflat TG-surfaces.
(Step 2) Classify TG-submfds containing one of them.

Cor.

M - SL(”: R)/SO(I’I) with n = 3’ 4
M > M : max. TG-submfd
= M is reflective.

e Why?

@ What happens for n > 57
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Summary and Problems

@ TG-surfaces in symmetric spaces.

@ TG-complex curves in Hermitian symmetric spaces.
@ TG-submfds in SL(n,R)/SO(n) with n = 3, 4.

Further Problems

o # ({nonflat TG-surfaces in M}/Isom(M)) = ?

@ Classify TG-submfds in SL(n,R)/SO(n) with n > 5.
e Classify TG-submfds for other M.

e Which M satisfies “maximal TG = reflective” ?
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Thank you! |

Congratulations on your retirement,
and
Wishing you a future filled with happiness!!

Hiroshi Tamaru (Hiroshima University) 2016/March /05 28 /28
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