On totally geodesic surfaces in symmetric spaces and applications

Hiroshi Tamaru

Hiroshima University

Workshop in honor of Professor Hiroo Naitoh's retirement 2016/March/05

Preface (1/2)

Preface

- TG := totally geodesic.
- ullet many studies on TG-submfds in symmetric spaces.

Thanks

Our studies are very influenced by

• Naitoh: a survey talk in Yuzawa 2009.

Preface (2/2)

Contents

Main Result:

§1: TG-surfaces in symmetric spaces

Its applications:

- §2: TG-complex curves in Hermitian symm. sp.
- §3: TG-submfds in symmetric spaces of type AI

Note

This talk is based on joint works with

- Kentaro Kimura, Takayuki Okuda (Hiroshima U.)
- Akira Kubo (Hiroshima Shudo U.)
- Katsuya Mashimo (Hosei U.)

Introduction (1/3)

Def.

 $(\overline{M},g)\supset M$ is **TG** (totally geodesic)

- $:\Leftrightarrow [Second Fundamental Form] \equiv 0$
- \Leftrightarrow " γ : geodesic in $M \Rightarrow \gamma$: geodesic in \overline{M} ".

Note

We always assume that M is connected, complete.

Fundamental Problem

For a given (irreducible) symmetric space (\overline{M}, g) , classify TG-submfds (up to isometric congruence).

Introduction (2/3)

Note

Classifications of TG-submfds are known only for

- rk(M) = 1 by Wolf (1963),
- $rk(\overline{M}) = 2$ by Klein (2008–10).

Other cases would remain open.

Note

It is hence natural to study particular TG-submfds:

- cplx (in Hermitian) by Satake (1965), Ihara (1967),
- reflective by Leung (1973–79),
- symmetric TG-submfds by Naitoh (1984–86),
- cf. Chen-Nagano, Ikawa-Tasaki, Berndt-Olmos, ...

Introduction (3/3)

Our starting point

Mashimo (cf. Hashimoto et. al) studies TG-surfaces:

- in $\overline{M} = G/K$: symmetric space of cpt type,
- in terms of representations $su(2) \rightarrow \mathfrak{g}$.

What we thought

We study TG-surfaces in \overline{M} of **noncpt type**,

• the problem is essentially the same as the cpt case.

An advantage is

one can use Iwasawa dec., solvable groups, ...

TG-surfaces in symmetric spaces (1/7)

 $\overline{M} = G/K$: irreducible symmetric sp. of noncpt type.

Problem

Classify **TG-surfaces** in \overline{M} .

Problem (almost equivalent)

Classify **nonflat TG-surfaces** in \overline{M} .

Problem (almost equivalent)

Classify **nonabelian** 2-**dim.** LTS in p.

- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: the Cartan decomposition.
- $\mathfrak{p} \supset V$: Lie triple system : $\Leftrightarrow [[V, V], V] \subset V$.

TG-surfaces in symmetric spaces (2/7)

Thm. (primitive version)

There is a correspondence between

- nonabelian 2-dim. LTS in p,
- $X \in \mathfrak{n} \setminus \{0\}$ satisfying (C1) $[\theta X, X] \in \mathfrak{a}^+$; (C2) $\exists c > 0 : [[\theta X, X], X] = cX$.

Notation

- $\theta: \mathfrak{g} \to \mathfrak{g}$: the Cartan involution.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$: the Iwasawa decomposition.
- $\mathfrak{a}^+ := [positive closed Weyl chamber].$

TG-surfaces in symmetric spaces (3/7)

Recall

There is a correspondence between

- nonabelian 2-dim. LTS in p,
- $X \in \mathfrak{n} \setminus \{0\}$ satisfying (C1) $[\theta X, X] \in \mathfrak{a}^+;$ (C2) $\exists c > 0: [[\theta X, X], X] = cX.$

Proof

- (\leftarrow) For such X, LTS is $\Sigma_X := \operatorname{Span}\{[\theta X, X], (1-\theta)X\}$.
- (\rightarrow) It follows from the congruency of $\mathfrak{a}, \mathfrak{a}^+, \dots$

TG-surfaces in symmetric spaces (4/7)

Simplest Case

 $\overline{M} = \mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n) \Rightarrow$ everything is linear algebra:

- $\theta X = -{}^t X$, $\mathfrak{p} = \operatorname{Sym}^0(n, \mathbb{R})$.
- $\mathfrak{n} = \{\text{upper triangular}\},$
- $\mathfrak{a} = \{ \text{diagonal} \mid \text{tr} = 0 \},$
- $\mathfrak{a}^+ = \{ \operatorname{diag}(a_1, \ldots, a_n) \in \mathfrak{a} \mid a_1 \geq \cdots \geq a_n \}.$

Prop. (Fujimaru-Kubo-T.)

In $SL(n, \mathbb{R})/SO(n)$, up to isometric congruence,

- $n = 3 \Rightarrow \exists$ exactly 2 nonflat TG-surfaces;
- $n = 4 \Rightarrow \exists$ exactly 4 nonflat TG-surfaces.

TG-surfaces in symmetric spaces (5/7)

Recall

 \exists correspondence between

- nonabelian 2-dim. LTS in p,
- $X \in \mathfrak{n} \setminus \{0\}$ satisfying (C1), (C2).

Note (general theory behind)

Mostow (1955):

• nonabelian 2-dim. LTS \leftrightarrow subalgebras $\mathfrak{sl}(2,\mathbb{R})\subset\mathfrak{g}$.

Jacobson-Morozov theorem:

• such subalgebras \leftrightarrow nilpotent orbits in \mathfrak{g} .

TG-surfaces in symmetric spaces (6/7)

Thm. (sophisticated version)

```
G := \operatorname{Isom}(\overline{M})
```

- $\Rightarrow \exists$ one-to-one correspondence between
 - {nonflat TG-surfaces in \overline{M} }/G;
 - {nilpotent orbits $Ad_G(X)$ of \mathfrak{g} }/{ ± 1 }.

Remark

For nilpotent orbits,

- $\{Ad_{G^0}(X)\}$ is well studied.
- $\{Ad_G(X)\}\$ is understandable, for some \overline{M} .

TG-surfaces in symmetric spaces (7/7)

Cor.

```
Let \overline{M} := \operatorname{SL}(n,\mathbb{R})/\operatorname{SO}(n).
Then \exists one-to-one correspondence between \{\operatorname{nonflat} \ \mathsf{TG}\text{-surface in } \overline{M}\}/\operatorname{Isom}(\overline{M}) \{\operatorname{partition of } n\} \setminus \{[1^n]\}.
```

Ex.

- n = 3: $\#\{[3], [2, 1]\} = 2$.
- n = 4: $\#\{[4], [3, 1], [2, 2], [2, 1, 1]\} = 4$.
- n = 5: #{[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1]} = 6.

TG-complex curves (1/6)

Topic of this section

- \bullet \overline{M} : irr. Hermitian symmetric space of noncpt type.
- $\overline{M} \supset M$: TG-complex curve. (i.e., $\dim_{\mathbb{C}} M = 1$, $\dim_{\mathbb{R}} M = 2$, J-invariant.)

Thm. (Kubo-Okuda-T.)

Let \overline{M} be as above. Then

• $\#(\{TG\text{-cplx curves in }\overline{M}\}/\mathrm{Isom}(\overline{M})) = \mathrm{rk}(\overline{M}).$

TG-complex curves (2/6)

Recall

 $\#\left(\{\mathsf{TG}\text{-cplx curves in }\overline{M}\}/\mathrm{Isom}(\overline{M})\right)=\mathrm{rk}(\overline{M}).$

Ex. $(\overline{M} := \mathbb{C}H^n)$

- (1) $\operatorname{rk}(\mathbb{C}H^n) = 1$,
- (2) $\exists 1 \text{ TG-complex curve (up to } \operatorname{Isom}(M))$ (TG-cplx submfds are $\mathbb{C}H^n \supset \mathbb{C}H^{n-1} \supset \cdots \supset \mathbb{C}H^1$).

TG-complex curves (3/6)

Recall

 $\#\left(\{\mathsf{TG}\text{-cplx curves in }\overline{M}\}/\mathrm{Isom}(\overline{M})\right)=\mathrm{rk}(\overline{M}).$

Ex. $(\overline{M}:=G_2^*(\mathbb{R}^n), n\geq 4)$

- $(1) \operatorname{rk}(G_2^*(\mathbb{R}^n)) = 2,$
- (2) \exists two TG-complex curves (up to Isom(M)):
 - $\overline{M}\supset G_2^*(\mathbb{R}^4)\cong \mathbb{C}\mathrm{H}^1\times \mathbb{C}\mathrm{H}^1: \mathsf{TG}\text{-}\mathsf{complex}$ submfd.
 - TG-complex curves are:
 - $\mathbb{C}H^1 \times \{pt\}$, and "diagonal $\mathbb{C}H^1$ ".

TG-complex curves (4/6)

Step 1 (cf. Satake (1966), Hermann (1962))

```
\overline{M}: Hermitian, r := \operatorname{rk}(\overline{M})
```

 $\Rightarrow \exists M \text{ (TG-complex submfd)} : M \cong (\mathbb{C}\mathrm{H}^1)^r.$

(:) By taking the strongly orthogonal roots.

Step 2 (construction)

One can construct r TG-maps $\varphi : \mathbb{C}\mathrm{H}^1 \to (\mathbb{C}\mathrm{H}^1)^r$,

- The image lives in $k \in \{1, 2, ..., r\}$ components.
- Note: Their sectional curvatures are different.

TG-complex curves (5/6)

Step 3 (they exhaust all)

 $\overline{M} \supset M$: TG-complex curve. Then

• $\exists X \in \mathfrak{n} : T_o M = \operatorname{Span}\{[\theta X, X], (1-\theta)X\}.$

Since $T_o M$ is *J*-invariant, we have

• X is in a good position (i.e., $(1 - \theta)X \in J(\mathfrak{a})$).

By looking at the root spaces, we conclude

• $M \in \{\text{previous examples}\}.$

Note that, in particular, $M \subset (\mathbb{C}\mathrm{H}^1)^r$.

TG-complex curves (6/6)

Recall

 $\#\left(\{\mathsf{TG}\text{-cplx curves in }\overline{M}\}/\mathrm{Isom}(\overline{M})\right)=\mathrm{rk}(\overline{M}).$

Comment

 $\overline{M}\supset M$: TG-complex curve. Then

- $M \subset (\mathbb{C}\mathrm{H}^1)^r$ is actually known by Satake (1966).
- We determined the isometry classes.

Key Tool (recall)

 \exists correspondence between

- nonabelian 2-dim. LTS in p,
- $X \in \mathfrak{n} \setminus \{0\}$ satisfying (C1), (C2).

TG-submfds in AI (1/7)

In this section,

- we propose a procedure to classify TG-submfds,
- and apply it to $SL(n, \mathbb{R})/SO(n)$ with n = 3, 4.

Procedure

(Step 1) Classify all nonflat TG-surfaces Σ in \overline{M} . (This is a topic of the previous sections.) (Step 2) For each Σ , classify nonflat TG-submfds ($\supset \Sigma$).

Key Fact

∀ nonflat TG-submfd contains nonflat TG-surface.

TG-submfds in AI (2/7)

Thm. (Klein, cf. Kimura)

 \forall max. TG-submfd in $\mathrm{SL}(3,\mathbb{R})/\mathrm{SO}(3)$ is congruent to

- $[\mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)] imes \mathbb{R}^+$, or
- $SO^0(1,2)/S(O(1) \times O(2))$.

Note

$$\begin{split} \mathbb{R}\mathrm{H}^2 &\cong \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2) \\ &\cong \mathrm{SO}^0(1,2)/\mathrm{S}(\mathrm{O}(1)\times\mathrm{O}(2)). \end{split}$$

TG-submfds in AI (3/7)

Step 1 of Proof (Fujimaru-Kubo-T.)

 \exists exactly 2 nonflat TG-surfaces in $SL(3,\mathbb{R})/SO(3)$:

$$\bullet \ \mathfrak{L}^1 := \operatorname{Span} \left\{ \left(\begin{array}{cc} 1 & & \\ & 0 & \\ & & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \right\},$$

$$\bullet \ \mathfrak{L}^2 := \operatorname{Span} \left\{ \left(\begin{array}{cc} 1 \\ & 0 \\ & & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \right\}.$$

TG-submfds in AI (4/7)

Step 2 of Proof

Consider \mathfrak{L}^1 (ToDo: Classify LTS \mathfrak{L} ($\supseteq \mathfrak{L}^1$)):

•
$$[\mathfrak{L}^1,\mathfrak{L}^1] \ni \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) =: X.$$

- \mathfrak{L} must be ad_X -invariant.
- ad_X -weight space dec.: $\mathfrak{p} \ominus \mathfrak{L}^1 = V^1(0) \oplus V^2(\pm i)$.
- Candidates: $\mathfrak{L}=\mathfrak{L}^1\oplus V^1(0)$ or $\mathfrak{L}^1\oplus V^2(\pm i)$.
- The former is LTS, but the latter is not.

TG-submfds in AI (5/7)

Step 2 of Proof (Continued)

Consider \mathfrak{L}^2 (ToDo: Classify LTS \mathfrak{L} ($\supseteq \mathfrak{L}^2$)):

• By similar calculations, $\not\exists$ such \mathfrak{L} .

Thm. (recall)

 \forall max. TG-submfd in $\mathrm{SL}(3,\mathbb{R})/\mathrm{SO}(3)$ is congruent to

- $[\mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)] \times \mathbb{R}^+$, or
- $SO^0(1,2)/S(O(1) \times O(2))$.

Comment

Both TG-submfds are reflective.

TG-submfds in AI (6/7)

Thm. (Kimura)

 \forall max. TG-submfd in $\mathrm{SL}(4,\mathbb{R})/\mathrm{SO}(4)$ is congruent to

- $[SL(3,\mathbb{R})/SO(3)] \times \mathbb{R}^+$,
- $Sp(2, \mathbb{R})/U(2)$,
- $[SL(2,\mathbb{R})/SO(2)] \times [SL(2,\mathbb{R})/SO(2)] \times \mathbb{R}^+$,
- $SO^0(2,2)/S(O(2) \times O(2))$,
- $SO^0(1,3)/S(O(1) \times O(3))$.

Note

This would be a new result. $(\operatorname{rk}(\operatorname{SL}(4,\mathbb{R})/\operatorname{SO}(4)) = 3)$

TG-submfds in AI (7/7)

Proof

- (Step 1) Recall: \exists exactly 4 nonflat TG-surfaces.
- (Step 2) Classify TG-submfds containing one of them.

Cor.

- $\overline{M} = \mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ with n = 3,4,
- $\overline{M}\supset M$: max. TG-submfd
- \Rightarrow *M* is reflective.

Question

- Why?
- What happens for n > 5?

Summary and Problems

Our Studies

- TG-surfaces in symmetric spaces.
- TG-complex curves in Hermitian symmetric spaces.
- TG-submfds in $SL(n, \mathbb{R})/SO(n)$ with n = 3, 4.

Further Problems

- $\#(\{\text{nonflat TG-surfaces in }\overline{M}\}/\mathrm{Isom}(\overline{M})) = ?$
- Classify TG-submfds in $SL(n, \mathbb{R})/SO(n)$ with $n \geq 5$.
- Classify TG-submfds for other M.
- Which \overline{M} satisfies "maximal TG \Rightarrow reflective" ?

Thank you!

Congratulations on your retirement, and Wishing you a future filled with happiness!!