Our Group

Topic 1

Topic 2

Topic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

Symmetric spaces, submanifold geometry, and solvmanifolds

Hiroshi TAMARU (田丸 博士)

Hiroshima University

Capital Normal University-Hiroshima University Joint Conference on Mathematics (Capital Normal University, China) 21/Sep/2017

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
		Abstr	act		

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Contents

- Introduction of our geometry group
- Introduction of researches of my seminar
 - symmetric spaces;
 - submanifold geometry;
 - solvmanifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Members

Geometry and Topology:

- Makoto SAKUMA (P)
- Hiroshi TAMARU (P)
- Hideo DOI (AP)
- Yuya KODA (AP)
- Takayuki OKUDA (A)

Geometric and Algebraic Analysis:

- Yoshio AGAOKA (P)
- Kazuhiro SHIBUYA (AP)

Members

Geometry and Topology:

- Makoto SAKUMA (P): retired at March/2020
- Hiroshi TAMARU (P)
- Hideo DOI (AP): retired at March/2020
- Yuya KODA (AP)
- Takayuki OKUDA (A)

Geometric and Algebraic Analysis:

• Yoshio AGAOKA (P): retired at March/2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Kazuhiro SHIBUYA (AP)

Aspects of our group

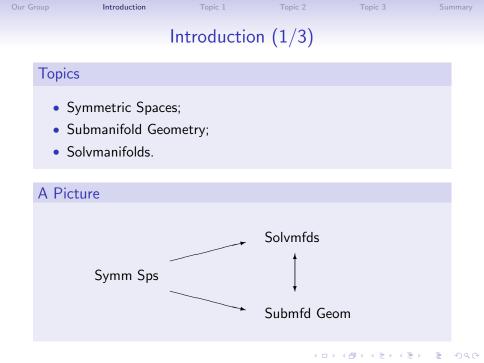
- becomes a quit young group;
- many students in every year, usually.

Students of our group

• 1 Doctor Thesis in the last year (8 in the last 4 years);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 7 Master Theses in the last year;
- 8 Undergraduate Theses in the last year.



 Our Group
 Introduction
 Topic 1
 Topic 2
 Topic 3
 Summary

 Introduction (2/3)
 Introductio

Def.

A Riemannian manifold *M* is symmetric if

• $\exists s_x : a$ "symmetry" at each $x \in M$.

Note

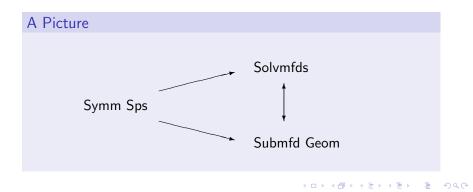
- A symmetry s_x is an involutive $(s_x^2 = \mathrm{id})$ isometry.
- Spheres, Projective spaces, Hyperbolic spaces, Grassmannians, ... are examples of symmetric spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Every symmetric space satisfies $\nabla R \equiv 0$.
- ∃ many structure theories.

Contents

- Topic 1: Application of Symmetric Spaces to Solvmfds
- Topic 2: Application of Symmetric Spaces to Submfd Geom
- Topic 3: Interplay between Solvmfds and Submfd Geom



Def.

(S,\langle,\rangle) is a **solvmanifold** if

- *S* is a solvable Lie group;
- \langle,\rangle is a left-invariant Riemannian metric on S.

Note

- Solvmfds provide "nice" examples; Einstein, Ricci soliton, ...
- Conjecture: noncompact homogeneous Einstein \Rightarrow solvmfd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General Problem

• Construct (S,\langle,\rangle) which are Einstein or Ricci soliton.

Thm. (T.: Math. Ann. (2011))

Let

- M = G/K: any symmetric space of noncompact type,
- $G \supset Q_{\Phi}$: any "parabolic" subgroup,
- $Q_{\Phi} \supset S_{\Phi}$: its "solvable part".

Then we have

• $S_{\Phi} \cong (S_{\Phi}).o \ (\subset M)$ is always an Einstein solvmfd.

Note

• This theorem provides a lot of (new) examples.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
	Topic	1: Solvma	anifolds (3	/4)	

Fact

- *G* > *Q*_Φ is **parabolic** if it is "sufficiently large";
- ∃ nice decomposition Q_Φ = M_ΦS_Φ, called Langlands decomposition, where S_Φ is solvable;
- They are controlled by the "root system".

Ex.
•
$$\mathfrak{sl}(3,\mathbb{R}) \supset \mathfrak{q}_{\Phi} = \left\{ \begin{pmatrix} * & * & * \\ & * & * & * \\ \hline 0 & 0 & * \end{pmatrix} \mid \mathrm{tr} = 0 \right\}$$
 is parabolic;
• $\mathfrak{q}_{\Phi} = \mathfrak{sl}(2,\mathbb{R}) \oplus \left\{ \begin{pmatrix} a & 0 & * \\ \hline 0 & a & * \\ \hline 0 & 0 & -2a \end{pmatrix} \right\}$ is our decomposition.

Our Projects

 Take some orbit H.p ⊂ M = G/K (where H < G), and study whether it is Einstein or Ricci soliton.

Recent Results

- (Hamada-Hoshikawa-T.: J. Geom. (2012))
 Curvature properties of some hypersurfaces in CHⁿ.
- (Hashinaga-Kubo-T.: Tohoku Math. J. (2016))
 Ricci soliton hypersurfaces in CHⁿ.
- (Cho-Hashinaga-Kubo-Taketomi-T.: J. Geom. Phy.)
 Ricci soliton contact hypersurfaces in G₂^{*}(ℝⁿ).

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary

Topic 2: Submanifold Geometry (1/4)

General Problem

 For M = G/K : symmetric spaces, construct/classify "nice" isometric actions H ∩ M.

Def.

$H \curvearrowright M$ is of **cohomogeneity one** if

• regular orbits have codimension one.

Note

- \exists many studies for **compact** symmetric spaces M = G/K.
- We are interested in **noncompact** case.

Topic 2: Submanifold Geometry (2/4)

Thm. (Berndt-T.: JDG (2003), Crelle (2013))

Let

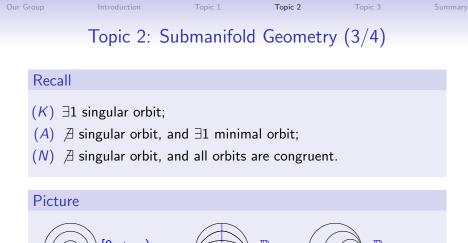
- *M* : irreducible symm. sp. of **noncompact** type;
- $H \curvearrowright M$: **cohomogeneity one** with *H* being connected.

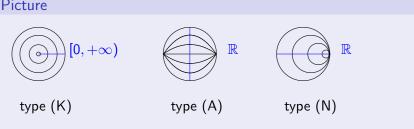
Then it satisfies one of the following:

- (K) $\exists 1 \text{ singular orbit};$
- (A) $\not\exists$ singular orbit, and \exists 1 minimal orbit;
- (N) $\not\exists$ singular orbit, and all orbits are congruent.

Note

• Actions of type (A), (N) are classified completely.





Topic 2: Submanifold Geometry (4/4)

Recent Results

- (Berndt-DiazRamos-T.: JDG (2010))
 Hyperpolar actions without singular orbits.
- (Kubo-T.: Geom. Dedicata (2013)) Study the "congruency" of orbits.
- (Fujimaru-Kubo-T.: Springer Proc. Math. Stat. (2014)) Totally geodesic surfaces in "some" symmetric spaces.
- (Gondo-T.: ongoing)
 H → *M* : cohomogeneity one with *H* being disconnected.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
Topic 3:	Solvmanifold	ds vs Sub	manifold G	Geometry (1/4)

General Problem

For a given (solvable) Lie group G,

• study whether G admits "nice" left-inv. metrics or not.

Note

The above problem is very difficult in general, because

• $\{\langle,\rangle: \text{ inner product on } \mathfrak{g}\} \cong \mathrm{GL}(n,\mathbb{R})/\mathrm{O}(n), \text{ if } \dim \mathfrak{g} = n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
				,	

Topic 3: Solvmanifolds vs Submanifold Geometry (2/4)

Note

Consider $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) < GL(n, \mathbb{R}).$

• If $\langle, \rangle' \in \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}).\langle, \rangle$,

then \langle,\rangle and \langle,\rangle' have the same curvature properties.

Such studies are begun in

- (Kodama-Takahara-T.: Manuscripta Math. (2011))
 Study ℝ[×]Aut(g) ∼ GL(n, ℝ)/O(n).
- (Hashinaga-T.-Terada: J. Math. Soc. Japan (2016)) A generalization of "Milnor frames".

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
Topic 3:	Solvmanifold	ls vs Sub	manifold G	Geometry (3	3/4)

Our Expectation

• The submfd [$\langle,\rangle]$ should reflect the geometry of $\langle,\rangle...$

```
Thm. (Hashinaga-T.: Internat. J. Math. (2017))
```

Let \mathfrak{g} be a 3-dim. solvable Lie algebra. Then

• \langle,\rangle is (algebraic) Ricci soliton $\Leftrightarrow [\langle,\rangle]$ is minimal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our Group	Introduction	Topic 1	Topic 2	Topic 3	Summary
-----------	--------------	---------	---------	---------	---------

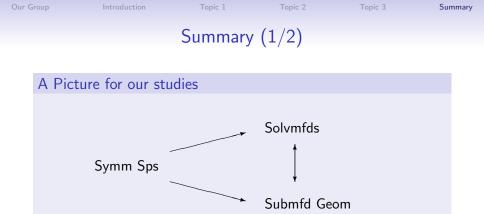
Topic 3: Solvmanifolds vs Submanifold Geometry (4/4)

Our Expectation

• A "nice" \langle,\rangle corresponds to a "nice" submfd [$\langle,\rangle].$

Recent Results

- (Hashinaga: Hiroshima Math. J. (2014))
 Study on [⟨, ⟩] for 4-dim. solvable cases.
- (Kubo-Onda-Taketomi-T.: Hiroshima Math. J. (2016)) Study on the "pseudo-Riemannian" version.
- (Taketomi-T.: Transf. Groups (2017))
 Study the "nonexistence" in view of ℝ[×]Aut(g)-actions.
- (Taketomi: Hiroshima Math. J. (in press))
 Give a sufficient condition for ⟨, ⟩ to be Ricci soliton.



Comments

• Symmetric spaces could be "classical" subjects, but still have many interesting applications.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで