

Left-invariant metrics and submanifold geometry

TAMARU, Hiroshi

Hiroshima University

Lie Group Actions in Riemannian Geometry (Dartmouth College, USA) 29/June/2016

Abstract (1/2)

Background

- Left-invariant (Riemannian) metrics on Lie group:
- ∃ many "nice" such metrics, e.g., Einstein, Ricci soliton, ...

Our Framework

- A left-invariant metric ⟨, ⟩ defines a submanifold [⟨, ⟩],
 in some noncompact Riemannian symmetric space m.
- Expectation: a "nice" metric corresponds to a "nice" submfd.

Abstract

The above expectation is true for several cases.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Abstract (2/2)

Contents

- Introduction (to our framework)
- Preliminaries (for isometric actions)
- Case 1: Low-dim. solvable Lie groups
- Case 2: Some general cases
- Summary

Intro

Intro (1/5)

Our Framework (recall)

• \langle, \rangle : a left-inv. metric on $G \longrightarrow [\langle, \rangle]$: a submfd in $\widetilde{\mathfrak{M}}$.

Basic Fact

- \exists 1-1 correspondence between
 - a left-inv. (Riemannian) metric on G,
 - a (positive definite) inner product \langle,\rangle on $\mathfrak{g} := \operatorname{Lie}(G)$.

Def. (the ambient space)

The **space of left-inv. metrics** on *G* is defined by

• $\mathfrak{\widetilde{M}} := \{\langle, \rangle : an \text{ inner product on } \mathfrak{g}\}.$

	Intro (2/5)
Recall	
•	$= \{\langle, \rangle : an inner product on \mathfrak{g}\}.$
Prop. (w	ell-known)
If dim G ● ∭ ≘ w ● Hene	= n, then $\in \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n)$ here $\operatorname{GL}_n(\mathbb{R}) \curvearrowright \widetilde{\mathfrak{M}}$ by $g.\langle \cdot, \cdot \rangle := \langle g^{-1}(\cdot), g^{-1}(\cdot) \rangle$; ce $\widetilde{\mathfrak{M}}$ is a noncompact Riemannian symmetric space.
Note	

• Finding a nice left-inv. metric on G \leftrightarrow Finding a nice point on $\widetilde{\mathfrak{M}}$...?

Intro

...but every point on $\widetilde{\mathfrak{M}}$ looks the same.

Intro

Intro (3/5)

Def.

Let
$$\langle , \rangle_1, \langle , \rangle_2 \in \widetilde{\mathfrak{M}}$$
. We say $\langle , \rangle_1 \sim \langle , \rangle_2$ (isometric up to scalar)
: $\Leftrightarrow \exists \varphi \in \operatorname{Aut}(\mathfrak{g}), \exists c > 0 : c \cdot \varphi . \langle , \rangle_1 = \langle , \rangle_2$.

Note

 $\langle,\rangle_1\sim\langle,\rangle_2$

 $\Rightarrow\,$ all Riemannian geometric properties of them are the same.

Def. (the submfd)

We define the corresponding submfd of \langle,\rangle by

	Intro (4/5)
V	Ve got:
	 M̃ ≅ GL_n(ℝ)/O(n) : a noncpt Riem. symmetric space. M̃ ⊃ [⟨, ⟩] : a homogeneous submanifold.
C	Question
	• \langle, \rangle is a "nice" left-inv. metric $\leftrightarrow [\langle, \rangle]$ is a "nice" submfd $[\langle, \rangle]$ in $\widetilde{\mathfrak{M}}$?

・ロト ・四ト ・ヨト ・ヨト

æ

Note

Intro

[⟨, ⟩₁] and [⟨, ⟩₂] are different in general.
 (Even the dimensions can be different)

Intro (5/5)

Expectation

- Some nice interplay between
 - geometry of left-inv. metrics on Lie groups, and
 - submfd geometry (in noncompact symmetric spaces).

We hope that

- characterize nice left-inv. metrics in terms of submfds...
- obtain nice submfds (isom. actions) from left-inv. metrics...

Preliminaries (1/5)

Note

We here recall general facts on

- M = G/K: a noncpt Riemannian symmetric space;
- $H \curvearrowright M$: an isometric action.

Def.

For $H \curvearrowright M$,

- an orbit *H.p* is regular if it is of maximal dimension;
- other orbits are singular;
- the cohomogeneity is the codimension of regular orbits.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Preliminaries (2/5)

Ex.

Let $SL_2(\mathbb{R}) = KAN$ be the Iwasawa decomposition.

Then K, A, $N \curvearrowright \mathbb{R}\mathrm{H}^2 = \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}(2)$ are of cohom. one, and

- (K) $\exists 1 \text{ singular orbit};$
- (A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit;
- (N) $\not\exists$ singular orbit, all orbits are congruent to each other.

Picture (\bigcirc) $(0, +\infty)$ (\bigcirc) $(0, +\infty)$ (\bigcirc) (\bigcirc) (\bigcirc) (\frown) (\frown) (\frown) type (K)type (A)type (N)

Preliminaries (3/5)

Thm. (Berndt-T. 2003, 2013)

M: an irreducible symmetric space of noncpt type; $H \curvearrowright M$: of cohomo. one (with H connected). Then it satisfies one of the following:

(K) $\exists 1 \text{ singular orbit};$

- (A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit;
- (N) $\not\exists$ singular orbit, all orbits are congruent to each other.

Picture (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) (\heartsuit) (\heartsuit)

Preliminaries (4/5)

Note

The above picture is just for a reference, since

- $\widetilde{\mathfrak{M}} \cong \operatorname{GL}_n(\mathbb{R})/\operatorname{O}(n)$ is not irreducible;
- ℝ[×]Aut(𝔅) is not connected in general;
- the cohomogeneity of $\mathbb{R}^{ imes} \mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ can be high.

Note (\langle, \rangle vs [\langle, \rangle])

- $[\langle,\rangle]$ is small
 - " \Leftrightarrow " the stabilizer $\operatorname{Aut}(\mathfrak{g})_{\langle,\rangle}$ is large

" \Leftrightarrow " \langle,\rangle has a large symmetry.

• Recall that $G \ltimes \operatorname{Aut}(\mathfrak{g})_{\langle,\rangle} \subset \operatorname{Isom}(G,\langle,\rangle).$

Preliminaries (5/5)

Ex. (typical example)

Let $\mathfrak g$ be compact simple, and \langle,\rangle_K the Killing metric. Then

- $\langle,\rangle_{\rm K}$ is Einstein, ${\rm Sec}\geq 0.$
- [⟨,⟩_K] = ℝ[×]Aut(𝔅).⟨,⟩_K = ℝ[×].⟨,⟩_K ≅ ℝ : geodesic.
 (since it is bi-inv.; other orbits have larger dimensions)

Note

- Recall: $[\langle,\rangle]$ is small " \Leftrightarrow " \langle,\rangle has a large symmetry.
- [⟨, ⟩] also contains some more information of ⟨, ⟩...
 (Even if Aut(g)⟨,⟩ are the same, [⟨, ⟩] can be different.)

Case 1: Low-dim. solvable Lie groups (1/6)

Recall (our expectation)

• A "nice" metric \langle,\rangle corresponds to a "nice" submfd [\langle,\rangle].

Preliminaries (Lauret 2003, essentially)

$$\mathfrak{g}=\mathbb{R}^n$$
, $\mathfrak{g}_{\mathbb{R}\mathrm{H}^n}$, $\mathfrak{h}^3\oplus\mathbb{R}^{n-3}$ iff

• $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$: transitive.

(i.e., left-inv. metric is unique up to isometry and scaling) Note: $\operatorname{GL}_n(\mathbb{R}) \supset \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g})$ is parabolic in these cases.

Preliminaries (Kodama-Takahara-T. 2011)

 \exists several Lie algebras (including 3-dim. solvable) :

• $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ has cohomogeneity 1.

Case 1: Low-dim. solvable Lie groups (2/6)

Thm. (Hashinaga-T. 2017)

Let \mathfrak{g} be a 3-dim. solvable Lie algebra. Then

• \langle,\rangle is ARS \Leftrightarrow [\langle,\rangle] is minimal.

Def. $(\mathfrak{g}, \langle, \rangle)$ is an algebraic Ricci soliton (ARS) if • $\exists c \in \mathbb{R}, D \in Der(\mathfrak{g}) : Ric = c \cdot id + D.$

Idea of Proof

Study them case-by-case... In fact,

- One knows the classification of 3-dim. solvable Lie algebras.
- Classification of ARS has been known (Lauret 2011).

Case 1: Low-dim. solvable Lie groups (3/6)

More on 3-dim. case

Let \mathfrak{g} be a 3-dim. solvable Lie algebra with $[\langle,\rangle] \neq \mathfrak{M}$.

- \exists 3 families of such \mathfrak{g} .
- $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is of cohom. one.
- $H := (\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^0 \curvearrowright \widetilde{\mathfrak{M}}$ is of type (K), (A), or (N).

Note

For g : 3-dim. solvable with [⟨, ⟩] ≠ M, we have
(K) the unique singular orbit is precisely ARS (Einstein);
(A) the unique minimal orbit is precisely ARS;
(N) ARS.

Preliminaries	Case 1	Case 2		Summar
Case 1: Low-dim.	solvable	Lie groups	(5/6)	

Thm. (recall, 3-dim. solvable case)

```
• \langle,\rangle is ARS \Leftrightarrow [\langle,\rangle] is minimal.
```

```
Note (for higher dim. case; good news)
```

We know that

• \exists several \mathfrak{g} satisfying the above " \Leftrightarrow ".

Note (for 4-dim. case; bad news)

Hashinaga (2014) proved that

- $\exists g$: the above " \Leftarrow " does not hold.
- $\exists \mathfrak{g}$: the above " \Rightarrow " does not hold.

Case 1: Low-dim. solvable Lie groups (6/6)

Recall

Our expectation is:

• a "nice" metric \langle,\rangle corresponds to a "nice" submfd [\langle,\rangle].

Note

From our studies,

- \exists a nice correspondence for 3-dim. solvable case;
- however, the minimality of [\langle, \rangle] is not enough in general. (we need more global information?)

Case 1

Case 2: Some general cases (1/5)

Recall

- \mathfrak{g} : 3-dim. solvable, $(\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^0 \curvearrowright \widetilde{\mathfrak{M}}$ of type (\mathcal{K})
 - \Rightarrow [\langle, \rangle] is a singular orbit iff \langle, \rangle is ARS.

Picture (recall)

type (K)

type (A)

type (N)

・ロト・雪ト・雪ト・雪 シック

Case 2: Some general cases (2/5)

Claim

- For actions of type (K), we can generalize it.
- Note: its singular orbit is an isolated orbit.

Thm. (Taketomi 2016)

Let $\mathfrak g$ be any Lie algebra, and \langle,\rangle on $\mathfrak g.$ Then

• $[\langle,\rangle] = \mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}).\langle,\rangle$ is an isolated orbit $\Rightarrow \langle,\rangle$ is ARS.

Case 2: Some general cases (3/5)

Idea of Proof

- Assume $[\langle,\rangle] = \mathbb{R}^{\times} Aut(\mathfrak{g}).\langle,\rangle$ is isolated.
- Then \forall normal vector at \langle,\rangle is not fixed by $\operatorname{Aut}(\mathfrak{g})_{\langle,\rangle}$.

• This shows
$$\operatorname{ric}_{\langle,\rangle}^{\perp} = 0$$
.
(Hence $\operatorname{ric}_{\langle,\rangle}$ is tangential to $[\langle,\rangle]$)

Note

- The converse does not hold in general.
- Recall: isolated \Rightarrow minimal.

Case 1

Case 2: Some general cases (4/5)

Recall

 \mathfrak{g} : 3-dim. solvable, $(\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}))^{0} \curvearrowright \widetilde{\mathfrak{M}}$ of type (*N*) $\Rightarrow \exists \langle, \rangle$ which is ARS.

Picture (recall)

type (A)

type (N)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Case 2: Some general cases (5/5)

Conjecture

All orbits of $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g})$ are congruent to each other (and $\neq \widetilde{\mathfrak{M}}$) $\Rightarrow \ \mathbb{A}\langle,\rangle$ which is ARS.

Note

The assumption of the conjecture means that

• all orbits are looks the same (i.e., no distinguished orbit)...

Prop. (Taketomi-T., to appear)

 $\forall n \geq 3, \exists \mathfrak{g} : \text{Lie algebra of dim. } n :$

- all orbits of $\mathbb{R}^{ imes} \operatorname{Aut}(\mathfrak{g})$ are congruent to each other, and
- $\not\exists \langle, \rangle$ on \mathfrak{g} which is ARS.

Summary (1/4)

Our Framework/Expectation

- \mathfrak{g} defines an action $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$;
- \langle,\rangle on \mathfrak{g} defines a submfd $[\langle,\rangle] \subset \widetilde{\mathfrak{M}}$;
- Does a "nice" \langle,\rangle correspond to a "nice" submfd $[\langle,\rangle]...?$

Our Results

For 3-dim. solvable case,

• ∃ a very nice correspondence.

For 4-dim. solvable case,

• not so nice as the 3-dim. case...

For general cases,

- \exists a sufficient condition for \langle, \rangle to be ARS;
- \exists a conjecture of .an obstruction for the existence of ARS.

Summary (2/4)

Related Topics

Taketomi 2015:

• Constructed examples of \mathfrak{g} s.t. $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}) \curvearrowright \mathfrak{M}$: hyperpolar.

Kubo-Onda-Taketomi-T. 2016:

 A study on left-inv. pseudo-Riem. metrics, in terms of ℝ[×]Aut(g) ∩ GL_{p+q}(ℝ)/O(p,q).

In progress:

• A similar framework for left-inv. symplectic structures...

Summary (3/4)

Problems

Find special classes: can we classify

- \mathfrak{g} such that $\mathbb{R}^{ imes} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ is special
 - (e.g., cohomogeneity one, hyperpolar, polar, ...)
- $(\mathfrak{g},\langle,\rangle)$ such that $\mathbb{R}^{\times}\mathrm{Aut}(\mathfrak{g}).\langle,\rangle$ is special

(e.g., totally geodesic, minimal, austere, ...)

Problems

Construct invariants (or obstructions) of Lie algebras:

- properties of $[\langle,\rangle]$ are invariants of an inner product.
- properties of $\mathbb{R}^{\times} \operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}$ are invariants of \mathfrak{g} .

— it would be very nice if one could get an obstruction for ${\mathfrak g}$ to admit nice metrics.

Summary (4/4)

Thank you very much!

Ref. (just for our papers)

- Berndt, J., Tamaru, H.: J. Differential Geom. (2003).
- Berndt, J., Tamaru, H.: J. Reine Angew. Math. (2013)
- Hashinaga, T.: Hiroshima Math. J. (2014)
- Hashinaga, T., Tamaru, H.: Internat. J. Math. (2017)
- Hashinaga, T., Tamaru, H., Terada, K.: J. Math. Soc. Japan (2016)
- Kodama, H., Takahara, A., Tamaru, H.: Manuscripta Math. (2011)
- Kubo, A., Tamaru, H.: Geom. Dedicata (2013)
- Taketomi, Y.: Hiroshima Math. J. (2017)
- Taketomi, Y., Tamaru, H.: Transf. Groups, to appear