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Introduction - (1/7)

Abstract

(起) カンドル (quandle): 結び目の研究に現れる代数系.

(承) 対称空間 ⇒ カンドル.

(転) 対称空間論を参照して, カンドルの研究を行いたい.

(↔ 離散的な対称空間論を作りたい)

(結) 今回は, 主に「平坦性」に関する結果を紹介する.
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Introduction - (2/7)

Def. (cf. Joyce 1982)

Let X be a set, and s : X → Map(X ,X ) : x 7→ sx be a map.
Then (X , s) is quandle if

(S1) ∀x ∈ X , sx(x) = x .

(S2) ∀x ∈ X , sx is bijective.

(S3) ∀x , y ∈ X , sx ◦ sy = ssx (y) ◦ sx .

Note

• The original formulation is given by ∗ : X × X → X ,

• The correspondence is sx(y) = y ∗ x .
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Introduction - (3/7)

Def.

Let

• K : an oriented knot (S1 ↪→ R3),

• [K ] : its diagram (Note: K = [K ]/“Reidemeister moves”),

• (X , s) : a quandle.

Then a map [K ] → X is quandle coloring if

• crossings are “compatible” with s.

Fact (motivation from knot theory)

• Quandle colorings are invariant under the Reidemeister moves.

• Hence, #{quandle colorings} is an invariant of knots.
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Introduction - (4/7)

Fact (motivation from differential geometry)

• Any connected Riemannian symmetric space is a quandle.

Note

Our viewpoint is:

• quandles = “discrete symmetric spaces”,

• although it also contains “3-symmetic spaces”...

We would like to construct their structure theory.
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Introduction - (5/7)

Ex.

The trivial quandle:

• sx := idX (∀x ∈ X ).

The dihedral quandle:

• Dn := {p1, . . . , pn : n-equal dividing pts on S1}.
The tetrahedral quandle:

• X := {verteces of tetrahedron} with s some 120◦-rotations.
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Introduction - (6/7)

Def.

f : (X , sX ) → (Y , sY ) is a homomorphism if

• ∀x ∈ X , f ◦ sx = sf (x) ◦ f .

Def.

The automorphism group of (X , s) is

• Aut(X , s) := {f : X → X : auto. (i.e., bijective homo.)}.
(X , s) is homogeneous if

• Aut(X , s) ↷ X is transitive,

Ex.

The follwing quandles are homogeneous:

• trivial quandles, dihedral quandles, the tetrahedral quandle.



. . . . . .

Introduction Topic 1 Topic 2 Topic 3 References

Introduction - (7/7)

Def.

The inner automorphism group of (X , s) is

• Inn(X , s) := ⟨{sx | x ∈ X}⟩.
(X , s) is connected if

• Inn(X , s) ↷ X is transitive.

Rem.

• Inn(X , s) ⊂ Aut(X , s). Hence, connected ⇒ homogeneous.

Ex.

• trivial quandles are disconnected (unless #X = 1),

• Dn is connected ⇔ n is odd.
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Topic 1 - flat connected finite quandles (1/6)

Motivation

• “Maximal flats” in symmetric spaces play fundamental roles.

• We would like to have an anolougus notion for quandles.

Result of this section

• We define the notion of “flatness” for quandles.

• Thm.: flat connected finite quandles ⇒ “discrete tori”.

Def. (Ishihara-T. 2016)

A quandle (X , s) is flat if

• G 0(X , s) := ⟨{sx ◦ sy | x , y ∈ X}⟩ is abelian.
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Topic 1 - flat connected finite quandles (2/6)

Fact

A Riemannian symmetric space M is flat (i.e., curv ≡ 0) iff

• G 0(M) := ⟨{sx ◦ sy | x , y ∈ M}⟩ is abelian.

Ex.

For a circle S1,

• Isom(S1) = O(2) is not abelian,

• G 0(S1) = SO(2) is abelian.

Rem. (Jedlicka-Pilitowska-Stanovsky-ZamojskaDzienio 2015)

A quandle (X , s) is medial if

• ⟨{sx ◦ s−1
y | x , y ∈ M}⟩ is abelian.
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Topic 1 - flat connected finite quandles (3/6)

Recall

• Dn : a dihedral quandle of order n.

• Dn is connected ⇔ n is odd.

Thm. (Ishihara-T. 2016)

(X , s) is a flat connected finite quandle iff

• X ∼= Dn1 × · · · × Dnk , where n1, . . . , nk are odd.
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Topic 1 - flat connected finite quandles (4/6)

What are interesting (1):

• We call Dn1 × · · · × Dnk a “dicrete torus”.

• Our result is a “discrete verion” of

Fact: a cpt connected Riem. symmetric space is flat ⇔ torus.

What are interesting (2):

• (X , s) : flat connected finite ⇒ involutive (i.e., s2x = id).

• This is not true for flat “homogeneous” finite quandles...
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Topic 1 - flat connected finite quandles (5/6)

Idea of Proof

We refer to the theory of symmetric spaces:

(1) In the theory of symmetric spaces,
there is a notion of “symmetric pairs” (G ,K , σ).

(2) Analogously, for homogeneous quandles,
there is a notion of “quandle triplet” (G ,K , σ).

(3) If a quandle (X , s) is connected,
then we can take G := G 0(X , s).

(4) Since (X , s) is flat and finite,
G is a finite abelian group.

(5) We can analyze possibilities for K and σ.
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Topic 1 - flat connected finite quandles (6/6)

Comments (Singh 2016 (JKTR))

• Flat connected (infinite) quandles are classified.
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Topic 2 - flat homogeneous finite quandles (1/7)

Motivation

• Recall: a quandle is connected ⇒ homogeneous.

• a discrete torus with even cardinality
⇒ flat homogeneous (disconnected) finite.

• Are there other such examples?

Result of this section

• We construct such examples from “vertex-transitive graph”.

• Some of them also relate to “oriented real Grassmannians”.
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Topic 2 - flat homogeneous finite quandles (2/7)

Ex.

Let An := {±e1, . . . ,±en} ⊂ Sn−1. Then

• An is a subquandle,

• An is flat, homogeneous, disconnected.

Idea of Proof

Flat:

• se1 = diag(1,−1, . . . ,−1).

• Similarly, all s±ei can be realized by diagonal matrices.

• Hence, Inn(An) itself is abelian.

Disconnected:

• ∀x ∈ An, sx preserves {±e1}, {±e2}, . . . , {±en}.



. . . . . .

Introduction Topic 1 Topic 2 Topic 3 References

Topic 2 - flat homogeneous finite quandles (3/7)

Ex.

Let A(k, n) := {±ei1 ∧ · · · ∧ eik | i1 < · · · < ik} ⊂ Gk(Rn)∼. Then

• A(k, n) is a subquandle,

• A(k, n) is flat, homogeneous, disconnected.

Idea of Proof

Flat:

• ∀x ∈ A(k , n), sx can be realized by diagonal matrices.

Disconnected:

• ∀x ∈ A(k , n), sx preserves {±e1 ∧ · · · ∧ ek}, . . ..
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Topic 2 - flat homogeneous finite quandles (4/7)

Observation

For A(2, 4) ⊂ G2(R4)∼ (for simplicity), put (ij) := ei ∧ ej . Then

• {±(12)}⊔{±(13)}⊔{±(14)}⊔{±(23)}⊔{±(24)}⊔{±(34)}
is the Inn(A(2, 4))-orbit decomposition,

• s(12) ↷ {±(13)} : nontrivial,

• s(12) ↷ {±(34)} : trivial.

Idea for a generalization

The above defines a graph:

• V := {Inn(A(2, 4))-orbits}.
• Define {±(ij)} ∼ {±(kl)} if s(ij) ↷ {±(kl)} nontrivially.

Conversely, we can define a quandle for a graph.
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Topic 2 - flat homogeneous finite quandles (5/7)

Prop. (Furuki-T.)

Let G = (V ,E ) be a graph.
Then QG := (V × Z2, s) is a quandle, where

• s(v ,a)(w , b) := (w , b + e(v ,w)),

with e(v ,w) := 1 (if v ∼ w), and e(v ,w) := 0 (otherwise).

Ex

• G : empty graph (E = ∅) ⇒ QG : trivial quandle.

• G : complete graph (with #V = n) ⇒ QG
∼= An (⊂ Sn−1).
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Topic 2 - flat homogeneous finite quandles (6/7)

Thm. (Furuki-T.)

• QG is always flat, disconnected.

• QG is homogeneous ⇔ G is vertex-transitive.

Note

• ∃ many flat homogeneous (disconnected) finite quandles.

• A(k, n) (⊂ Gk(Rn)∼) is isomorphic to QG for some G .
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Topic 2 - flat homogeneous finite quandles (7/7)

Plan (vs. symmetric spaces)

• Draw the graph G such that QG
∼= A(k, n) ... (complecated)

• ∃ such subquandles in other symmetric spaces?

Plan (vs. quandle theory)

• Classify flat homogeneous finite quandles.

• In progress (1): construction from “oriented graphs”.

• In progress (2): construction from graphs with attaching Z3...
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Topic 3 - some commutativity of quandles (1/4)

Motivation

• An ⊂ Sn−1, A(k, n) ⊂ Gk(Rn)∼ are interesting.

• We would like to characterize them!

Results (in progress)

• It would be good to consider “maximal commutative subsets”.

• This probably relates to “antipodal sets”.
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Topic 3 - some commutativity of quandles (2/4)

Def.

A subset A in a quandle (X , s) is s-commutative if

• ∀a, b ∈ A, sa ◦ sb = sb ◦ sa.

Note

• We are interested in “maximal s-commutative subsets”.

• This is a temporal name ...

Prop. (cf. Nagashiki)

• antipodal (i.e., sa(b) = b) ⇒ s-commutative.

(∵ sa ◦ sb = ssa(b) ◦ sa)
• maximal s-commutative ⇒ subquandle.
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Topic 3 - some commutativity of quandles (3/4)

Prop. (cf. Nagashiki)

• A ⊂ Sn with n ≥ 1 is maximal s-commutative

⇔ A ∼= An−1 (defined above) by Aut(Sn).

• A ⊂ RPn with n ≥ 2 is maximal s-commutative

⇔ A is maximal (great) antipodal.

Natural Question

• How about the case of Gk(Rn), Gk(Rn)∼, ... ?
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Topic 3 - some commutativity of quandles (4/4)

• MsC := maximal s-commutative.

Plan (vs. symmetric spaces)

• Determine MsC subsets in (some) symmetric spaces.

• When MsC is homogeneous? unique? antipodal?

• Can we apply MsC to the studies on antipodal sets?

Plan (vs. quandle theory)

• ∃ nice (intrinsic) properties of MsC subsets?

• When MsC is homogeneous? unique? antipodal?

• Establish the “covering theory” of quandles.
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Thank you!


	Introduction
	Topic 1
	Topic 2
	Topic 3
	References

