Topic 1

Topic 2

Topic 3

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

References

カンドルにおける平坦性と可換性

田丸 博士

広島大学

北九州ワークショップ 「幾何学と組合せ論」 (リファレンス小倉魚町) 2017/03/11

Introduction - (1/7)

Abstract

- (起) カンドル (quandle): 結び目の研究に現れる代数系.
- (承) 対称空間 ⇒ カンドル.
- (転) 対称空間論を参照して, カンドルの研究を行いたい.

(↔ 離散的な対称空間論を作りたい)

(結) 今回は,主に「平坦性」に関する結果を紹介する.

Contents

- $\S1$: Introduction to quandles
- §2: Topic 1 flat connected finite quandles
- $\S3:$ Topic 2 flat homogeneous finite quandles
- §4: Topic 3 some commutativity of quandles

 Introduction
 Topic 1
 Topic 2
 Topic 3
 References

Introduction - (2/7)

Def. (cf. Joyce 1982)

Let X be a set, and $s : X \to \operatorname{Map}(X, X) : x \mapsto s_x$ be a map. Then (X, s) is **quandle** if (S1) $\forall x \in X, s_x(x) = x$. (S2) $\forall x \in X, s_x$ is bijective. (S3) $\forall x, y \in X, s_x \circ s_y = s_{s_x(y)} \circ s_x$.

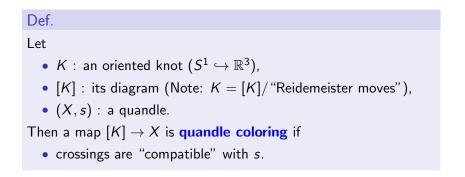
Note

• The original formulation is given by $*: X \times X \to X$,

• The correspondence is $s_x(y) = y * x$.

Introduction	Topic 1	Topic 2	Topic 3	References
--------------	---------	---------	---------	------------

Introduction - (3/7)



Fact (motivation from knot theory)

- Quandle colorings are invariant under the Reidemeister moves.
- Hence, #{quandle colorings} is an invariant of knots.

Topic 1

Topic 2

Topic 3

References

Introduction - (4/7)

Fact (motivation from differential geometry)

• Any connected Riemannian symmetric space is a quandle.

Note

Our viewpoint is:

- quandles = "discrete symmetric spaces",
- although it also contains "3-symmetic spaces" ...

We would like to construct their structure theory.

Topic 1

Topic 2

Topic 3

References

Introduction - (5/7)

Ex.

The trivial quandle:

• $s_x := \operatorname{id}_X (\forall x \in X).$

The dihedral quandle:

• $D_n := \{p_1, \ldots, p_n : n \text{-equal dividing pts on } S^1\}.$

The tetrahedral quandle:

• X := {verteces of tetrahedron} with s some 120°-rotations.

Topic 1

Topic 2

Topic 3

References

Introduction - (6/7)

Def. $f: (X, s^X) \to (Y, s^Y)$ is a homomorphism if • $\forall x \in X, f \circ s_x = s_{f(x)} \circ f.$

Def.

The **automorphism group** of (X, s) is

• $\operatorname{Aut}(X, s) := \{f : X \to X : \text{auto. (i.e., bijective homo.)}\}.$

(X, s) is **homogeneous** if

• $\operatorname{Aut}(X, s) \frown X$ is transitive,

Ex.

The follwing quandles are homogeneous:

• trivial quandles, dihedral quandles, the tetrahedral quandle.

Introd	luction

Topic 1

Topic 2

References

Introduction - (7/7)

Def.

The inner automorphism group of (X, s) is

- Inn $(X, s) := \langle \{s_x \mid x \in X\} \rangle.$
- (X, s) is **connected** if
 - $\operatorname{Inn}(X, s) \frown X$ is transitive.

Rem.

• $\operatorname{Inn}(X, s) \subset \operatorname{Aut}(X, s)$. Hence, connected \Rightarrow homogeneous.

Ex.

- trivial quandles are disconnected (unless #X = 1),
- D_n is connected $\Leftrightarrow n$ is odd.

Topic 1 - flat connected finite quandles (1/6)

Motivation

- "Maximal flats" in symmetric spaces play fundamental roles.
- We would like to have an anolougus notion for quandles.

Result of this section

- We define the notion of "flatness" for quandles.
- Thm.: flat connected finite quandles \Rightarrow "discrete tori".

Def. (Ishihara-T. 2016)

A quandle (X, s) is **flat** if

• $G^0(X,s) := \langle \{s_x \circ s_y \mid x, y \in X\} \rangle$ is abelian.

Introduction	Topic 1	Topic 2	Topic 3	References
--------------	---------	---------	---------	------------

Topic 1 - flat connected finite quandles (2/6)

Fact

A Riemannian symmetric space M is flat (i.e., curv \equiv 0) iff

•
$$G^0(M) := \langle \{s_x \circ s_y \mid x, y \in M\} \rangle$$
 is abelian.

Ex.

For a circle S^1 ,

- $\operatorname{Isom}(S^1) = O(2)$ is not abelian,
- $G^{0}(S^{1}) = SO(2)$ is abelian.

Rem. (Jedlicka-Pilitowska-Stanovsky-ZamojskaDzienio 2015)

A quandle (X, s) is **medial** if

• $\langle \{s_x \circ s_y^{-1} \mid x, y \in M\} \rangle$ is abelian.

Introduction	Topic 1	Topic 2	Topic 3	References

Topic 1 - flat connected finite quandles (3/6)

Recall

- D_n : a dihedral quandle of order n.
- D_n is connected $\Leftrightarrow n$ is odd.

Thm. (Ishihara-T. 2016)

- (X, s) is a flat connected finite quandle iff
 - $X \cong D_{n_1} \times \cdots \times D_{n_k}$, where n_1, \ldots, n_k are odd.

Topic 1 - flat connected finite quandles (4/6)

What are interesting (1):

- We call $D_{n_1} \times \cdots \times D_{n_k}$ a "dicrete torus".
- Our result is a "discrete verion" of

Fact: a cpt connected Riem. symmetric space is flat \Leftrightarrow torus.

What are interesting (2):

- (X, s): flat connected finite \Rightarrow involutive (i.e., $s_x^2 = id$).
- This is not true for flat "homogeneous" finite quandles...

Topic 1 - flat connected finite quandles (5/6)

Idea of Proof

We refer to the theory of symmetric spaces:

- (1) In the theory of symmetric spaces, there is a notion of "symmetric pairs" (G, K, σ) .
- (2) Analogously, for homogeneous quandles, there is a notion of "quandle triplet" (G, K, σ) .
- (3) If a quandle (X, s) is connected, then we can take G := G⁰(X, s).
- (4) Since (X, s) is flat and finite,G is a finite abelian group.
- (5) We can analyze possibilities for K and σ .

Introduction	Topic 1	Topic 2	Topic 3	Reference

Topic 1 - flat connected finite quandles (6/6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Comments (Singh 2016 (JKTR))

• Flat connected (infinite) quandles are classified.

Topic 2 - flat homogeneous finite quandles (1/7)

Motivation

- Recall: a quandle is connected \Rightarrow homogeneous.
- a discrete torus with even cardinality
 ⇒ flat homogeneous (disconnected) finite.
- Are there other such examples?

Result of this section

- We construct such examples from "vertex-transitive graph".
- Some of them also relate to "oriented real Grassmannians".

Topic 2 - flat homogeneous finite quandles (2/7)

Let $A^n := \{\pm e_1, \ldots, \pm e_n\} \subset S^{n-1}$. Then

- Aⁿ is a subquandle,
- Aⁿ is flat, homogeneous, disconnected.

Idea of Proof

Flat:

Ex.

•
$$s_{e_1} = \text{diag}(1, -1, \dots, -1).$$

• Similarly, all $s_{\pm e_i}$ can be realized by diagonal matrices.

• Hence, $Inn(A^n)$ itself is abelian.

Disconnected:

• $\forall x \in A^n$, s_x preserves $\{\pm e_1\}, \{\pm e_2\}, \ldots, \{\pm e_n\}.$

Introduction Topic 1	Topic 2 Topic 3	References
----------------------	-----------------	------------

Topic 2 - flat homogeneous finite quandles (3/7)

Ex.

Let $A(k, n) := \{\pm e_{i_1} \land \dots \land e_{i_k} \mid i_1 < \dots < i_k\} \subset G_k(\mathbb{R}^n)^{\sim}$. Then

- A(k, n) is a subquandle,
- A(k, n) is flat, homogeneous, disconnected.

Idea of Proof

Flat:

∀x ∈ A(k, n), s_x can be realized by diagonal matrices.
 Disconnected:

• $\forall x \in A(k, n), s_x \text{ preserves } \{\pm e_1 \land \dots \land e_k\}, \dots$

Topic 2 - flat homogeneous finite quandles (4/7)

Observation

For $A(2,4) \subset G_2(\mathbb{R}^4)^{\sim}$ (for simplicity), put $(ij) := e_i \wedge e_j$. Then

• $\{\pm(12)\} \sqcup \{\pm(13)\} \sqcup \{\pm(14)\} \sqcup \{\pm(23)\} \sqcup \{\pm(24)\} \sqcup \{\pm(34)\}$ is the Inn(A(2,4))-orbit decomposition,

•
$$s_{(12)} \frown \{\pm (13)\}$$
 : nontrivial,

•
$$s_{(12)} \curvearrowright \{\pm(34)\}$$
 : trivial.

Idea for a generalization

The above defines a graph:

- $V := {Inn(A(2, 4))-orbits}.$
- Define $\{\pm(ij)\} \sim \{\pm(kl)\}$ if $s_{(ij)} \curvearrowright \{\pm(kl)\}$ nontrivially.

Conversely, we can define a quandle for a graph.

Topic 2 - flat homogeneous finite quandles (5/7)

Prop. (Furuki-T.)

Let G = (V, E) be a graph. Then $Q_G := (V \times \mathbb{Z}_2, s)$ is a quandle, where • $s_{(v,a)}(w, b) := (w, b + e(v, w))$, with e(v, w) := 1 (if $v \sim w$), and e(v, w) := 0 (otherwise).

Ex

- G : empty graph $(E = \emptyset) \Rightarrow Q_G$: trivial quandle.
- G : complete graph (with #V = n) $\Rightarrow Q_G \cong A^n (\subset S^{n-1})$.

Topic 2 - flat homogeneous finite quandles (6/7)

Thm. (Furuki-T.)

- Q_G is always flat, disconnected.
- Q_G is homogeneous $\Leftrightarrow G$ is vertex-transitive.

Note

• ∃ many flat homogeneous (disconnected) finite quandles.

• $A(k, n) \ (\subset G_k(\mathbb{R}^n)^{\sim})$ is isomorphic to Q_G for some G.

Topic 2 - flat homogeneous finite quandles (7/7)

Plan (vs. symmetric spaces)

- Draw the graph G such that $Q_G \cong A(k, n)$... (complecated)
- ∃ such subquandles in other symmetric spaces?

Plan (vs. quandle theory)

- Classify flat homogeneous finite quandles.
- In progress (1): construction from "oriented graphs".
- In progress (2): construction from graphs with attaching \mathbb{Z}_3 ...

Introduction	Topic 1	Topic 2	Topic 3	References

Topic 3 - some commutativity of quandles (1/4)

Motivation

- $A^n \subset S^{n-1}$, $A(k,n) \subset G_k(\mathbb{R}^n)^{\sim}$ are interesting.
- We would like to characterize them!

Results (in progress)

It would be good to consider "maximal commutative subsets".

• This probably relates to "antipodal sets".

Introduction	Topic 1	Topic 2	Topic 3	References
--------------	---------	---------	---------	------------

Topic 3 - some commutativity of quandles (2/4)

Def.

A subset A in a quandle (X, s) is s-commutative if

$$\forall a, b \in A, \ s_a \circ s_b = s_b \circ s_a.$$

Note

- We are interested in "maximal s-commutative subsets".
- This is a temporal name ...

Prop. (cf. Nagashiki)

• antipodal (i.e., $s_a(b) = b$) \Rightarrow s-commutative.

$$(\because s_a \circ s_b = s_{s_a(b)} \circ s_a)$$

• maximal *s*-commutative ⇒ subquandle.

Topic 3 - some commutativity of quandles (3/4)

Prop. (cf. Nagashiki)

- $A \subset S^n$ with $n \ge 1$ is maximal *s*-commutative $\Leftrightarrow A \cong A^{n-1}$ (defined above) by $\operatorname{Aut}(S^n)$.
- A ⊂ ℝPⁿ with n ≥ 2 is maximal s-commutative
 ⇔ A is maximal (great) antipodal.

Natural Question

• How about the case of $G_k(\mathbb{R}^n)$, $G_k(\mathbb{R}^n)^{\sim}$, ... ?

Introduction	Topic 1	Topic 2	Topic 3	References
--------------	---------	---------	---------	------------

Topic 3 - some commutativity of quandles (4/4)

• MsC := maximal *s*-commutative.

Plan (vs. symmetric spaces)

- Determine MsC subsets in (some) symmetric spaces.
- When MsC is homogeneous? unique? antipodal?
- Can we apply MsC to the studies on antipodal sets?

Plan (vs. quandle theory)

- \exists nice (intrinsic) properties of MsC subsets?
- When MsC is homogeneous? unique? antipodal?
- Establish the "covering theory" of quandles.

 Introduction
 Topic 1
 Topic 2
 Topic 3
 References

References (only from our seminar)

- Furuki, K., Tamaru, H.: in preparation.
- Ishihara, Y., Tamaru, H.: *Flat connected finite quandles*. Proc. Amer. Math. Soc. 144 (2016), 4959–4971.
- Kamada, S., Tamaru, H., Wada, W.: On classification of quandles of cyclic type. Tokyo J. Math. 39 (2016), 157–171.
- Tamaru, H.: *Two-point homogeneous quandles with prime cardinality*. J. Math. Soc. Japan 65 (2013), 1117–1134.
- Wada, K.: *Two-point homogeneous quandles with cardinality of prime power*. Hiroshima Math. J. 45 (2015), 165–174.

Thank you!