Intro

Sect. 1

Sect. 2

Sect. 3

Summary

Ricci soliton and contact homogeneous hypersurfaces in noncompact symmetric spaces

Hiroshi Tamaru (田丸 博士)

Hiroshima University

Workshop on Differential Geometry, Gwangju 2017, Chonnam National University, 31/March/ 2017

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preface (1/3)

Background

Let us consider

- M : a "nice" Riemannian manifold,
- $M \supset M'$: a "nice" submanifold.

Then M' often provides examples with "nice" intrinsic properties.

Typical Example

Assume that

- *M* : a Kähler manifold,
- $M \supset M'$: a real hypersurface.

Then M' naturally has an almost contact metric structure.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preface (2/3)

This Talk

We concentrate on

- M : irreducible symmetric spaces of noncompact type,
- $M \supset M'$: "Lie hypersurfaces".

We mention that they provide several nice examples.

Contents

- Sec. 1: Lie hypersurfaces
- Sec. 2: Case of CHⁿ
- Sec. 3: Case of $G_2^*(\mathbb{R}^n)$

Preface (3/3)

Note

This talk is based on several joint works with

- Jong Taek Cho (Chonnam National University)
- Takahiro Hashinaga (National Inst. Tech., Kitakyushu College)
- Akira Kubo (Hiroshima Shudo University)
- Yuichiro Taketomi (Hiroshima University)

Sec. 1: Lie hypersurfaces (1/9)

Def

Let $H \curvearrowright M$ be an isometric action. Then

- a regular orbit is a maximal dimensional orbit;
- other orbits are singular;
- it is of cohomogeneity one if codim(regular orbit) = 1.

Def

 $M \supset M'$ is a **Lie hypersurface** if

 ∃H ~ M : cohomogeneity one without singular orbit s.t. M' = H.p (an orbit).

Ex.

•
$$\mathbb{R}^{n-1} \subset \mathbb{R}^n$$
; $\mathbb{R}H^{n-1} \subset \mathbb{R}H^n$; "horosphere" $\subset \mathbb{R}H^n$.

・ロト ・ 一下・ ・ モト・ ・ モト・

э

Sec. 1: Lie hypersurfaces (2/9)

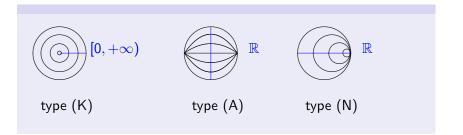
Ex.

Let us consider

- $\mathbb{R}H^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)$,
- $SL(2,\mathbb{R}) = KAN$: an Iwasawa decomposition.

Then $K, A, N \curvearrowright \mathbb{R}\mathrm{H}^2$ look like as follows, and

• orbits of A and N are Lie hypersurfaces.



Sec. 1: Lie hypersurfaces (3/9)

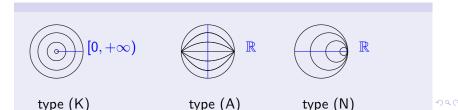
Thm. (Berndt-T.: JDG 2003, Crelle 2013)

Let

• *M* : an irreducible Riem. symmetric space of noncpt type,

• $H \curvearrowright M$: of cohomogeneity one, with H being connected. Then it satisfies one of:

- (K) $\exists 1 \text{ singular orbit};$
- (A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit;
- (N) $\not\exists$ singular orbit, all orbits are congruent to each other.

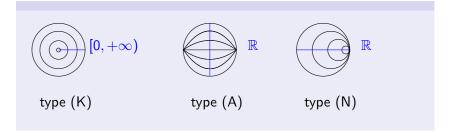


Sec. 1: Lie hypersurfaces (4/9)

Note

TFAE:

- *M'* is a Lie hypersurface;
- *M'* is an orbit of an action of type (A) or (N);
- M' is a homogeneous real hypersurface without focal submfds.



Sec. 1: Lie hypersurfaces (5/9)

Some Motivation

- Lie hypersurfaces reflect some specialities of noncpt setting.
- Lie hypersurfaces are "solvmfds"
 - good candidates for Einstein/Ricci soliton.
- We know the classification of Lie hypersurfaces
 - easier to study (than generic homogeneous hypersurfaces).

	÷	
	L	

Sect. 1

Sect. 2

Sec. 1: Lie hypersurfaces (6/9)

- *M* : an irr. Riem. symmetric space of noncpt type.
- C1-action := cohomogeneity one action.

Note

• All C1-actions of type (A) and (N) (i.e., those without singular orbit) can be constructed explicitly.

Thm. (Berndt-T.: JDG 2003)

Let $r := \operatorname{rank}(M)$. Then

- {C1-actions of type (A)}/equiv = {1,...,r}/(*);
- {C1-actions of type (N)}/equiv = $\mathbb{R}P^{r-1}/(*)$.

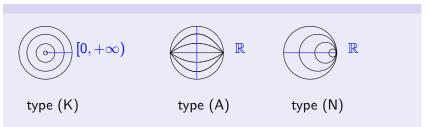
Note: (*) is a finite group (determined by M).

Sec. 1: Lie hypersurfaces (7/9)

Ex.

When rank(M) = 1 (i.e., $M = \mathbb{R}H^n$, $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$):

- ∃1 type (A) action:
 - for $\mathbb{R}H^n$, the minimal orbit is the tot. geod. $\mathbb{R}H^{n-1}$;
 - for $\mathbb{C}\mathrm{H}^n$, the minimal orbit is ruled minimal.
- $\exists 1 \text{ type } (N) \text{ action:}$
 - orbits are horospheres.



Sec. 1: Lie hypersurfaces (8/9)

Recall

- (N) $\not\exists$ singular orbit, all orbits are congruent to each other.
- {C1-actions of type (N)}/equiv = $\mathbb{R}P^{r-1}/(*)$.

Prop. (Heber: Invent. Math. 1998)

Assume $rank(M) \ge 2$. Then

• $\exists H \frown M$ of type (N) : its orbits are Einstein.

Prop. (Lauret: Crelle 2011, cf. CHKTT)

• $\forall H \frown M$ of type (N), its orbits are Ricci soliton.

Sec. 1: Lie hypersurfaces (9/9)

Recall (Lauret: Crelle 2011, cf. CHKTT)

• $\forall H \frown M$ of type (N), its orbits are Ricci soliton.

Idea of Proof

• $(\mathfrak{g},\langle,\rangle)$ is algebraic Ricci soliton (ARS) if

 $\operatorname{Ric} = \boldsymbol{c} \cdot \operatorname{id} + \boldsymbol{D} \quad (\exists \boldsymbol{c} \in \mathbb{R}, \ \exists \boldsymbol{D} \in \operatorname{Der}(\boldsymbol{\mathfrak{g}}).$

- Fact: ARS ⇒ (G, ⟨, ⟩) is Ricci soliton (G : simply-connected).
- One can show that the above orbits are ARS.
- Note: These Ricci solitons are nongradient.

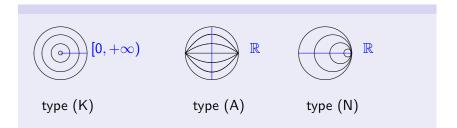
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sec. 2: Case of $\mathbb{C}\mathrm{H}^n$ (1/3)

Note

Lie hypersurfaces in $\mathbb{R}H^n$ are well-understood:

- type (A): the orbits are $\mathbb{R}H^{n-1}$;
- type (N): the orbits are \mathbb{R}^{n-1} .



Sec. 2: Case of $\mathbb{C}\mathrm{H}^n$ (2/3)

Note

• The first nontrivial case is $\mathbb{C}\mathrm{H}^n$.

Fact

- *A* Einstein real hypersurfaces in ℂHⁿ;
- Orbits of the (N)-type action (horosphere) is Ricci soliton.

Thm. (Hashinaga-Kubo-T.: Tohoku 2016)

- When n > 2, $\exists 1$ Ricci soliton Lie hypersurface (horosphere);
- When n = 2, ∃ exactly two Ricci soliton Lie hypersurfaces. (horosphere + the ruled minimal real hypersurface)

Sec. 2: Case of $\mathbb{C}\mathrm{H}^n$ (3/3)

Why this is interesting

- The result depends on whether n = 2 or n > 2.
- It is relevant to the following.

Thm. (Cho-Kimura: Math. Nachr. 2011)

- $\not\exists$ cpt Hopf hypersurfaces in $\mathbb{C}\mathrm{H}^n$ which are Ricci soliton.
- $\not\exists$ ruled hypersurfaces in $\mathbb{C}\mathrm{H}^n$ which are gradient Ricci soliton.

Note

The assumptions above cannot be removed, namely,

- the horosphere is noncpt Hopf Ricci soliton;
- the ruled minimal hypersurface in $\mathbb{C}H^2$ is nongradient Ricci soliton.

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (1/6)

Note

- $G_2^*(\mathbb{R}^{n+2})$: the noncpt Grassmannian;
- $G_2^*(\mathbb{R}^{n+2}) = SO^0(2, n)/SO(2)SO(n);$
- It is a Hermitian symmetric space of rank two.

Note

• \exists many Lie hypersurfaces in $G_2^*(\mathbb{R}^{n+2})$, since the rank is two.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (2/6)

Question (Cho: personally, 2014)

What is the following Lie algebra $\mathfrak{g}_{0,2}$?

• $\mathfrak{g}_{0,2} := \operatorname{span}_{\mathbb{R}} \{\xi, X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n\},\$

$$\begin{split} [\xi, Y_i] &= 2X_i & (i \ge 1) \\ [Y_2, Y_i] &= 2Y_i & (i \ne 2) \\ [X_2, Y_2] &= 2\xi \\ [X_2, Y_i] &= 2X_i & (i \ne 2) \\ [X_i, Y_i] &= -2X_2 + 2\xi & (i \ne 2) \end{split}$$

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (3/6)

Note

- g_{0,2} is a special case of g_{α,β};
- $\mathfrak{g}_{\alpha,\beta}$ is introduced by Boeckx (2000);
- $\mathfrak{g}_{\alpha,\beta}$ has a left-invariant (κ,μ) -contact metric structure.

Def. (Blair-Koufogiorgos-Papantoniou: 1995)

A contact metric mfd $(M; \eta, \xi, \varphi, g)$ is a (κ, μ) -space $(\kappa, \mu \in \mathbb{R})$: $\Leftrightarrow \forall X, Y \in \mathfrak{X}(M),$ $R(X, Y)\xi = (\kappa \operatorname{id} + (\mu/2)\mathcal{L}_{\xi}\varphi)(\eta(Y)X - \eta(X)Y).$

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (4/6)

Note

• A contact metric mfd is Sasakian iff (κ, μ) -space with $\kappa = 1$.

Thm. (Ghosh-Sharma: 2014)

A non-Sasakian (κ, μ)-space is

- gradient Ricci soliton \Leftrightarrow (0,0)-space;
- nongradient Ricci soliton \Rightarrow (0, 4)-space (iff $G_{0,2}$).

Rem.

(0, 4)-space with dimension n is

- $n = 3 \Rightarrow$ Sol, nongradient Ricci soliton;
- $n \ge 5 \Rightarrow ?$

Intro

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (5/6)

Recall $(\mathfrak{g}_{0,2})$

$$\begin{split} [\xi, Y_i] &= 2X_i & (i \ge 1) \\ [Y_2, Y_i] &= 2Y_i & (i \ne 2) \\ [X_2, Y_2] &= 2\xi \\ [X_2, Y_i] &= 2X_i & (i \ne 2) \\ [X_i, Y_i] &= -2X_2 + 2\xi & (i \ne 2) \end{split}$$

Test

- dim $\mathfrak{g}_{0,2} = 2n + 1$, $\mathfrak{n} := [\mathfrak{g}_{0,2}, \mathfrak{g}_{0,2}] : 2n$ -dim.
- dim[n, n] = n, dim[n, [n, n]] = 1.
- Conclusion: $\mathfrak{g}_{0,2}$ is solvable, \mathfrak{n} is of 3-step nilpotent.
- \longrightarrow this looks a horosphere in $G_2^*(\mathbb{R}^{n+3})...!$

Sec. 3: Case of $G_2^*(\mathbb{R}^n)$ (6/6)

Thm. (Cho-Hashinaga-Kubo-Taketomi-T.: preprint)

G_{0,2} with dim. n ≥ 5 is isomorphic to an orbit of a type (N) action (i.e., horosphere) of G₂^{*}(ℝⁿ⁺³) as contact metric mfds.

Cor.

• G_{0,2} is (nongradient) Ricci soliton, in any dimension.

Summary (1/3)

Our Aim

Lie hypersurfaces in symmetric spaces of noncpt type
— would provide interesting mfds.

Our Results

- Ricci soliton Lie hypersurfaces in CHⁿ;
- (0,4)-contact metric mfds vs Lie hypersurfaces in $G_2^*(\mathbb{R}^{n+3})$.

Summary (2/3)

Problem (1)

- Study Lie hypersurfaces in other symmetric spaces *M*.
- When *M* is Hermitian, ∃ contact Ricci soliton?

Problem (2)

- Other (κ, μ)-contact metric mfds (G_{α,β}) can be realized as a hypersurface?
- Not Lie hypersurfaces, but other homogeneous ones.

Summary (3/3)

Ref. (just for our papers)

- Berndt, J., Tamaru, H.: *Homogeneous codimension one foliations on noncompact symmetric spaces.* J. Differential Geom. 2003.
- Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.: Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces. ArXiv:1702.07256.
- Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.: *The* solvable models of noncompact real two-plane Grassmannians and some applications. Springer Proc. Math. Stat., to appear.
- Hashinaga, T., Kubo, A., Tamaru, H.: *Homogeneous Ricci soliton hypersurfaces in the complex hyperbolic spaces.* Tohoku Math. J. 2016.
- Kubo, A., Tamaru, H.: A sufficient condition for congruency of orbits of Lie groups and some applications. Geom. Dedicata 2013.

Thank you very much!