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Preface (1/3)

Background

Let us consider

• M : a “nice” Riemannian manifold,

• M ⊃ M ′ : a “nice” submanifold.

Then M ′ often provides examples with “nice” intrinsic properties.

Typical Example

Assume that

• M : a Kähler manifold,

• M ⊃ M ′ : a real hypersurface.

Then M ′ naturally has an almost contact metric structure.
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Preface (2/3)

This Talk

We concentrate on

• M : irreducible symmetric spaces of noncompact type,

• M ⊃ M ′ : “Lie hypersurfaces”.

We mention that they provide several nice examples.

Contents

• Sec. 1: Lie hypersurfaces

• Sec. 2: Case of CHn

• Sec. 3: Case of G ∗
2 (Rn)
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Preface (3/3)

Note

This talk is based on several joint works with

• Jong Taek Cho (Chonnam National University)

• Takahiro Hashinaga
(National Inst. Tech., Kitakyushu College)

• Akira Kubo (Hiroshima Shudo University)

• Yuichiro Taketomi (Hiroshima University)
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Sec. 1: Lie hypersurfaces (1/9)

Def

Let H ↷ M be an isometric action. Then

• a regular orbit is a maximal dimensional orbit;

• other orbits are singular;

• it is of cohomogeneity one if codim(regular orbit) = 1.

Def

M ⊃ M ′ is a Lie hypersurface if

• ∃H ↷ M : cohomogeneity one without singular orbit
s.t. M ′ = H.p (an orbit).

Ex.

• Rn−1 ⊂ Rn; RHn−1 ⊂ RHn; “horosphere” ⊂ RHn.
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Sec. 1: Lie hypersurfaces (2/9)

Ex.

Let us consider

• RH2 = SL(2,R)/SO(2),

• SL(2,R) = KAN : an Iwasawa decomposition.

Then K ,A,N ↷ RH2 look like as follows, and

• orbits of A and N are Lie hypersurfaces.
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Sec. 1: Lie hypersurfaces (3/9)

Thm. (Berndt-T.: JDG 2003, Crelle 2013)

Let

• M : an irreducible Riem. symmetric space of noncpt type,

• H ↷ M : of cohomogeneity one, with H being connected.

Then it satisfies one of:

(K) ∃1 singular orbit;

(A) ̸ ∃ singular orbit, ∃1 minimal orbit;

(N) ̸ ∃ singular orbit, all orbits are congruent to each other.
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Sec. 1: Lie hypersurfaces (4/9)

Note

TFAE:

• M ′ is a Lie hypersurface;

• M ′ is an orbit of an action of type (A) or (N);

• M ′ is a homogeneous real hypersurface without focal submfds.
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Sec. 1: Lie hypersurfaces (5/9)

Some Motivation

• Lie hypersurfaces reflect some specialities of noncpt setting.

• Lie hypersurfaces are “solvmfds”

— good candidates for Einstein/Ricci soliton.

• We know the classification of Lie hypersurfaces

— easier to study (than generic homogeneous hypersurfaces).
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Sec. 1: Lie hypersurfaces (6/9)

• M : an irr. Riem. symmetric space of noncpt type.

• C1-action := cohomogeneity one action.

Note

• All C1-actions of type (A) and (N) (i.e., those without
singular orbit) can be constructed explicitly.

Thm. (Berndt-T.: JDG 2003)

Let r := rank(M). Then

• {C1-actions of type (A)}/equiv = {1, . . . , r}/(∗);
• {C1-actions of type (N)}/equiv = RPr−1/(∗).

Note: (∗) is a finite group (determined by M).
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Sec. 1: Lie hypersurfaces (7/9)

Ex.

When rank(M) = 1 (i.e., M = RHn, CHn, HHn, OH2):

• ∃1 type (A) action:

— for RHn, the minimal orbit is the tot. geod. RHn−1;

— for CHn, the minimal orbit is ruled minimal.

• ∃1 type (N) action:

— orbits are horospheres.
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Sec. 1: Lie hypersurfaces (8/9)

Recall

• (N) ̸ ∃ singular orbit, all orbits are congruent to each other.

• {C1-actions of type (N)}/equiv = RPr−1/(∗).

Prop. (Heber: Invent. Math. 1998)

Assume rank(M) ≥ 2. Then

• ∃H ↷ M of type (N) : its orbits are Einstein.

Prop. (Lauret: Crelle 2011, cf. CHKTT)

• ∀H ↷ M of type (N), its orbits are Ricci soliton.
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Sec. 1: Lie hypersurfaces (9/9)

Recall (Lauret: Crelle 2011, cf. CHKTT)

• ∀H ↷ M of type (N), its orbits are Ricci soliton.

Idea of Proof

• (g, ⟨, ⟩) is algebraic Ricci soliton (ARS) if

Ric = c · id+ D (∃c ∈ R, ∃D ∈ Der(g).

• Fact: ARS ⇒ (G , ⟨, ⟩) is Ricci soliton (G : simply-connected).

• One can show that the above orbits are ARS.

• Note: These Ricci solitons are nongradient.
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Sec. 2: Case of CHn (1/3)

Note

Lie hypersurfaces in RHn are well-understood:

• type (A): the orbits are RHn−1;

• type (N): the orbits are Rn−1.
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Sec. 2: Case of CHn (2/3)

Note

• The first nontrivial case is CHn.

Fact

• ̸ ∃ Einstein real hypersurfaces in CHn;

• Orbits of the (N)-type action (horosphere) is Ricci soliton.

Thm. (Hashinaga-Kubo-T.: Tohoku 2016)

• When n > 2, ∃1 Ricci soliton Lie hypersurface (horosphere);

• When n = 2, ∃ exactly two Ricci soliton Lie hypersurfaces.

(horosphere + the ruled minimal real hypersurface)



. . . . . .

Intro Sect. 1 Sect. 2 Sect. 3 Summary

Sec. 2: Case of CHn (3/3)

Why this is interesting

• The result depends on whether n = 2 or n > 2.

• It is relevant to the following.

Thm. (Cho-Kimura: Math. Nachr. 2011)

• ̸ ∃ cpt Hopf hypersurfaces in CHn which are Ricci soliton.

• ̸ ∃ ruled hypersurfaces in CHn which are gradient Ricci soliton.

Note

The assumptions above cannot be removed, namely,

• the horosphere is noncpt Hopf Ricci soliton;

• the ruled minimal hypersurface in CH2 is nongradient Ricci
soliton.
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Sec. 3: Case of G ∗
2 (Rn) (1/6)

Note

• G ∗
2 (Rn+2) : the noncpt Grassmannian;

• G ∗
2 (Rn+2) = SO0(2, n)/SO(2)SO(n);

• It is a Hermitian symmetric space of rank two.

Note

• ∃ many Lie hypersurfaces in G ∗
2 (Rn+2), since the rank is two.
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Sec. 3: Case of G ∗
2 (Rn) (2/6)

Question (Cho: personally, 2014)

What is the following Lie algebra g0,2?

• g0,2 := spanR{ξ,X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn},

[ξ,Yi ] = 2Xi (i ≥ 1)

[Y2,Yi ] = 2Yi (i ̸= 2)

[X2,Y2] = 2ξ

[X2,Yi ] = 2Xi (i ̸= 2)

[Xi ,Yi ] = −2X2 + 2ξ (i ̸= 2)
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Sec. 3: Case of G ∗
2 (Rn) (3/6)

Note

• g0,2 is a special case of gα,β;

• gα,β is introduced by Boeckx (2000);

• gα,β has a left-invariant (κ, µ)-contact metric structure.

Def. (Blair-Koufogiorgos-Papantoniou: 1995)

A contact metric mfd (M; η, ξ, φ, g) is a (κ, µ)-space (κ, µ ∈ R)
:⇔ ∀X ,Y ∈ X(M),

R(X ,Y )ξ = (κ id+ (µ/2)Lξφ)(η(Y )X − η(X )Y ).
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Sec. 3: Case of G ∗
2 (Rn) (4/6)

Note

• A contact metric mfd is Sasakian iff (κ, µ)-space with κ = 1.

Thm. (Ghosh-Sharma: 2014)

A non-Sasakian (κ, µ)-space is

• gradient Ricci soliton ⇔ (0, 0)-space;

• nongradient Ricci soliton ⇒ (0, 4)-space (iff G0,2).

Rem.

(0, 4)-space with dimension n is

• n = 3 ⇒ Sol, nongradient Ricci soliton;

• n ≥ 5 ⇒ ?
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Sec. 3: Case of G ∗
2 (Rn) (5/6)

Recall (g0,2)

[ξ,Yi ] = 2Xi (i ≥ 1)

[Y2,Yi ] = 2Yi (i ̸= 2)

[X2,Y2] = 2ξ

[X2,Yi ] = 2Xi (i ̸= 2)

[Xi ,Yi ] = −2X2 + 2ξ (i ̸= 2)

Test

• dim g0,2 = 2n + 1, n := [g0,2, g0,2] : 2n-dim.

• dim[n, n] = n, dim[n, [n, n]] = 1.

• Conclusion: g0,2 is solvable, n is of 3-step nilpotent.

−→ this looks a horosphere in G ∗
2 (Rn+3)...!
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Sec. 3: Case of G ∗
2 (Rn) (6/6)

Thm. (Cho-Hashinaga-Kubo-Taketomi-T.: preprint)

• G0,2 with dim. n ≥ 5 is isomorphic to an orbit of a type (N)
action (i.e., horosphere) of G ∗

2 (Rn+3) as contact metric mfds.

Cor.

• G0,2 is (nongradient) Ricci soliton, in any dimension.
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Summary (1/3)

Our Aim

• Lie hypersurfaces in symmetric spaces of noncpt type

— would provide interesting mfds.

Our Results

• Ricci soliton Lie hypersurfaces in CHn;

• (0, 4)-contact metric mfds vs Lie hypersurfaces in G ∗
2 (Rn+3).
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Summary (2/3)

Problem (1)

• Study Lie hypersurfaces in other symmetric spaces M.

• When M is Hermitian, ∃ contact Ricci soliton?

Problem (2)

• Other (κ, µ)-contact metric mfds (Gα,β) can be realized as a
hypersurface?

• Not Lie hypersurfaces, but other homogeneous ones.
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Summary (3/3)

Ref. (just for our papers)

• Berndt, J., Tamaru, H.: Homogeneous codimension one foliations on
noncompact symmetric spaces. J. Differential Geom. 2003.

• Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.:
Realizations of some contact metric manifolds as Ricci soliton real
hypersurfaces. ArXiv:1702.07256.

• Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.: The
solvable models of noncompact real two-plane Grassmannians and some
applications. Springer Proc. Math. Stat., to appear.

• Hashinaga, T., Kubo, A., Tamaru, H.: Homogeneous Ricci soliton
hypersurfaces in the complex hyperbolic spaces. Tohoku Math. J. 2016.

• Kubo, A., Tamaru, H.: A sufficient condition for congruency of orbits of
Lie groups and some applications. Geom. Dedicata 2013.

Thank you very much!
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