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Background

Let us consider
e M : a “nice” Riemannian manifold,
e M D M : a “nice” submanifold.

Then M’ often provides examples with “nice” intrinsic properties.

Typical Example
Assume that
e M : a Kahler manifold,
e M > M’ : a real hypersurface.
Then M’ naturally has an almost contact metric structure.
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This Talk

We concentrate on
e M : irreducible symmetric spaces of noncompact type,
e M D> M : “Lie hypersurfaces”.

We mention that they provide several nice examples.

Contents

e Sec. 1: Lie hypersurfaces
e Sec. 2: Case of CH"
e Sec. 3: Case of G5(R")
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Note
This talk is based on several joint works with
e Jong Taek Cho (Chonnam National University)

e Takahiro Hashinaga
(National Inst. Tech., Kitakyushu College)

e Akira Kubo (Hiroshima Shudo University)

e Yuichiro Taketomi (Hiroshima University)
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Def

Let H ~ M be an isometric action. Then
¢ a regular orbit is a maximal dimensional orbit;
e other orbits are singular;

e it is of cohomogeneity one if codim(regular orbit) = 1.

Def
M > M’ is a Lie hypersurface if

e dH ~ M : cohomogeneity one without singular orbit
s.t. M' = H.p (an orbit).

Ex.

e R"~1 c R", RH" ! c RH"; “horosphere” Cc RH".
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Ex.

Let us consider

e RH? = SL(2,R)/SO(2),

e SL(2,R) = KAN : an lwasawa decomposition.
Then K, A, N ~ RH? look like as follows, and

e orbits of A and N are Lie hypersurfaces.

[0, 4+00) R

type (K) type (A) type (N)
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Thm. (Berndt-T.: JDG 2003, Crelle 2013)
Let

e M : an irreducible Riem. symmetric space of noncpt type,
e H~ M : of cohomogeneity one, with H being connected.
Then it satisfies one of:
(K) 31 singular orbit;
(A) A singular orbit, 31 minimal orbit;

(N) A singular orbit, all orbits are congruent to each other.

[0, +00) R R

tvpe (K) tvpe (A) tvpe (N)
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Note
TFAE:
e M’ is a Lie hypersurface;
e M’ is an orbit of an action of type (A) or (N);

e M’ is a homogeneous real hypersurface without focal submfds.

[0, +00) R R

type (K) type (A) type (N)
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Some Motivation

e Lie hypersurfaces reflect some specialities of noncpt setting.
e Lie hypersurfaces are “solvmfds”

— good candidates for Einstein/Ricci soliton.
e We know the classification of Lie hypersurfaces

— easier to study (than generic homogeneous hypersurfaces).
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e M : an irr. Riem. symmetric space of noncpt type.

e (Cl-action := cohomogeneity one action.

Note

e All Cl-actions of type (A) and (N) (i.e., those without
singular orbit) can be constructed explicitly.

Thm. (Berndt-T.: JDG 2003)

Let r :=rank(M). Then
e {Cl-actions of type (A)}/equiv={1,...,r}/(x);
e {Cl-actions of type (N)}/equiv = RP"~1/(x).
Note: (x) is a finite group (determined by M).
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Ex.
When rank(M) = 1 (i.e., M = RH", CH", HH", OH?):
e 31 type (A) action:
— for RH", the minimal orbit is the tot. geod. RH"L
— for CH", the minimal orbit is ruled minimal.
e 1 type (N) action:

— orbits are horospheres.

[0, +00) R R

type (K) type (A) type (N)
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Recall

e (N) A singular orbit, all orbits are congruent to each other.
e {Cl-actions of type (N)}/equiv = RP 1 /(x).

Prop. (Heber: Invent. Math. 1998)

Assume rank(M) > 2. Then
e JH ~ M of type (N) : its orbits are Einstein.

Prop. (Lauret: Crelle 2011, cf. CHKTT)

e YH ~ M of type (N), its orbits are Ricci soliton.
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Recall (Lauret: Crelle 2011, cf. CHKTT)

e YH ~ M of type (N), its orbits are Ricci soliton.

|dea of Proof
e (g,(,)) is algebraic Ricci soliton (ARS) if
Ric=c-id+D (3c €R, 3D € Der(g).

e Fact: ARS = (G, {(,)) is Ricci soliton (G : simply-connected).
e One can show that the above orbits are ARS.

e Note: These Ricci solitons are nongradient.
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Sec. 2: Case of CH" (1/3)

Note

Lie hypersurfaces in RH” are well-understood:
o type (A): the orbits are RH"!;
o type (N): the orbits are R"~1.,

[0, +00) R

type (K) type (A) type (N)
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Note

e The first nontrivial case is CH".

Fact

e A Einstein real hypersurfaces in CH";
e Orbits of the (N)-type action (horosphere) is Ricci soliton.

Thm. (Hashinaga-Kubo-T.: Tohoku 2016)

e When n > 2, 31 Ricci soliton Lie hypersurface (horosphere);
e When n =2, 3 exactly two Ricci soliton Lie hypersurfaces.

(horosphere + the ruled minimal real hypersurface)
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Sec. 2: Case of CH" (3/3)
Why this is interesting

e The result depends on whether n =2 or n > 2.

e |t is relevant to the following.

Thm. (Cho-Kimura: Math. Nachr. 2011)

e A cpt Hopf hypersurfaces in CH” which are Ricci soliton.

e A ruled hypersurfaces in CH"” which are gradient Ricci soliton.

Note
The assumptions above cannot be removed, namely,
e the horosphere is noncpt Hopf Ricci soliton;

e the ruled minimal hypersurface in CH? is nongradient Ricci
soliton.
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Note

e G3(R"2) : the noncpt Grassmannian;

o G3(R™2) =80°2, n)/SO(2)SO(n);

e |t is a Hermitian symmetric space of rank two.
Note

e 3 many Lie hypersurfaces in G (R"*?2), since the rank is two.
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Question (Cho: personally, 2014)

What is the following Lie algebra go2?
© 90,2 = Spa‘nR{§7X17 X27 oo 7Xr77 Yla Y27 ey Yn}v

€, Yi] = 2X; (i>1)
[Y2, Yi] =2VY; (i #2)
[X2, Y2] =2
[X2, Yi] = 2X; (i #2)

(X, Yi] = —2Xo +2¢ (i #2)
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Note

® go,2 is a special case of g, g;
* g, 3 is introduced by Boeckx (2000);

* go 3 has a left-invariant (x, p1)-contact metric structure.

Def. (Blair-Koufogiorgos-Papantoniou: 1995)
A contact metric mfd (M;n,&, ¢, g) is a (k, iu)-space (k, u € R)
= VX, Y € X(M),

R(X; Y)€ = (wid + (1/2)Lep)(n(Y)X = n(X)Y).
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Note

¢ A contact metric mfd is Sasakian iff (k, ut)-space with x = 1.

Thm. (Ghosh-Sharma: 2014)

A non-Sasakian (k, u)-space is
e gradient Ricci soliton < (0, 0)-space;
e nongradient Ricci soliton = (0, 4)-space (iff Gp2).

Rem.

(0, 4)-space with dimension n is
e n = 3 = Sol, nongradient Ricci soliton;
en>5=7
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Recall (go2)
[€, Yi] = 2X; (i>1)
[Y2, Yi] =2Y; (i #2)
[X2, Ya] = 2¢
[X2, Yi] = 2X; (i #2)
[Xi,Yi] = —2Xo+2¢ (i #2)
Test

e dimgoo =2n+1, n:=][go2,002]: 2n-dim.
e dim[n,n] =n, dim[n,[n,n]] =1.
e Conclusion: go is solvable, n is of 3-step nilpotent.

— this looks a horosphere in G5 (R™3)...!
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Sec. 3: Case of G;(R") (6/6)

Thm. (Cho-Hashinaga-Kubo-Taketomi-T.: preprint)

e Gp with dim. n > 5 is isomorphic to an orbit of a type (N)

Summary

action (i.e., horosphere) of G;(R"3) as contact metric mfds.

Cor.

e Gpp is (nongradient) Ricci soliton, in any dimension.
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Our Aim

e Lie hypersurfaces in symmetric spaces of noncpt type

— would provide interesting mfds.

Our Results

e Ricci soliton Lie hypersurfaces in CH";

e (0,4)-contact metric mfds vs Lie hypersurfaces in G5(R"™3).
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Problem (1)

e Study Lie hypersurfaces in other symmetric spaces M.

e When M is Hermitian, 3 contact Ricci soliton?

Problem (2)

e Other (k, p1)-contact metric mfds (G, g) can be realized as a
hypersurface?

e Not Lie hypersurfaces, but other homogeneous ones.
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® Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.:
Realizations of some contact metric manifolds as Ricci soliton real
hypersurfaces. ArXiv:1702.07256.

® Cho, J. T., Hashinaga, T., Kubo, A., Taketomi, Y., Tamaru, H.: The
solvable models of noncompact real two-plane Grassmannians and some
applications. Springer Proc. Math. Stat., to appear.

® Hashinaga, T., Kubo, A., Tamaru, H.: Homogeneous Ricci soliton
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Thank you very much!
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