Quandles and discrete symmetric spaces — flatness and commutativity

TAMARU, Hiroshi

Hiroshima University

The 13th OCAMI-RIRCM Joint Differential Geometry Workshop on Submanifold Geometry and Lie Theory,
Osaka City University,
28/March/2017

Introduction - (1/7)

Abstract

- (起) Quandles are algebraic systems, originated in knot theory.
- (承) Symetric spaces are quandles.
- (転) Construct a theory of quandles = "discrete symmetric spaces".
- (結) In this talk, we mention some results related to "flatness".

Contents

- §1: Introduction to quandles
- §2: Topic 1 flat connected finite quandles
- §3: Topic 2 flat homogeneous finite quandles
- §4: Topic 3 some commutativity of quandles

Introduction - (2/7)

Def. (cf. Joyce 1982)

Let X be a set, and $s: X \to \operatorname{Map}(X,X): x \mapsto s_x$ be a map. Then (X,s) is **quandle** if

(S1) $\forall x \in X$, $s_x(x) = x$.

(S2) $\forall x \in X$, s_x is bijective.

(S3) $\forall x, y \in X$, $s_x \circ s_y = s_{s_x(y)} \circ s_x$.

Note

- The original formulation is given by $*: X \times X \to X$,
- The correspondence is $s_x(y) = y * x$.

Introduction - (3/7)

Fact (motivation from knot theory)

• Quandles give some knot invariants.

Fact (motivation from differential geometry)

• Any connected Riemannian symmetric space is a quandle.

Note

Our viewpoint is:

- quandles = "discrete symmetric spaces",
- although it also contains "3-symmetic spaces" ...

We would like to construct their structure theory.

Introduction - (4/7)

Ex.

The trivial quandle:

• $s_x := \mathrm{id}_X \ (\forall x \in X).$

The dihedral quandle:

• $D_n := \{p_1, \ldots, p_n : n\text{-equal dividing pts on } S^1\}.$

The tetrahedral quandle:

• $X := \{ \text{verteces of tetrahedron} \} \text{ with } s \text{ some } 120^{\circ} \text{-rotations.}$

Introduction - (5/7)

Def.

 $f:(X,s^X)\to (Y,s^Y)$ is a homomorphism if

• $\forall x \in X$, $f \circ s_x = s_{f(x)} \circ f$.

Def.

The **automorphism group** of (X, s) is

• $\operatorname{Aut}(X,s) := \{f : X \to X : \text{auto. (i.e., bijective homo.)}\}$.

(X, s) is **homogeneous** if

• $\operatorname{Aut}(X,s) \curvearrowright X$ is transitive,

Ex.

The follwing quandles are homogeneous:

• trivial quandles, dihedral quandles, the tetrahedral quandle.

Introduction - (6/7)

Def.

The inner automorphism group of (X, s) is

• $\operatorname{Inn}(X, s) := \langle \{s_x \mid x \in X\} \rangle$.

(X, s) is **connected** if

• $\operatorname{Inn}(X,s) \curvearrowright X$ is transitive.

Rem.

• $\operatorname{Inn}(X,s) \subset \operatorname{Aut}(X,s)$. Hence, connected \Rightarrow homogeneous.

Ex.

- trivial quandles are disconnected (unless #X = 1),
- D_n is connected $\Leftrightarrow n$ is odd.

Introduction - (7/7)

Def. (T. 2013)

(X, s) is two-point homogeneous if

• $\operatorname{Inn}(X, s) \curvearrowright (X \times X \setminus \operatorname{diag}(X))$ transitively.

Results

Two-point homogeneous finite quandles have been classified:

- #X is prime: T. 2013;
- #X is small: Kamada-T.-Wada 2016;
- #X is not prime power: Vendramin (to appear);
- #X is prime power: Wada 2015.

Today

• We will talk the next topic, on the "flatness".

Topic 1 - flat connected finite quandles (1/6)

Motivation

- "Maximal flats" in symmetric spaces play fundamental roles.
- We would like to have an anolougus notion for quandles.

Result of this section

- We define the notion of "flatness" for quandles.
- Thm.: flat connected finite quandles ⇒ "discrete tori".

Def. (Ishihara-T. 2016)

A quandle (X, s) is **flat** if

• $G^0(X,s) := \langle \{s_x \circ s_y \mid x,y \in X\} \rangle$ is abelian.

Topic 1 - flat connected finite quandles (2/6)

Fact

A Riemannian symmetric space M is flat (i.e., $curv \equiv 0$) iff

• $G^0(M) := \langle \{s_x \circ s_y \mid x, y \in M\} \rangle$ is abelian.

Ex.

For a circle S^1 ,

- $\operatorname{Isom}(S^1) = \operatorname{O}(2)$ is not abelian,
- $G^0(S^1) = SO(2)$ is abelian.

Rem. (Jedlicka-Pilitowska-Stanovsky-ZamojskaDzienio 2015)

A quandle (X, s) is **medial** if

• $\langle \{s_x \circ s_v^{-1} \mid x, y \in M\} \rangle$ is abelian.

Topic 1 - flat connected finite quandles (3/6)

Recall

- D_n : a dihedral quandle of order n.
- D_n is connected $\Leftrightarrow n$ is odd.

Thm. (Ishihara-T. 2016)

(X, s) is a flat connected finite quandle iff

• $X \cong D_{n_1} \times \cdots \times D_{n_k}$, where n_1, \ldots, n_k are odd.

Topic 1 - flat connected finite quandles (4/6)

What are interesting (1):

- We call $D_{n_1} \times \cdots \times D_{n_k}$ a "dicrete torus".
- Our result is a "discrete verion" of
 Fact: a cpt connected Riem. symmetric space is flat ⇔ torus.

What are interesting (2):

- (X, s): flat connected finite \Rightarrow involutive (i.e., $s_x^2 = id$).
- This is not true for flat "homogeneous" finite quandles...

Topic 1 - flat connected finite quandles (5/6)

Idea of Proof

We refer to the theory of symmetric spaces:

- (1) In the theory of symmetric spaces, there is a notion of "symmetric pairs" (G, K, σ) .
- (2) Analogously, for homogeneous quandles, there is a notion of "quandle triplet" (G, K, σ) .
- (3) If a quandle (X, s) is connected, then we can take $G := G^0(X, s)$.
- (4) Since (X, s) is flat and finite, G is a finite abelian group.
- (5) We can analyze possibilities for K and σ .

Topic 1 - flat connected finite quandles (6/6)

Comments (Singh 2016 (JKTR))

• Flat connected (infinite) quandles are classified.

Topic 2 - flat homogeneous finite quandles (1/7)

Motivation

- Recall: a quandle is connected ⇒ homogeneous.
- a discrete torus with even cardinality
 ⇒ flat homogeneous (disconnected) finite.
- Are there other such examples?

Result of this section

- We construct such examples from "vertex-transitive graph".
- Some of them also relate to "oriented real Grassmannians".

Topic 2 - flat homogeneous finite quandles (2/7)

Ex.

Let $A^n := \{\pm e_1, \ldots, \pm e_n\} \subset S^{n-1}$. Then

- Aⁿ is a subquandle,
- A^n is flat, homogeneous, disconnected.

Idea of Proof

Flat:

- $s_{e_1} = \operatorname{diag}(1, -1, \ldots, -1).$
- Similarly, all $s_{\pm e_i}$ can be realized by diagonal matrices.
- Hence, $Inn(A^n)$ itself is abelian.

Disconnected:

• $\forall x \in A^n$, s_x preserves $\{\pm e_1\}, \{\pm e_2\}, \dots, \{\pm e_n\}$.

Topic 2 - flat homogeneous finite quandles (3/7)

Ex.

Let $A(k,n) := \{ \pm e_{i_1} \wedge \cdots \wedge e_{i_k} \mid i_1 < \cdots < i_k \} \subset G_k(\mathbb{R}^n)^{\sim}$. Then

- A(k, n) is a subquandle,
- A(k, n) is flat, homogeneous, disconnected.

Idea of Proof

Flat:

• $\forall x \in A(k, n)$, s_x can be realized by diagonal matrices.

Disconnected:

• $\forall x \in A(k, n)$, s_x preserves $\{\pm e_1 \wedge \cdots \wedge e_k\}, \ldots$

Topic 2 - flat homogeneous finite quandles (4/7)

Observation

For $A(2,4)\subset G_2(\mathbb{R}^4)^{\sim}$ (for simplicity), put $(ij):=e_i\wedge e_j$. Then

- $\{\pm(12)\} \sqcup \{\pm(13)\} \sqcup \{\pm(14)\} \sqcup \{\pm(23)\} \sqcup \{\pm(24)\} \sqcup \{\pm(34)\}$ is the $\operatorname{Inn}(A(2,4))$ -orbit decomposition,
- $s_{(12)} \curvearrowright \{\pm (13)\}$: nontrivial,
- $s_{(12)} o \{\pm (34)\}$: trivial.

Idea for a generalization

The above defines a graph:

- $V := \{ \operatorname{Inn}(A(2,4)) \text{-orbits} \}.$
- Define $\{\pm(ij)\} \sim \{\pm(kl)\}$ if $s_{(ij)} \curvearrowright \{\pm(kl)\}$ nontrivially.

Conversely, we can define a quandle for a graph.

Topic 2 - flat homogeneous finite quandles (5/7)

Prop. (Furuki-T.)

Let G = (V, E) be a graph.

Then $Q_G := (V \times \mathbb{Z}_2, s)$ is a quandle, where

• $s_{(v,a)}(w,b) := (w,b+e(v,w)),$ with e(v,w) := 1 (if $v \sim w$), and e(v,w) := 0 (otherwise).

Ex

- G: empty graph $(E = \emptyset) \Rightarrow Q_G$: trivial quandle.
- G: complete graph (with #V = n) $\Rightarrow Q_G \cong A^n$ ($\subset S^{n-1}$).

Topic 2 - flat homogeneous finite quandles (6/7)

Thm. (Furuki-T.)

- Q_G is always flat, disconnected.
- Q_G is homogeneous $\Leftrightarrow G$ is vertex-transitive.

Note

- ∃ many flat homogeneous (disconnected) finite quandles.
- A(k, n) ($\subset G_k(\mathbb{R}^n)^{\sim}$) is isomorphic to Q_G for some G.

Topic 2 - flat homogeneous finite quandles (7/7)

Plan (vs. symmetric spaces)

- Draw the graph G such that $Q_G \cong A(k, n)$... (complecated)
- ∃ such subquandles in other symmetric spaces?

Plan (vs. quandle theory)

- Classify flat homogeneous finite quandles.
- In progress (1): construction from "oriented graphs".
- In progress (2): construction from graphs with attaching $\mathbb{Z}_3...$

Topic 3 - some commutativity of quandles (1/4)

Motivation

- $A^n \subset S^{n-1}$, $A(k,n) \subset G_k(\mathbb{R}^n)^{\sim}$ are interesting.
- We would like to characterize them!

Results (in progress)

- It would be good to consider "maximal commutative subsets".
- This probably relates to "antipodal sets".

Topic 3 - some commutativity of quandles (2/4)

Def.

A subset A in a quandle (X, s) is s-commutative if

• $\forall a, b \in A$, $s_a \circ s_b = s_b \circ s_a$.

Note

- We are interested in "maximal s-commutative subsets".
- This is a temporal name ...

Prop. (cf. Nagashiki)

• antipodal (i.e., $s_a(b) = b$) \Rightarrow s-commutative. (: $s_a \circ s_b = s_{s_a(b)} \circ s_a$)

maximal s-commutative ⇒ subquandle.

Topic 3 - some commutativity of quandles (3/4)

Prop. (cf. Nagashiki)

- $A \subset S^n$ with $n \ge 1$ is maximal s-commutative $\Leftrightarrow A \cong A^{n-1}$ (defined above) by $\operatorname{Aut}(S^n)$.
- $A \subset \mathbb{R}P^n$ with $n \geq 2$ is maximal s-commutative $\Leftrightarrow A$ is maximal (great) antipodal.

Natural Question

• How about the case of $G_k(\mathbb{R}^n)$, $G_k(\mathbb{R}^n)^{\sim}$, ... ?

Topic 3 - some commutativity of quandles (4/4)

• MsC := maximal s-commutative.

Plan (vs. symmetric spaces)

- Determine MsC subsets in (some) symmetric spaces.
- When MsC is homogeneous? unique? antipodal?
- Can we apply MsC to the studies on antipodal sets?

Plan (vs. quandle theory)

- ∃ nice (intrinsic) properties of MsC subsets?
- When MsC is homogeneous? unique? antipodal?
- Establish the "covering theory" of quandles.

roduction Topic 1 Topic 2 Topic 3 References

References (only from our seminar)

- Furuki, K., Tamaru, H.: in preparation.
- Ishihara, Y., Tamaru, H.: Flat connected finite quandles. Proc. Amer. Math. Soc. 144 (2016), 4959–4971.
- Kamada, S., Tamaru, H., Wada, W.: On classification of quandles of cyclic type. Tokyo J. Math. 39 (2016), 157–171.
- Tamaru, H.: Two-point homogeneous quandles with prime cardinality. J. Math. Soc. Japan 65 (2013), 1117–1134.
- Wada, K.: Two-point homogeneous quandles with cardinality of prime power. Hiroshima Math. J. 45 (2015), 165–174.

Thank you!