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Abstract

Theme

• “quandles” can be regarded as “discrete symmetric spaces”.
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Sec. 1 - Symmetric Spaces (1/4)

Def.

A Riemannian manifold (M, g) is a symmetric space if

• ∀p ∈ M, the “geodesic symmetry” sp at p is an isometry.

Note

The geodesic symmetry sp ∈ Isom(M, g) means

• ∀γ : R → M : geodesic with γ(0) = p, it satisfies
sp(γ(t)) = γ(−t).
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Sec. 1 - Symmetric Spaces (2/4)

Ex. (sphere)

The unit sphere Sn is a symmetric space with

• sx(y) = 2〈x , y〉x − y .

(Thanks to Y. Tada)
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Sec. 1 - Symmetric Spaces (3/4)

Def.

The real Grassmannian (Gk(Rn), s) is define by

• Gk(Rn) := {V : k-dim. linear subspace in Rn};
• sV (W ) := “the reflection of W wrt V ”.

Ex.

• For G2(Rn),

sSpan{e1,e2}(Span{e1, e3}) = Span{e1,−e3}
= Span{e1, e3}.
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Sec. 1 - Symmetric Spaces (4/4)

Def.

The real oriented Grassmannian (Gk(Rn)∼, s) is define by

• Gk(Rn)∼ := {(V , σ) | V ∈ Gk(Rn), σ : orientation}
(an orientation is σ ∈ {bases of V }/GL(k ,R)+);

• s(V ,σ)(W , τ) := “the reflection of (W , τ) wrt V ”.

Ex.

• For simplicity, (i , j) := (Span{ei , ej}, [(ei , ej)]) ∈ G2(Rn)∼.

• s(1,2)(1, 3) = (Span{e1,−e3}, [(e1,−e3)]) = −(1, 3).

Note

• G1(Rn+1) ∼= RPn, G1(Rn+1)∼ ∼= Sn.
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Sec. 2 - Quandles (1/3)

Def. (Joyce: 1982)

Let X be a set, and consider

• s : X × X → X : (y , x) 7→ sx(y).

Then (X , s) is a quandle (or symmetric set) if

(S1) ∀x ∈ X , sx(x) = x .

(S2) ∀x ∈ X , sx is bijective (or s2x = id).

(S3) ∀x , y ∈ X , sx ◦ sy = ssx (y) ◦ sx .

Fact

• Any connected Riemannian symmetric space is a quandle.
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Sec. 2 - Quandles (2/3)

Ex.

The following Rn := (X , s) is the dihedral quandle:

• X : the set consists of n-equal dividing points on S1;

• sx := sS
1

x |X .

Ex.

Any group G is a quandle by

• sg (h) := gh−1g ;

• and also by s ′g (h) := ghg−1. (a conjugation quandle)
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Sec. 2 - Quandles (3/3)

Def.

f : (X , sX ) → (Y , sY ) is a (quandle) homomorphism if

• f ◦ sx = sf (x) ◦ f (∀x ∈ X ).

Def.

• Aut(X , s) := {f : X → X : bijective homo.};
• (X , s) is homogeneous if Aut(X , s) y X is transitive;

• Inn(X , s) := 〈{sx | x ∈ X}〉;
• (X , s) is connected if Inn(X , s) y X is transitive.

Ex.

• Rn (dihedral quandle) is always homogeneous;

• Rn is connected iff n is odd.
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Sec. 3 - Flat Quandles (1/3)

Note

• Any group G is a quandle.

• Hence, it is hopeless to classify “finite” quandles ...

Naive Problem

• What are nice classes of quandles?

Note

• Among symmetric spaces, flat ones would be simplest.

• Note: flat :⇔ curvature ≡ 0.
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Sec. 3 - Flat Quandles (2/3)

Def. (Ishihara-T.: 2016)

• A quandle (X , s) is flat if
G 0(X , s) := 〈{sx ◦ sy | x , y ∈ X}〉 is abelian.

Note

• This is a characterizing condition for a Riem. symmetric space
to be flat (i.e., curvature ≡ 0).

Ex.

• S1 is flat. (∵ G 0(S1, s) = SO(2).)

• Rn (dihedral quandle) is flat.
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Sec. 3 - Flat Quandles (3/3)

Thm. (Ishihara-T.: 2016)

• (X , s) is flat finite connected iff
it is isomorphic to a “discrete torus” with odd cardinality.

Note

• Rn is regarded as a “discrete S1”.

• A discrete torus is: Rn1 × · · · × Rnk .

Note

The above theorem is a discrete version of:

• A flat compact connected Riem. symmetric space is a torus.
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Sec. 4 - Disconnected Examples (1/3)

Result of this section

• We construct more examples of flat homogeneous quandles
(other than discrete tori).

Idea

• We consider some “subquandles” in Gk(Rn)∼ (oriented real
Grassmannians).
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Sec. 4 - Disconnected Examples (2/3)

Def.

For Gk(Rn)∼, we define

• Put ±(i1, . . . , ik) := (Span{ei1 , . . . , eik},±[(ei1 , . . . , eik )]);

• A(k , n) := {±(i1, . . . , ik) | 1 ≤ i1 < · · · < ik ≤ n}.

Thm. (Furuki-T.: preprint)

• A(k , n) is a subquandle in Gk(Rn)∼, which is flat,
homogeneous, disconnected (and nontrivial).

Idea of Proof

• Flat: all s±(i1,...,ik ) can be expressed as a diagonal matrices.
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Sec. 4 - Disconnected Examples (3/3)

Ex.

The case of A(1, n):

• A(1, n) = {±(1),±(2), . . . ,±(n)} ⊂ G1(Rn)∼ ∼= Sn−1;

• s(i) = s−(i); s(i)(±(j)) = ∓(j) (if i 6= j); s(i)(±(i)) = ±(i).

Ex.

The case of A(2, 4):

• A(2, 4) = ±{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)};
• s(1,2)(1, 3) = −(1, 3); s(1,2)(3, 4) = (3, 4); · · ·

Note

• s(i1,...,ik )(j1, . . . , jk) = −(j1, . . . , jk)

⇔ “k −#({i1, . . . , ik} ∩ {j1, . . . , jk})” is odd.
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Sec. 5 - Graph Construction (1/4)

• A(k , n) inspires a “graph construction” of flat quandles.

Recall

For A(2, 4),

• [i , j ] := {±(i , j)};
• V := {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]};
• It holds s(i ,j)(±(k , l)) = ±(k , l) ⇔ s(k,l)(±(i , j)) = ±(i , j);
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Sec. 5 - Graph Construction (2/4)

Note

For A(2, 4),

• join [i , j ] and [k , l ] if s(i ,j)(k, l) = −(k , l).

Then we get

[1,2] [1,3]

[1,4] [2,3]

[2,4] [3,4]

(Thanks to K. Furuki)
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Sec. 5 - Graph Construction (3/4)

Def.

For a graph G = (V ,E ), we define QG = (X , sG ) by

• put X := V × Z2;

• let e : V × V → Z2 be the adjacent function of G ;

• define sG by sG(v ,a)(w , b) := (w , b + e(v ,w)).

Thm. (Furuki-T.: preprint)

• QG is always a flat disconnected quandle;

• QG is homogeneous iff G is vertex-transitive.
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Sec. 5 - Graph Construction (4/4)

Ex. (special cases)

• If G = (V ,E ) with E = ∅, then QG is a trivial quandle;

• If G = (V ,E ) is complete with #V = n, then QG
∼= A(1, n).

Question

The following G = (V ,E ) has a name?

• V := {v ⊂ {1, . . . , n} | #v = k};
• (v ,w) ∈ E :⇔ “k −#(v ∩ w)” is odd.
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Sec. 6 - Subsets in Symmetric Spaces (1/5)

Question

• What are A(k , n) in Gk(Rn)∼?

Def.

A subset C in a quandle (X , s) is s-commutative if

• sx ◦ sy = sy ◦ sx (∀x , y ∈ C ).

Thm. (Nagashiki et al.: in progress)

If 2k 6= n, then

• A(k , n) is a maximal s-commutative subset in Gk(Rn)∼;

• such subset in Gk(Rn)∼ is essentially unique.
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Sec. 6 - Subsets in Symmetric Spaces (2/5)

Note

For x , y ∈ X ,

• sy ◦ sx = sx ◦ sy (= ssx (y) ◦ sx) ⇔ ssx (y) = sy .

Note (why 2k 6= n?)

Consider Gk(Rn)∼. Then s(V ,σ) and s(W ,τ) commute iff

• (when n = 2k with k even)
s(V ,σ)(W , τ) = (W ,±τ) or (W⊥, ∗).

• (otherwise)
s(V ,σ)(W , τ) = (W ,±τ).
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Sec. 6 - Subsets in Symmetric Spaces (3/5)

Problem (inspired by A(k , n))

• For symmetric spaces or quandles, classify maximal
s-commutative (MsC) subsets.

Why Interesting (1)

• MsC subsets would “approximate” the ambient spaces.

• This would be a discrete version of “maximal flats” in the
theory of Riem. symmetric spaces...
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Sec. 6 - Subsets in Symmetric Spaces (4/5)

Why Interesting (2)

• MsC subsets are related to “antipodal subsets”.

Def. (Chen-Nagano: 1988))

A subset C in a quandle (X , s) is antipodal if

• sx(y) = y (∀x , y ∈ C ).

Prop.

• antipodal ⇒ s-commutative;

• maximal s-commutative ⇒ subquandle.
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Sec. 6 - Subsets in Symmetric Spaces (5/5)

Note

• Maximal antipodal subsets are sometimes hard to determine
(cf. Tanaka-Tasaki), e.g., for Gk(Rn)∼;

• contrary, we can determine MsC subsets in Gk(Rn)∼ (2k 6= n)!

Note

• Akase-Tanaka-Tasaki-T. recently determined MsC subsets in a
compact classical Lie groups (viewed as symmetric spaces);

• This shows the uniqueness of MsC subsets does not holds...
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Summary
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• Thank you very much!
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