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Abstract

Theme

e ‘“quandles” can be regarded as “discrete symmetric spaces”.
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Sec. 1

Sec. 1 - Symmetric Spaces (1/4)

Def.
A Riemannian manifold (M, g) is a symmetric space if

® Vp € M, the “geodesic symmetry” s, at p is an isometry.

Note
The geodesic symmetry s, € Isom(M, g) means
e Vv :R — M : geodesic with v(0) = p, it satisfies
sp(1(1)) = (=)
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Sec. 1 - Symmetric Spaces (2/4)

Ex. (sphere)
The unit sphere S" is a symmetric space with

L Sx(y) = 2<X7y>X_y-

ﬂ Sg ﬁ Sz

e

(Thanks to Y. Tada)
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Sec. 1 - Symmetric Spaces (3/4)

Def.

The real Grassmannian (Gx(R"), s) is define by
¢ Gk(R") :={V : k-dim. linear subspace in R"};
e sy(W) := “the reflection of W wrt V".

Ex.
e For Go(R"),

SSpan{el,GQ}(Span{ela 63}) = Span{el, —63}
= Span{ey, e3}.
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Sec. 1 - Symmetric Spaces (4/4)
Def.

The real oriented Grassmannian (Gx(R")™,s) is define by
o Ge(R")™:={(V,0) |V € Gk(R"), o : orientation}
(an orientation is o € {bases of V}/GL(k,R)");
* S(v,0)(W,T) := "the reflection of (W, 7) wrt V".

Ex.

e For simplicity, (i,/) := (Span{ej, ¢}, [(ei, €)]) € Go(R")™.
® 5(1,2)(173) = (Span{e17 _63}7 [(61, _63)]) = _(173)'

Note

e G(R™1) = RP", G(R")~x=3"
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Sec. 2 - Quandles (1/3)

Def. (Joyce: 1982)
Let X be a set, and consider
e s: XXX = X:(y,x)— sx(y)-
Then (X, s) is a quandle (or symmetric set) if
(S1) Vx € X, s¢(x) = x.
(S2) Vx € X, sx is bijective (or s2 = id).
(S3) Vx,y € X, sx 05, = 55 () © 5.

Fact

e Any connected Riemannian symmetric space is a quandle.
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Sec. 2 - Quandles (2/3)

Ex.
The following R, := (X, s) is the dihedral quandle:
e X : the set consists of n-equal dividing points on S1;

1
o 5. =57 |x.

Ex.
Any group G is a quandle by
o sg(h) :=gh™'g;
1

e and also by s;(h) := ghg™". (a conjugation quandle)



Sec. 2

Sec. 2 - Quandles (3/3)
Def.
f:(X,s%) = (Y,sY) is a (quandle) homomorphism if
o fosy=srof (Vx€X).

Def.

e Aut(X,s):={f: X — X : bijective homo.};
e (X,s) is homogeneous if Aut(X,s) ~ X is transitive;
e Inn(X,s) := ({sx | x € X});

e (X,s) is connected if Inn(X,s) ~ X is transitive.

Ex.

e R, (dihedral quandle) is always homogeneous;

e R, is connected iff n is odd.
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Sec. 3 - Flat Quandles (1/3)

Note

e Any group G is a quandle.
e Hence, it is hopeless to classify “finite” quandles ...

Naive Problem

e What are nice classes of quandles?

Note

e Among symmetric spaces, flat ones would be simplest.

e Note: flat :< curvature = 0.
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Sec. 3 - Flat Quandles (2/3)
Def. (Ishihara-T.: 2016)
e A quandle (X,s) is flat if

GO(X,s) := ({sxos, | x,y € X}) is abelian.

Note
e This is a characterizing condition for a Riem. symmetric space
to be flat (i.e., curvature = 0).
Ex.

o Slisflat. (- G°S1,s)=S0(2).)
e R, (dihedral quandle) is flat.
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Sec. 3 - Flat Quandles (3/3)

Thm. (Ishihara-T.: 2016)

e (X,s) is flat finite connected iff
it is isomorphic to a “discrete torus” with odd cardinality.

Note

e R, is regarded as a “discrete S1".

e A discrete torus is: R, X -+ X Rp,.

Note
The above theorem is a discrete version of:

e A flat compact connected Riem. symmetric space is a torus.
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Sec. 4 - Disconnected Examples (1/3)

Result of this section
e We construct more examples of flat homogeneous quandles
(other than discrete tori).
Idea

e We consider some “subquandles” in Gi(R")™ (oriented real
Grassmannians).

Summary
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Sec. 4 - Disconnected Examples (2/3)

Def.

For Gx(R™)™, we define
e Put +(i1,...,ik) = (Span{ej,..., e}, £[(eis---, € )])
o A(k,n) :={£(i,...,ix) |1 < i <---<ix <n}.

Thm. (Furuki-T.: preprint)
e A(k,n) is a subquandle in Gx(R")™, which is flat,

homogeneous, disconnected (and nontrivial).

Idea of Proof

o Flat: all sy, ;) can be expressed as a diagonal matrices.
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Sec. 4 - Disconnected Examples (3/3)

Ex.
The case of A(1, n):
o A(L,n) = {£(1),£(2),...,£(n)} C G (R")™> = S~
o si)y = S_iy: si)(EU)) = FG) (f i #4); sy (£()) = £(1).

Ex.

The case of A(2,4):
o A(2,4) = £{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)};
* 512)(1,3) = —(1,3); s1,2(3,4)=(3,4); -

Note

O 5(,'1 ,,,,, ik)(jlv"'7jk):7(./.1"-'7././()
o k= ({11} O L i) s ol
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Sec. 5 - Graph Construction (1/4)

e A(k,n) inspires a “graph construction” of flat quandles.

Recall
For A(2,4),
o [i,j]:={=0,)}
e V:={[1,2],1,3],[1,4],[2,3],[2,4], [3, 4] }:
e It holds s(iJ)(:t(k, N) ==+(k,1) < s(k’,)(:lz(i,j)) = =+(i,J));



Note
For A(2,4),

Sec. 5

Sec. 5 - Graph Construction (2/4)

o join [i,j] and [k, 1] if s jy(k, 1) = —(k, I).

Then we get

[1.4]

[1.2]

[2.4]

[1.3]

[3.4]

[2,3]

(Thanks to K. Furuki)
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Sec. 5 - Graph Construction (3/4)

Def.

For a graph G = (V, E), we define Qg = (X,s°) by
o put X .=V x Zy;
e let e: V x V — Zy be the adjacent function of G;
o define s¢ by s(G (w, b) :== (w, b+ e(v,w)).

v,a)

Thm. (Furuki-T.: preprint)

e Q¢ is always a flat disconnected quandle;

e Q¢ is homogeneous iff G is vertex-transitive.
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Sec. 5 - Graph Construction (4/4)

Ex. (special cases)

o If G=(V,E) with E =10, then Qg is a trivial quandle;
e If G =(V,E) is complete with #V = n, then Qg = A(1, n).

Question

The following G = (V, E) has a name?
o Vi={vcC{l,...,n}|#v =k}
o (v,w) € E:& "k —#(vNw)" is odd.
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Sec. 6 - Subsets in Symmetric Spaces (1/5)

Question

e What are A(k,n) in Gx(R")~7?

Def.

A subset C in a quandle (X,s) is s-commutative if

e s,os,=s,05s, (Vx,y € C).

Thm. (Nagashiki et al.: in progress)
If 2k = n, then

e A(k,n) is a maximal s-commutative subset in Gx(R")™;

e such subset in Gx(R")™ is essentially unique.
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Sec. 6 - Subsets in Symmetric Spaces (2/5)

Note
For x,y € X,

® Sy 08¢ = Sx 05y (= 55,(y) ©Sx) & Ss(y) = Sy

Note (why 2k # n?)
Consider Gx(R")™. Then s(y ) and sy ) commute iff
e (when n = 2k with k even)
s(v,o) (W, T) = (W, £7) or (W, %).

e (otherwise)
S(V,o)(Wv T) - (W7 :tT)
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Sec. 6 - Subsets in Symmetric Spaces (3/5)

Problem (inspired by A(k, n))

e For symmetric spaces or quandles, classify maximal
s-commutative (MsC) subsets.

Why Interesting (1)

o MsC subsets would “approximate” the ambient spaces.

e This would be a discrete version of “maximal flats” in the
theory of Riem. symmetric spaces...
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Sec. 6 - Subsets in Symmetric Spaces (4/5)

Why Interesting (2)

e MsC subsets are related to “antipodal subsets”.

Def. (Chen-Nagano: 1988))

A subset C in a quandle (X, s) is antipodal if
e s(y) =y (¥x,y € Q).

Prop.

e antipodal = s-commutative;

e maximal s-commutative = subquandle.
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Sec. 6 - Subsets in Symmetric Spaces (5/5)

Note

e Maximal antipodal subsets are sometimes hard to determine
(cf. Tanaka-Tasaki), e.g., for Gx(R")™;

e contrary, we can determine MsC subsets in Gx(R")™ (2k # n)!

Note

e Akase-Tanaka-Tasaki-T. recently determined MsC subsets in a
compact classical Lie groups (viewed as symmetric spaces);

e This shows the uniqueness of MsC subsets does not holds...
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Summary
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e Thank you very much!
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