Flat quandles and finite subsets in symmetric spaces

TAMARU, Hiroshi

Hiroshima University

Hakata Workshop; Winter Meeting 2018 (Reference Eki Higashi Building, Fukuoka) 23/Feb/2018

Abstract

Slogan

• Which subset "approximates" a symmetric space?

Contents

Introduction

Result 1: Grassmannian case

Result 2: Groups type case

Introduction - (1/6)

In this section, we recall "quandles".

Def.

Let X be a set, and consider

•
$$s: X \times X \to X: (y,x) \mapsto s_x(y)$$
.

Then (X, s) is a quandle (or symmetric space) if

(S1)
$$\forall x \in X$$
, $s_x(x) = x$.

(S2)
$$\forall x \in X$$
, s_x is bijective (or $s_x^2 = id$).

(S3)
$$\forall x, y \in X$$
, $s_x \circ s_y = s_{s_x(y)} \circ s_x$.

Note

 The notion of "quandles" is originated in knot theory (Joyce (1982), Matveev (1982)).

Introduction - (2/6)

some remarks on quandles:

Note

- The above symmetric space is also called
 - **kei (圭)** by Takasaki (1943),
 - symmetric set by Nobusawa (1970's), or
 - involutory quandle.

Fact (our motivation)

• Any connected Riemannian symmetric space is a quandle.

Introduction - (3/6)

Ex. (sphere)

The unit sphere S^n is a symmetric space with

•
$$s_x(y) = 2\langle x, y \rangle x - y$$
.

(Thanks to Y. Tada)

Introduction - (4/6)

Recall

 For Riemannian symmetric spaces, some submanifolds ("maximal flats") play fundamental roles.

Naive Problem

 Find subsets of quandles, which approximate (reflect some properties of) the ambient quandles.

Introduction - (5/6)

Def. (Chen-Nagano (1988))

A subset C in a quandle (X, s) is **antipodal** if

• $s_x(y) = y \ (\forall x, y \in C).$

Def. (Nagashiki et al. (in progress))

A subset C in a quandle (X, s) is s-commutative if

• $s_x \circ s_y = s_y \circ s_x \ (\forall x, y \in C).$

Prop.

- antipodal ⇒ s-commutative;
- maximal *s*-commutative ⇒ subquandle.

Introduction - (6/6)

Ex.

For a circle S^1 ,

- $\{\pm e_1\}$ is maximal antipodal;
- $\{\pm e_1, \pm e_2\}$ is MsC (maximal s-commutative).

Contents (recall)

- Result 1: Grassmannian case;
- Result 2: Group-type case.

Result 1: Grassmannian case (1/8)

a motivation for "s-commutative":

Def. (Ishihara-T. (2016))

A quandle (X, s) is **flat** if

• $G^0(X,s) := \langle \{s_x \circ s_y \mid x,y \in X\} \rangle$ is abelian.

Note

- Similar to the theory of symmetric space, "maximal flat subquandles" play nice roles?
- s-commutative ⇒ flat.

Result 1: Grassmannian case (2/8)

Prop.

The following A(1, n) is a flat subquandle in S^{n-1} :

• $A(1, n) := \{\pm e_1, \ldots, \pm e_n\}.$

Prop.

For S^{n-1} ,

- $A(1, n) := \{\pm e_1, \dots, \pm e_n\}$ is a MsC subset;
- any MsC subsets are congruent to A(1, n) by O(n).

Note

- $s_{e_i}(\pm e_j) = \mp e_j$ for $i \neq j$;
- hence, each $s_{\pm e_i}$ is a diagonal matrices.

Result 1: Grassmannian case (3/8)

Def.

The **real Grassmannian** $(G_k(\mathbb{R}^n), s)$ is define by

- $G_k(\mathbb{R}^n) := \{V : k\text{-dim. linear subspace in } \mathbb{R}^n\};$
- $s_V(W) :=$ "the reflection of W wrt V".

Prop.

For $G_k(\mathbb{R}^n)$,

- Put $(i_1, \ldots, i_k) := \operatorname{Span}\{e_{i_1}, \ldots, e_{i_k}\}.$
- Then $A(k, n)' := \{(i_1, \dots, i_k) \mid i_1 < \dots < i_k\}$ is a subquandle.

Ex.

• $s_{(1,2)}(1,3) = \operatorname{Span}\{e_1, -e_3\} = (1,3).$

Result 1: Grassmannian case (4/8)

Fact (Chen-Nagano, Tanaka-Tasaki)

- A(k, n)' is a maximal antipodal subset in $G_k(\mathbb{R}^n)$;
- it is unique up to congruence by O(n).

Prop.

- If $n \neq 2k$, then A(k, n)' is a MsC subset in $G_k(\mathbb{R}^n)$; (it is unique up to congruence by O(n))
- If n = 2k, then A(k, n)' is s-commutative, but not MsC.

Result 1: Grassmannian case (5/8)

Def.

The **real oriented Grassmannian** $(G_k(\mathbb{R}^n)^{\sim}, s)$ is define by

- $G_k(\mathbb{R}^n)^{\sim} := \{(V, \sigma) \mid V \in G_k(\mathbb{R}^n), \ \sigma : \text{ orientation}\}\$ (an orientation is $\sigma \in \{\text{bases of } V\}/\mathrm{GL}(k, \mathbb{R})^+);$
- $s_{(V,\sigma)}(W,\tau) :=$ "the reflection of (W,τ) wrt V".

Note

• $G_1(\mathbb{R}^n)^{\sim} \cong S^{n-1}$.

Result 1: Grassmannian case (6/8)

Prop.

For $G_k(\mathbb{R}^n)^{\sim}$,

- Put $\pm(i_1,\ldots,i_k) := (\operatorname{Span}\{e_{i_1},\ldots,e_{i_k}\},[(e_{i_1},\ldots,e_{i_k})]).$
- $A(k,n) := \{\pm(i_1,\ldots,i_k) \mid i_1 < \cdots < i_k\}$ is a subquandle.

Ex.

- $s_{(1,2)}(1,3) = (\operatorname{Span}\{e_1,-e_3\},[(e_1,-e_3)]) = -(1,3).$
- Hence A(k, n) is not antipodal.

Result 1: Grassmannian case (7/8)

Thm. (Nagashiki et al.)

For $G_k(\mathbb{R}^n)^{\sim}$ with $n \neq 2k$, we have

- $A(k, n) := \{\pm(i_1, \dots, i_k)\}$ is a MsC subset;
- it is unique up to congruence by O(n).

Remark

For $G_k(\mathbb{R}^n)^{\sim}$ with n=2k, we have

• $A(k,n) := \{\pm (i_1,\ldots,i_k)\}$ is s-commutative, but not maximal.

For $G_2(\mathbb{R}^4)^{\sim}$, the union of the following is MsC:

- $A(2,4) = \pm \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\};$
- $\pm \{(1\pm 2, 3\pm 4), (1\pm 3, 2\pm 4), (1\pm 4, 2\pm 3)\}$,

where

$$\pm(i \pm j, k \pm l) := (\operatorname{Span}\{e_i \pm e_j, e_k \pm e_l\}, \pm[(e_i \pm e_j, e_k \pm e_l)]).$$

Result 1: Grassmannian case (8/8)

Comments

- Classification of max. antipodal subsets in $G_k(\mathbb{R}^n)^{\sim}$ is open (however we could do it for MsC subsets when $n \neq 2k$);
- Some strange things happen when n=2k (it relates to the example in $G_2(\mathbb{C}^4)$ by Kurihara-Okuda?)

Result 2: Group type case (1/5)

General Problem

• Classify MsC subsets in a symmetric space (X, s).

Note

Recall: a group G is a symmetric space by

$$s_g(h):=gh^{-1}g.$$

- Such (G, s) is called a symmetric space of group type.
- We study MsC subsets in compact classical groups G.

Result 2: Group type case (2/5)

Prop.

Let (G, s) be a symmetric space of group type. Then

• $G \times G \subset \operatorname{Aut}(G, s)$. (namely, the left and right actions are automorphisms)

"Thm." (Akase-T.-Tanaka-Tasaki)

We classified MsC subsets in the following (G, s) up to congruence by $G \times G$:

• G = O(n), SO(n), U(n), SU(n), Sp(n), Spin(n).

Result 2: Group type case (3/5)

Thm. (for O(n))

Let G := O(n). Then, up to $G \times G$,

- $n = 2^m$ (with $m \in \mathbb{Z}_{>1}$) $\Rightarrow \exists m \text{ MsC subsets}$;
- $n = 2^m \cdot \ell$ (with ℓ odd $(\neq 1)$) $\Rightarrow \exists m+1$ MsC subsets.

Ex.

When n is odd,

- $\Delta_n := \{ \operatorname{diag}(\pm 1, \dots, \pm 1) \}$ is a (unique) MsC subset;
- this is also a (unique) maximal antipodal subset.

Ex.

In G := O(2),

• $D_2:=\Delta_2\cup\left\{\left(egin{array}{cc}0&\pm1\ \pm1&0\end{array}
ight)
ight\}$ is a (unique) MsC subset.

Result 2: Group type case (4/5)

Recall (for O(n))

- $n = 2^m$ (with $m \in \mathbb{Z}_{\geq 1}$) $\Rightarrow \exists m \text{ MsC subsets}$;
- $n = 2^m \cdot \ell$ (with ℓ odd $(\neq 1)$) $\Rightarrow \exists m+1$ MsC subsets.

Ex.

Let G := O(6). Then, up to $G \times G$,

• all MsC subsets are Δ_6 , $D_2 \otimes \Delta_3$.

Ex.

Let G := O(8). Then, up to $G \times G$,

• all MsC subsets are Δ_8 , $D_2 \otimes \Delta_4$, $D_2 \otimes D_2 \otimes D_2$.

Result 2: Group type case (5/5)

Thm. (for Spin(n))

```
Let G := \operatorname{Spin}(n). Then, up to G \times G,
```

- $n \notin 4\mathbb{N}$ $\Rightarrow \exists 1 \text{ MsC subset};$
- n = 4 $\Rightarrow \exists 1 \text{ MsC subset};$
- $n = 4 \cdot 2^m$ (with $m \in \mathbb{Z}_{\geq 1}$) $\Rightarrow \exists m+2$ MsC subset;
- $n = 4 \cdot 2^m \cdot \ell \ (m \in \mathbb{Z}_{\geq 0}, \ \ell \ \text{odd} \ (\neq 1)) \Rightarrow \exists \ m+3 \ \text{MsC subset.}$

Ex.

Let $G := \mathrm{Spin}(3) \ (\cong \mathrm{Sp}(1))$. Then, up to $G \times G$,

• $\{\pm 1, \pm i, \pm j, \pm k\}$ is a (unique) MsC subset.

Summary (1/2)

Motivation

- Which subset "approximates" the symmetric space?
- Candidates: maximal antipodal subsets, and MsC subsets.

Results

- We (almost) classified MsC subsets in Grassmannians and classical groups.
- It provides nice examples of subquandles/flat quandles.
- For some cases, it is easier than maximal antipodal subsets.
- On the other hand, it is far from the "uniqueness".

Summary (2/2)

Problems

- Classify maximal *s*-commutative subsets in other symmetric spaces (or quandles).
- How MsC subsets approximate (reflect some properties of) the ambient symmetric spaces?

Thank you!