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Abstract. The classification of homogeneous codimension one foliations on
irreducible Riemannian symmetric spaces of non-compact type will be men-
tioned. This classification is obtained by the joint work with Dr. Jürgen Berndt
([5]). In this article, we will describe the rough story of the classification and
give some explicit examples.

0. Introduction

In this article we consider isometric actions of Lie groups G on
connected complete Riemannian manifolds M . The cohomogeneity
of an action of G on M is defined by the codimension of the regular
orbit. An orbit is called regular if the dimension is maximal. A
transitive action has cohomogeneity zero, since the regular orbit is
M itself. Note that the regular orbits of cohomogeneity one actions
are homogeneous hypersurfaces in M .

Two isometric actions on a Riemannian manifold M are said to
be orbit equivalent if there exists an isometry of M mapping the
orbits of one of these actions onto the orbits of the other. For a
given Riemannian manifold, it is a natural and classical problem
to determine the moduli space of all isometric cohomogeneity one
actions on M modulo orbit equivalence.

In this article we study isometric cohomogeneity one actions on
an irreducible symmetric space M of non-compact type. There are
the following two cases (see e.g., [2]).

(F ) Every orbit is regular. In this case the set of orbits induces
the foliation on M .

(S) The action has a singular orbit. In this case there exists
exactly one singular orbit.
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The main purpose of this article is to mention the classification of
the actions which satisfy the property (F ).

Cohomogeneity one actions on some manifolds have been clas-
sified. It was shown by Hsiang and Lawson ([9]) that the moduli
space of cohomogeneity one actions on the sphere Sn is isomorphic
to the set of (n+1)-dimensional symmetric spaces of non-compact
type and of rank two. The bijective correspondence is given as fol-
lows. Take the isotropy representation of such a symmetric space,
which is a representation of a compact Lie group K on IRn+1.
Note that the rank of a symmetric space coincides with the co-
homogeneity of the isotropy representation. Therefore K acts on
IRn+1 with cohomogeneity two, and on the unit sphere Sn in IRn+1

with cohomogeneity one.
Cohomogeneity one actions on simply connected irreducible

symmetric spaces of compact type have been classified by Koll-
ross ([13]). The essential tool for his result is the classification of
maximal subgroups of the isometry groups. Note that the isometry
groups of irreducible symmetric spaces of compact type are com-
pact semi-simple Lie groups. Consequently a compact symmetric
space can admit just finitely many cohomogeneity one actions.

We are interested in the cohomogeneity one actions on sym-
metric spaces of non-compact type M . The method of the above
works can not be applied for our case. The group which acts on
M with cohomogeneity one is not compact in general, and there
are infinitely many maximal subgroups in the isometry groups of
M . In fact there are infinitely many cohomogeneity one actions if
rank > 1.

E. Cartan ([6]) classified the cohomogeneity one actions on the
real hyperbolic spaces IRHn, which is the symmetric space of non-
compact type and of rank one. There are n + 1 cohomogeneity
one actions on IRHn, which will be mentioned in Section 1. The
essential tool for his classification is the Gauss-Codazzi equation
for a submanifold, which is too complicated to apply for our case.

Our new strategy to study the cohomogeneity one actions is
to use the theory of solvable Lie groups. Let G be the identity
component of the full isometry group of M , and G = KAN denote
the Iwasawa decomposition (see Appendix A for Iwasawa decom-
positions). It is well known that the subgroup AN is solvable and
M is isometric to AN equipped with certain left-invariant metric.
Therefore it seems to be natural to use the solvable Lie groups for
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the studies on symmetric spaces M of non-compact type. If we
take a codimension one subgroup H in AN , then the action of H
on M ∼= AN has obviously cohomogeneity one and satisfies (F ).
This is the way to construct examples.

In section 1 we mention the classification of cohomogeneity
one actions on the real hyperbolic spaces IRHn. Two of them in-
duce codimension one foliations. For general irreducible symmetric
spaces of non-compact type M , we can construct two types of ex-
amples by taking codimension one subgroups in AN . In fact every
homogeneous codimension one foliations on M can be constructed
in this way up to isometric congruence. The classification is com-
pleted by checking which of them are isometrically congruent. We
need to know the geometry of foliations to check the congruence,
which is studied in Sections 3 and 4.

1. Cohomogeneity one actions on IRHn

In this section we mention the classification of cohomogeneity one
actions on the real hyperbolic spaces, obtained by E. Cartan ([6]).
It seems to be good to know this result, since the situation of
general cases is quite similar.

Let IRHn = SO0(n, 1)/SO(n) be the real hyperbolic space,
where SO0(n, 1) is the identity component of the Lorentz group
SO(n, 1). Take the Iwasawa decomposition SO0(n, 1) = KAN .
Note that K = SO(n) is a maximal compact subgroup, A is
abelian and N is nilpotent. One knows that S(n) := AN is a
solvable Lie group of dimension n and we call it the solvable part.
It is remarkable that S(n) acts simply transitively on IRHn.

Theorem 1.1 ([6]). A cohomogeneity one action on IRHn is or-
bit equivalent to one of the followings.

(1) The action of N on IRHn, which satisfies (F ).

(2) The action of SO0(n− 1, 1) on IRHn, which satisfies (F ).

(3) The action of SO0(n− k, 1)× SO(k) on IRHn, which satisfies
(S) for k = 2, . . . , n.

There are n + 1 cohomogeneity one actions on IRHn and two
of them satisfy (F ). On the action (1) note that the group N is a
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codimension one subgroup of AN . The orbits of this action are the
horospheres in IRHn, and this action induces the so-called horo-
sphere foliation. On the action (2) the orbit through the origin is
a totally geodesic IRHn−1, and the other orbits are the equidistant
hypersurfaces. Let us take the solvable part S(n−1) of SO0(n−1, 1).
The action (2) is orbit equivalent to the S(n−1)-action and S(n−1)

is a codimension one subgroup of AN .
Regarding the above results, one can observe the following. To

classify cohomogeneity one actions on IRHn satisfying (F ), it is
enough to consider codimension one subgroups of AN . In fact this
is true for our general setting. Solvable groups are quite essential
for our classification of (F )-actions.

Here we note on the action (3). This action is orbit equivalent to
the S(n−k)×SO(k)-action, where S(n−k) denotes the solvable part
of SO0(n − k, 1). The singular orbit is a totally geodesic IRHn−k

on which S(n−k) acts simply transitively. The regular orbits are
IRHn−k × Sk−1, the tubes around the singular orbit. In this case
S(n−k)×SO(k) is the direct product of a solvable group and a com-
pact one. Therefore solvable groups might play an important role
for studying (S)-actions. In fact Berndt and Brück ([4]) obtained
many examples of (S)-actions on hyperbolic spaces (i.e., rank
one symmetric spaces of non-compact type) in terms of solvable
groups.

2. Codimension one subalgebras

Let M = G/K be an irreducible symmetric space of non-compact
type, and g = k + a + n be the Iwasawa decomposition. In this
section we classify codimension one subalgebras in a + n.

Let ξ ∈ a+n be a non-zero vector and denote by sξ the orthog-
onal complement of IRξ in a + n. We decide the condition for sξ

to be a subalgebra. We need the root system ∆, the root spaces
gα, the root vectors Hα, the set of simple roots Λ, and the set
of positive roots ∆+. It is known that n =

∑
α∈∆+ gα and n is

generated by
∑

α∈Λ gα. See Appendix A for definitions.

Proposition 2.1. sξ is a subalgebra if and only if

(I) ξ ∈ a, or
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(II) ξ ∈ IRHα + gα for some α ∈ Λ.

This proposition can be proved by direct Lie algebraic calcula-
tions.

The connected subgroup Sξ in AN with Lie algebra sξ acts on
M with cohomogeneity one. For the cohomogeneity one actions
on real hyperbolic space IRHn, the group N is of type (I), and the
group S(n−1) is of type (II).

These subgroups Sξ provide infinitely many cohomogeneity one
actions. For the classification we have to do the followings :

- determine which of them are orbit equivalent, and

- prove that every cohomogeneity one action is orbit equivalent
to one of the above.

In the next two sections we will discuss the geometry of folia-
tions associated with Sξ-actions, which is useful to study the orbit
equivalence. The following is useful to study the geometry.

Lemma 2.2. The Levi-Civita connection of AN is given by

2〈∇XY, Z〉 = 〈[X,Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉
for X,Y, Z ∈ a+n. The shape operator Aξ of Sξ ·o at o with respect
to ξ is given by

Aξ : sξ → sξ : X 7→ 1

2
[ξ − θ(ξ), X]sξ

,

where θ denotes the Cartan involution and the subscript sξ means
the sξ-component.

Therefore the principal curvatures and the mean curvatures can
be calculated in terms of Lie algebras.

3. The foliations of type (I)

We study the geometry of the foliations associated with Sξ for ξ ∈
a. This case contains the horosphere foliations on real hyperbolic
spaces.

Let ξ ∈ a be a unit vector and put ` := IRξ. Denote by S` the
simply-connected Lie group whose Lie algebra is s` := (aª `) + n.
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Proposition 3.1. Every S`-orbit is conjugate under an isome-
try.

Proof. Let o be the origin and p ∈ M be an arbitrary point. We
show that S` ·o is conjugate to S` ·p. Consider the geodesic starting
from o with tangent vector ξ, which is exp(tξ) · o. This geodesic
meets S` · p at some point, say g · o where g ∈ A. We can assume
p = g · o without loss of generality. One can see that

g−1S` · p = g−1S`g · g−1p = Ig−1(S`) · o = S` · o.
The last equality follows from the fact that ξ ∈ a, g ∈ A and A is
abelian.

Each leaf of the foliation associated with S`-action is conjugate.
Therefore it is enough to calculate the curvatures of S` · o.
Proposition 3.2. The principal curvatures of S` · o are {0} ∪
{α(ξ) | α ∈ ∆+}. The mean curvature is given by

µ` =
1

n− 1

∑

α∈∆+

(dim gα)α(ξ),

where n is the dimension of M .

Proof. Since ξ ∈ a, Lemma 2.2 leads that the shape operator of
S` · o is given by Aξ(X) = [ξ,X]. Thus the claim on principal
curvatures is completed by the definition of the root systems. The
formula for the mean curvature can be obtained by just summing
up the principal curvatures.

By looking at the formula of the mean curvature, which is a
polynomial of degree one, one can see that µ` = 0 has a solution
if the rank is high.

Corollary 3.3. If r := rank(M) ≥ 2 then there exists an (r −
2)-dimensional family of homogeneous minimal foliations on M .

A foliation is called minimal if every leaf is minimal. A minimal
foliation is also called a harmonic foliation, since the canonical
projection from M onto the space of leaves is harmonic. We refer
[20] for minimal foliations. In fact this corollary is mentioned in
[20].

Here we consider the case M = SL(4, IR)/SO(4) as an example.
See Appendix B for notations.
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Examples 3.4. Let ξ := diag(e1, e2, e3, e4) ∈ a be a normal vector
and ` := IRξ. The principal curvatures of S` · o are {0}∪ {ei− ej |
1 ≤ i < j ≤ 4}. The mean curvature is given by µ` =

1

8
(3e1 + e2−

e3 − 3e4).

Therefore, if ` = IR · diag(1,−1,−1, 1) then the associated fo-
liation is minimal. If ` = IR · diag(3,−1,−1,−1) then the type
number is 3, and if ` is generic then the type number is 6.

4. The foliations of type (II)

We study the geometry of the foliations associated with Sξ for ξ ∈
IRHα⊕gα with α ∈ Λ. We always assume that the gα-component is
nonzero. This case contains the foliations on real hyperbolic spaces
IRHn whose leaves consist of the totally geodesic IRHn−1 and its
equidistant hypersurfaces.

Lemma 4.1. Let ξ ∈ gα be a unit vector with α ∈ Λ and put

ξt :=
1

cosh(|α|t)ξ −
1

|α| tanh(|α|t)Hα

for t ∈ IR. Then the Sξ-orbit with oriented distance t in direction
of ξ from o is isometrically congruent to the orbit Sξt · o.
Proof. The subspace IRξa ⊕ IRξgα forms a subalgebra isomorphic
to the solvable part of sl(2, IR). Therefore it is enough to prove
the lemma only on SL(2, IR)-case. One can show it directly.

This lemma means that the Sξ-action is orbit equivalent to the
Sξt-action. Furthermore, we can identify the set of Sξ-orbits, {Sξ ·
p | p ∈ M}, with the set of Sξt-orbits through o, {Sξt · o | t ∈ IR}.
This is useful for studying the geometry of Sξ-orbits. The following
is a direct consequence of Lemma 2.2.

Proposition 4.2. The shape operator Aξt of Sξt · o at o with
respect to ξt is given by

Aξt(X) =

[
1

2 cosh(|α|t)(ξ − θξ)− 1

|α| tanh(|α|t)Hα, X

]

sξt

for every X ∈ sξt.
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Therefore the principal curvatures and the mean curvatures can
be calculated in terms of Lie algebras. Such calculations lead that

Proposition 4.3. Let ξ ∈ gα with α ∈ Λ. Then Sξ · o is the only
minimal leaf among the Sξ-orbits.

In general the calculations are complicated. We just mention an
example.

Examples 4.4. Let us consider the symmetric space

M := SL(4, IR)/SO(4).

Let ξ ∈ gα1 be a unit vector. Then the principal curvatures of Sξ ·o
are 0 with multiplicity 4 and ±1

2
with multiplicities 2. The orbit

Sξ · o is minimal.

Proof. In this case we have

ξ :=




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , Aξ(X) =

1

2







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , X




sξ

.

Therefore one can calculate the principal curvatures directly. In
fact, one can do it as follows. One has ξ − θ(ξ) ∈ gα1 + g−α1 .
Therefore if α±α1 are not roots then Aξ = 0 on gα. Thus a + gα3

is the principal curvature space of principal curvature 0. Further-
more, Aξ preserves

∑
gα+kα1 . In this case Aξ preserves gα2 +gα1+α2

and gα2+α3 + gα1+α2+α3 . These observations make the calculations
easier.

In general the principal curvature spaces are closely related to
the root strings. For the case η ∈ gα2 , the above observation leads
that the shape operator Aη of Sη · o satisfies

Aη = 0 on a + gα1+α2+α3 , and

Aη preserves gα1 + gα1+α2 and gα3 + gα2+α3 .

One can check that the principal curvatures of Sη · o and Sξ · o
coincide, counted with multiplicities. As we see in Appendix C,
these two actions are not orbit equivalent.

The following holds in general.
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Proposition 4.5. Let ξ ∈ gα and η ∈ gβ be normal vectors. If
|α| = |β|, then for every p ∈ M , the principal curvatures of Sξ · p
and Sη · p coincide with each other, counted with multiplicities.

5. The sketch of the proof for classification

In this section we mention the sketch of the proof of our main
theorem.

Theorem 5.1. Let M be an irreducible symmetric space of non-
compact type. The moduli space M of isometric actions on M
satisfying (F ) is

M ∼= IRPr−1 ∪ {1, . . . , r} / Aut(DD),

where r := rank(M) and Aut(DD) denotes the automorphism
group of the Dynkin diagram.

Note that Aut(DD) acts on IRPr−1 ∪ {1, . . . , r} as follows. An
element f ∈ Aut(DD) is a permutation of the set of simple roots Λ.
Therefore f can act on {1, . . . , r} identified with Λ. Furthermore,
f can be extended to the linear map a∗ → a∗. By taking the metric
dual, f can act on a. We identify IRPr−1 with P(a), the projective
space of a. One can induce the natural action of f on P(a).

Let us define the map F from IRPr−1 ∪ {1, . . . , r} to M. For
` ∈ IRPr−1, define F(`) by the orbit equivalence class of the action
of S`, which we constructed in Section 3. Note that we identify
IRPr−1 with P(a). For i ∈ {1, . . . , r}, take gαi

3 ξ 6= 0 and define
F(i) by the orbit equivalence class of the action of Sξ, which we
constructed in Section 4. We have to show that F(i) is well-defined.

Proposition 5.2. Let ξ, η ∈ gαi
be non-zero vectors. Then the

actions of Sξ and Sη are orbit equivalent.

Proof. We can assume that dim gαi
> 1. The centralizer of a in K,

denoted by K0, preserves a + n and acts transitively on the unit
sphere in gαi

(see e.g., [21]). Therefore, there exists g ∈ K0 such
that Ad(g)(sξ) = sη. Then Sξ and Sη are congruent.

Let f ∈ Aut(DD). For ` ∈ P(a), one can see that S`-action and
Sf(`)-action are orbit equivalent by the same arguments as above.
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For ξ ∈ gαi
and η ∈ gf(αi), one can show that Sξ-action and Sη-

action are orbit equivalent. Therefore, F can induce the map from
IRPr−1 ∪ {1, . . . , r} / Aut(DD) to M.

Now we have only to show that F is bijective.

Proposition 5.3. The map F is surjective.

Proof. Let S be a Lie group acting on M with (F ).
Claim 1: We can assume that S is solvable and acts on M

freely. Take Levi-decomposition S = L ·R, where L is semi-simple
and R is solvable. Moreover, let L = LK · LAN be an Iwasawa
decomposition. Then the action of the solvable group LAN · R is
orbit equivalent to the S-action. We may decompose LAN · R =
T ·B, where T is compact and B is k-solvable (see e.g. [15]). The
group B satisfies the condition of the claim, and orbit equivalent
to the S-action.

Claim 2: We can assume that S is contained in AN . Let s be the
Lie algebra of S. The maximal solvable subalgebras of real semi-
simple Lie algebras have been classified by Mostow ([16]). From
the classification list and the fact that S acts on M freely, one can
see that s ⊂ t + a + n, where t denotes the centralizer of a in k.
Let sa+n be the image of the orthogonal projection of s onto a+n.
One can show that sa+n is a subalgebra of a+ n. Furthermore, the
action of the corresponding sugroup Sa+n of AN is orbit equivalent
to S-action.

Therefore we can assume s is a codimension one subalgebra. The
action of S is orbit equivalent to one of the actions constructed
before.

Proposition 5.4. The map F is injective.

Proof. We will show that, if the two actions constructed by ele-
ments of IRPr−1∪{1, . . . , r} / Aut(DD) are orbit equivalent, then
these groups are related by an element of Aut(DD).

Claim 1: S`-action and Sξ-action can not be orbit equivalent.
All of the orbits of S` are congruent (Proposition 3.1). Among
the Sξ-orbits, if ξ is a vector in a simple root space, Sξ · o is the
only minimal one (Proposition 4.3). Therefore Sξ · o can not be
congruent to any other orbits.

Claim 2: If the actions of S and S ′ are orbit equivalent, then
their Lie algebras are isomorphic. The groups involved in IRPr−1∪
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{1, . . . , r} are complete solvable, that is, the adjoint representation
can be represented by upper triangular matrices. Therefore the
claim follows from the theorem of Alekseevskii ([1]).

Therefore it is enough to show that

- if s` is isomorphic to s`′ then ` can be mapped to `′ by an
element of Aut(DD),

- if sξ is isomorphic to sη, where ξ ∈ gαi
and η ∈ gαj

, then αi

can be mapped to αj by an element of Aut(DD).

For proving these we need long and complicated arguments on Lie
algebras. One has to study the structures of solvable Lie algebras
s` and sξ. See Appendix C in which we will see some examples.

Appendix

Appendix A. The Iwasawa decomposition

In this section we describe the Iwasawa decompositions of semi-
simple Lie algebras. We will see that the root systems are useful
for studying the structures of the solvable parts of the Iwasawa
decompositions.

Let M be an irreducible symmetric space of non-compact type,
and G be the connected component of the isometry group. Fix a
point o ∈ M , called the origin. Let K be the isotropy subgroup at
o, that is, K := {g ∈ G | g · o = o}. One can express M = G/K.

The Cartan involutions. Let so be the symmetry at o, which
is an involutive isometry of M . The differential of Iso : G → G :
g 7→ so ◦ g ◦ s−1

o , denoted by θ, is called the Cartan involution of
g. The eigenspace decomposition of g with respect to θ gives a re-
ductive decomposition g = k+m, called the Cartan decomposition.
Note that [m, m] = k, since M is irreducible.

The natural inner product on g. Let B be the Kiling form
of g, which is positive definite on m and negative definite on k.
Define the inner product by 〈X,Y 〉 := −B(X, θ(Y )). One can see
that Ad |k is skew-symmetric and Ad |m is symmetric with respect
to this inner product.
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The root space decomposition. Let a be a maximal abelian
subspace in m, which is unique up to conjugation. For α ∈ a∗,
define

gα := {X ∈ g | ∀H ∈ a, [H, X] = α(H)X}.

A non-zero α is called a root if gα 6= 0. Since Ad |a is symmetric,
one get g = g0⊕

∑
gα, which is called the root space decomposition.

Denote by ∆ the set of roots. Note that θ(gα) = g−α.
Simple roots. A subset Λ := {α1, . . . , αr} ⊂ ∆ is called a set

of simple roots if (i) Λ is a basis of the dual space of a, and (ii)
every α ∈ ∆ can be expressed as α = c1α1 + · · · + crαr, where
every ci is non-negative integer or every ci is non-positive integer.
Note that there exists the unique set of simple roots up to the
automorphisms of ∆. Therefore ∆ can be decomposed into the
positive roots ∆+ and the negative roots ∆−. A root α is said to
be highest if α + αi 6∈ ∆ for all i = 1, . . . , r. The highest root is
unique.

The natural gradation. Put gk :=
∑

c1+···+cr=k

gc1α1+···+crαr .

Thus one has the gradation g =
∑

k gk. Note that the index k
runs through from −ν to ν, where ν is the sum of the coefficients
of the highest root. One can easily see that θ(gk) = g−k and
[gi, gj] ⊂ gi+j for all i, j. It is known that g1 generates

∑
i>0 gi,

that is, [g1, gi] = gi+1 for every i > 0 ([12]).
Iwasawa decompositions. Put n :=

∑
i>0 gi, which is ob-

viously ν-step nilpotent. Thus we have the decomposition g =
k+a+n, called the Iwasawa decomposition. Note that the decompo-
sition is not orthogonal. In fact, k = (g0ªa)⊕{X +θ(X) | X ∈ n}
holds. Take a connected subgroup AN of G with Lie algebra a+n,
which acts simply-transitively on M . The symmetric space M is
isomorphic to AN endowed with the left-invariant metric induced
from 〈 , 〉.

Appendix B. SL(4, IR)

In this section we consider the symmetric space SL(4, IR)/SO(4)
and describe the Iwasawa decomposition of sl(4, IR) explicitly.
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The Cartan involution of g := sl(4, IR) is given by θ(X) :=
−tX. Let g = k + p be the eigenspace decomposition, where

θ = 1 on k = {X | X = −tX} = so(4),

θ = −1 on p = {X | trX = 0, X = tX}.
The inner product on g is given by 〈X,Y 〉 := tr(X · tY ).

Next we decide the root system. Let a be the subspace of diag-
onal matrices in p, which is maximal abelian in p. Define αi ∈ a∗

by

αi




e1 0 0 0
0 e2 0 0
0 0 e3 0
0 0 0 e4


 := ei − ei+1, for i = 1, 2, 3.

Direct calculations show that the root system ∆ is

∆ = ±{α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.
For instance,

gα1 =








0 ∗ 0 0
0 0 0 0
0 0 0 0
0 0 0 0








, gα2 =








0 0 0 0
0 0 ∗ 0
0 0 0 0
0 0 0 0








,

gα3 =








0 0 0 0
0 0 0 0
0 0 0 ∗
0 0 0 0








.

The subset {α1, α2, α3} forms a set of simple roots. Therefore
this root system is of A3-type.

Now one can describe the Iwasawa decomposition g = k+a+n.
We have already seen k and a. The nilpotent part n is given by

n :=
∑
α>0

gα =




0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


 ,

which is generated by gα1 + gα2 + gα3 and is 3-step nilpotent.
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Appendix C. The root systems of solvable groups

We will give the definition of the root systems of solvable Lie
algebras of Iwasawa type. This is the essential tool to determine
the conjugacy of the orbits in our study.

A solvable Lie algebra s endowed with an inner product is said
to be of Iwasawa-type if it satisfies

(i) the orthogonal complement of n := [s, s] in s, denoted by a, is
abelian,

(ii) the operator ad(H) is symmetric for all H ∈ a, and

(iii) ad(H0) has positive eigenvalues for some H0 ∈ a.

The typical examples are the solvable parts of the Iwasawa de-
compositions of semi-simple Lie algebras g. Note that the inner
product is given by 〈X,Y 〉 := −B(X, θ(Y )), where B is the Killing
form of g and θ is the Cartan involution. The subalgebras a+(nª
gα), where α is simple, are the other examples of solvable Lie
algebras of Iwasawa-type.

Let s = a ⊕ n be a solvable Lie algebra of Iwasawa-type. We
can define the root system of s with respect to a in the same way
as the case of symmetric spaces. We call α ∈ a∗ a root if nα 6= 0,
where

nα := {X ∈ n, | ∀H ∈ a, [H, X] = α(H)X}.
The conditions (i), (ii) in the definition lead that n can be decom-
posed into the sum of the root spaces. We say that a root α is
simple if it can not be decomposed into the sum of two roots.

Let g be a semi-simple Lie algebra. One has the attached sym-
metric space generated by g and the Cartan involution of g. It is
easy to see that the root system of the solvable part of g coincides
with the set of positive roots of the root system of the attached
symmetric space.

Let us define the “Dynkin diagrams” in the following manner.
Each simple root represents a vertex. Then connect two vertices
α and β each other, where the numbers of the lines depend on
the string relations. For instance, if α and β span the A2-type root
system then connect them by one line, if α and β span the B2-type
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root system then connect them by two lines and put the arrow,
and so on. Note that the Dynkin diagram is an invariant of the
isomorphism class of solvable Lie algebras of Iwasawa-type.

Let s be the solvable part of the Iwasawa decomposition of
sl(4, IR). We use the same notations as in Appendix B. Let ∆+ be
the set of positive roots of the symmetric space SL(4, IR)/SO(4).
Denote by ∆i the root system of s ª gαi

and by Λi the set of its
simple roots. One can easily see that

∆1 = ∆+ − {α1}, Λ1 = {α2, α3, α1 + α2},
∆2 = ∆+ − {α2}, Λ2 = {α1, α3, α1 + α2, α2 + α3}.

The Dynkin diagram of Λ1 is of A3-type, and that of Λ2 is of
(A2 + A2)-type. Therefore we conclude that s ª gα1 and s ª gα2

can not be isomorphic.
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