平成23年度 広島大学大学院理学研究科 第二次入学試験問題

数 学 専 攻 専門科目 [

次の[1],[2],[3]の全問に解答せよ.

[1] 行列 A を

$$A = \left(\begin{array}{ccc} 6 & -5 & 2\\ 13 & -9 & 3\\ 18 & -12 & 4 \end{array}\right)$$

とし,集合 V を

$$V = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3; 2a - 2b + c = 0 \right\}$$

とする. 次の問に答えよ.

- (1) V は \mathbb{R}^3 の線形部分空間になることを示せ.
- (2) V の基底を一組求めよ.

$$(3)$$
 $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V$ なら $A \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V$ となることを示せ.

$$egin{pmatrix} a \ b \ c \end{pmatrix} \in V$$
 に対して $A \begin{pmatrix} a \ b \ c \end{pmatrix}$ を対応させることによって写像 $\varphi:V \to V$ を定義する. φ は線形写像であることを示せ.

- (5) 問題 (2) で求めた基底に関して、線形写像 φ を行列表示せよ.
- (6) A の固有値 2 に対する固有ベクトルをひとつ求めよ.

$$(7)$$
 ベクトル $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ に対して、集合 $\left\{A^n \begin{pmatrix} a \\ b \\ c \end{pmatrix}; n \in \{1,2,3,\ldots\} \right\}$ が有限集合となるため の必要十分条件は、 $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V$ であることを示せ.

平成23年度 広島大学大学院理学研究科 第二次入学試験問題

数 学 専 攻 | 専門科目Ⅰ

[2] 次の問に答えよ.

- (1) 実数列 $\{a_n\}$ が収束するとき $\{a_n\}$ は有界数列であることを示せ.
- (2) 実数列 $\{a_n\}$ が Cauchy 列であるとき部分列 $\{a_{n_j}\}$ で $|a_{n_{j+1}}-a_{n_j}|<2^{-j}\ (j=1,2,\ldots)$ となるものが存在することを示せ.
- (3) f を区間 I=[0,1] 上の連続関数とする. I 上の関数列 $\{f(x^n)\}$ は任意の $0\leq c<1$ に対して区間 [0,c] において一様収束することを示せ.
- (4) 区間 I=[0,1] 上の連続関数 f と任意の自然数 n に対して広義積分 $\int_0^1 f(x) x^{-(n-1)/n} dx$ が存在することを示せ.
- (5) 区間 I=[0,1] 上の連続関数 f に対して $\lim_{n\to\infty}\frac{1}{n}\int_0^1f(x)x^{-(n-1)/n}dx$ を求めよ.
- (6) \mathbb{R}^2 上の C^1 級 (連続微分可能) な実数値関数 f(x,y) に対して

$$F(a,b) = \int_0^1 f(at,bt)dt \qquad ((a,b) \in \mathbb{R}^2)$$

とおく. 関数 F は \mathbb{R}^2 上で C^1 級であることを示せ. さらに偏導関数 F_a, F_b を求めよ.

平成23年度 広島大学大学院理学研究科 第二次入学試験問題

数 学 専 攻 専門科目 [

- [3] 集合 \mathbb{R} , $S^1=\{z\in\mathbb{C}\ |\ |z|=1\}$, $[a,b]=\{x\in\mathbb{R}\ |\ a\leq x\leq b\}$ にはそれぞれ通常の位相が入っているものとする. このとき, 次の問に答えよ.
 - (1) 以下の各写像は存在するか、存在する場合には例をあげ、存在しない場合には、その証明を与えよ、
 - (a) 連続な全射 $f: \mathbb{R} \longrightarrow S^1$.
 - (b) 連続な単射 $f: \mathbb{R} \longrightarrow S^1$.
 - (c) 連続な全射 $f:S^1\longrightarrow \mathbb{R}$.
 - (d) 連続な単射 $f:S^1 \longrightarrow \mathbb{R}$.
 - (2) $[0,2\pi]$ と S^1 は同相でないことを示せ.