For a quasi-projective variety S over a field,

 $ICH^r(S)$, the intersection Chow group, is defined;

properties (some of which are conjectural) are discussed.

Cf. Barthel, Brasselet, Fieseler, Gabber and Kaup: Relèvement de cycles algébriques et homomorphismses associés en homologie d'intersection, Ann. Math. 141 (1995).

1) conjecturally exists and surjective.

Thm. [BBFGK]

Im [CH_{d-r}(S) \rightarrow H^{BM}_{1(d-r)}(S)]

C Im [IH^{2r}(S) \rightarrow H^{BM}_{1(d-r)}(S)]

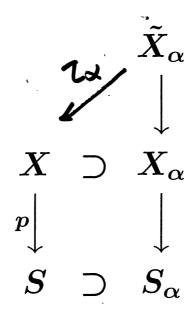
Let $p: X \to S$ be a projective map (with X smooth).

There is a Whitney stratification

$$S=S_0\supset S_1\supset\cdots\supset S_lpha\supset\cdots$$

of S, and resolutions

$$ilde{X}_lpha o X_lpha=p^{-1}S_lpha$$
 such that $ilde{X}_lpha o S_lpha$ is smooth over $S_lpha-S_{lpha+1}.$



Now take p:X o S to be a resolution of singularities. One has $(d=\dim S)$

$$\operatorname{CH}_{d-r}(\tilde{X}_{\alpha}) \stackrel{\iota_{\alpha}}{\to} \operatorname{CH}^r(X) \stackrel{\iota_{\alpha}}{\to} \operatorname{CH}^r(\tilde{X}_{\alpha}).$$

Each group has a filtration F_S^{\bullet} (to be explained later).

Define intersection Chow group by:

$$\operatorname{ICH}^r(S) :=$$

$$rac{igcap_{lpha \geq 1} (\iota_lpha^*)^{-1} F_S^{2r-d+1} \operatorname{CH}^r(ilde{X}_lpha)}{\sum_{lpha \geq 1} \iota_{lpha *} F_S^{2r-d+1} \operatorname{CH}_{d-r}(ilde{X}_lpha)}$$

Theorem. $ICH^r(S)$ is well-defined (indep. of choice of stratification and resolution).

There is a map

$$\operatorname{ICH}^r(S) o IH^{2r}(S).$$

Bloch, Beilinson, Murre, Shuji Saito (for case $S = \operatorname{Spec} k$).

Example. X smooth projective variety.

$$CH^r(X)$$

- $\supset F^1\operatorname{CH}^r(X)$ homologically trivial
- $\supset F^2\operatorname{CH}^r(X)$ Kernel of Abel-Jacobi map ?

Relative canonical filtration. Let X be smooth, and $p:X\to S$ be a projective map.

There is a filtration F_S^{\bullet} on $\mathrm{CH}^r(X)$ satisfying:

(1)
$$\operatorname{CH}^r(X) = F_S^{-\dim S} \operatorname{CH}^r(X)$$
.

Functorial: for q:W o S and

 $\Gamma \in \mathrm{CH}_{\dim X + s}(W \times_S X)$, the induced map

$$\Gamma_*: \mathrm{CH}^{r-s}(W) o \mathrm{CH}^r(X)$$

respects F_S^{ullet} .

- (2) If the induced map $[\Gamma]$: ${}^p\mathcal{H}^{2r+2s-\nu}Rq_*\mathbb{Q}_W\to {}^p\mathcal{H}^{2r-\nu}Rp_*\mathbb{Q}_X$ is zero, then Γ_* sends F_S^{ν} to $F_S^{\nu+1}$.
- (3) The filtration is the smallest with properties (1) and (2).

Proposition. Under Conjectures, $F_S^
u$ $\operatorname{CH}^r(X) = 0$ for u >> 0.

Theorem 1 (Under Conjectures)

There is a natural surjective map $ICH^r(S) \to CH^r(S)$.

Theorem 2. (Without Conjectures)

Im [CHd-+(S)
$$\rightarrow$$
 H_{2(d-r)}(S)]

C Im [IH^{2r}(S) \rightarrow H_{2(d-r)}(S)]

Proof of Thm 1. in special case.

Assume:

γ: smooth

 $\dim Y = d'$, $\dim \varphi = e$ $\dim \Sigma = d'-e$

Must show: For $\forall \alpha \in CH_{d+}(S)$, $\exists b \in CH'(X)$ s.t.

(i) $(1^{*})^{-1}b \in F_{s}^{2r-d+1}CH^{r}(\tilde{y}),$ (ii) $P_{*}(b) = \alpha.$

To prove, take any b satisfying (ii), and medify by 1*(C) using the following three lemmas.

Under conjectures,

(1) In the sequence

Great CHd-r (y) + Great CH (x) + Great CH (y)

 7^* is injective for 1 + 2r - d1 + 1 is surjective for 1 + 2r - d.

(2) $CH^{r}(\tilde{y}) = F_{s}^{2r-d'+e}CH^{r}(\tilde{y})$

[perverse degree of Rg*Qy
is in [d'-e, d'+e]]

(3) $F_5^{2r-d'-e}CH_{d-r}(\Sigma) = 0$

[perv. degree of D_{Σ} is $Z-dim\Sigma$]

Conjectures

Grothendieck's Standard conjecture (⇒ semi-simplicity of the category of pure homological motives).

Bloch-Beilinson-Murre: Existence of Chow-Künneth decomposition (with properties...)

 $(\Rightarrow h(X) = \bigoplus h^i(X)$ in the category of Chow motives.)

Beilinson-Soulé: vanishing of motivic cohomology with negative degree.

Topological theory:

 $D_c^b(S)$: derived category of sheaves with cohomology constructible sheaves;

For a map f:S o S', $f^*,f_*,f^!,f_!$;

Poincaré-Verdier duality formulas;

For p:X o S,

$$H^i(X,\mathbb{Z}) = \operatorname{Hom}(\mathbb{Z}_S, Rp_*\mathbb{Z}_X[i]).$$

perverse *t*-structure. In particular, perverse cohomology functors

$${}^p \mathcal{H}^{
u}: D^b_c(S) o Perv(S).$$

Motivic theory:

 $\mathfrak{D}(S)$: triangulated category of motives over S:

For a map f, f^* , f_* , f!, f!;

For
$$p:X o S$$
, $H^i_{\mathcal{M}}(X,\mathbb{Z}(r))=$

$$\operatorname{Hom}(\mathbb{Z}_S(0), Rp_*\mathbb{Z}_X(r)[i]).$$

Poincaré-Verdier duality formulas;

perverse t-structure .

Realization functor

$$ho: \mathfrak{D}(S)
ightarrow D^b_c(S).$$

Theorem. (assume $\operatorname{ch} = 0$ for simplicity) There is a triangulated category $\mathfrak{D}(S)$ (called the category of mixed motives over S) with properties:

(1) There is a functor h: (Quasi-Projective $/S)^{opp} o \mathfrak{D}(S)$

There are Tate objects $\mathbb{Z}_S(r)$.

(2) Natural isomorphism $\operatorname{Hom}(\mathbb{Z}_S(0), h(X/S) \otimes \mathbb{Z}(r)[2r{-}n]) = \operatorname{CH}^r(X,n)$.

In particular,

 $\operatorname{Hom}(\mathbb{Z}_S(0),h(X/S)\otimes\mathbb{Z}_S(r)[2r])= \ \operatorname{CH}^r(X) \ .$

(4) There are functors \otimes , f^* , f_* , $f^!$, $f_!$ among the categories $\mathfrak{D}(S)$,

satisfying the correct properties (such as Verdier duality).

(5) $(k \subset \mathbb{C})$ There is the realization functor

$$ho: \mathfrak{D}(S) o D^b_c(S(\mathbb{C}))$$

such that $\rho \circ h$ is the cohomology functor for varietites.

From now, write $\mathfrak{D}(S)$ for $\mathfrak{D}(S)_{\mathbb{Q}}$.

Theorem. (Under the conjectures of Grothendieck, Bloch-Beilinson-Murre, and Beilinson-Soulé)

(1) There is a Whitney stratification $\{S_{\alpha}\}$ of S, local systems \mathcal{V}_{α}^{i} on $S_{\alpha}-S_{\alpha+1}$, and a non-canonical direct sum decomposition

$$h(X/S) = igoplus_{i,lpha} h^i_lpha(X/S)$$
 in $\mathfrak{D}(S)$

such that $ho(h^i_lpha(X/S))\cong IC_{S_lpha}(\mathcal V^i_lpha)[-i+\dim S_lpha].$

(Work with Corti)

(2) There is a t-structure on $\mathfrak{D}(S)_{\mathbb{Q}}$ such that ρ is compatible with it and the perverse t-structure on $D_c^b(S)$. (As a consequence, there is an abelian subcategory $M\mathfrak{M}(S)$, and functors

$${}^p\mathcal{H}^{
u}: \mathcal{D}(S) o M\mathfrak{M}(S).$$

The category $M\mathcal{M}(S)$ is abelian, and the induced functor $M\mathcal{M}(S) \to Perv(S)$ is exact and faithful.