For a quasi-projective variety S over
a field, |

ICH"(S), the intersection Chow
group, is defined;

properties (some of which are
conjectural) are discussed.

Cf. Barthel, Brasselét;' Fieseler,
Gabber and Kaup: Relévement de
cycles algébriques et
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homologie d’intersection, Ann. Math.

141 (1995).
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Let p: X — S be a projective map
(with X smooth). |

There is a Whitney stratification
5250331:)'":)5053“‘

of S, and resolutions
Xfa — X, = p~ 1S, such that
X, — S, is smooth over S, — So11.
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~ Now take p: X — S to be a
resolution of singularities. One has

(d = dim S)




CH,_,(X.)“s CH™(X)“ CH" (X.)-
Each group has a filtration Fg ( to be
explained later).

Define intersection Chow group by:
ICH"(S) :=

Nos1(er) 1 F3 4! CH" (Xa)

> ot tarFa 4T CHy_(Xa)

Theorem. ICH"(S) is well-defined
(indep. of choice of stratification and

resolution).

There is a map
ICH"(S) — ITH?*"(S).




Bloch, Beilinson, Murre, Shuji Saito
(for case S = Spec k).

Example. X smooth projective
variety.

CH"(X)
O F! CH"(X) homologically trivial

D F? CH"(X) Kernel of Abel-Jacobi
map ?

Relative canonical filtration. Let X
be smooth, and p: X — S be a
projective map.

There is a filtration F§ on CH" (X))
satisfying: | '

(1) CH"(X) = Fg “™° CH"(X).

Functorial: for g : W — S and




' € CHgim x+s(W Xs X), the
induced map

r,:CH *(W) > CH"(X)
respects Fg.
(2) If the induced map [I'] :

pj_c2r+2s—uRq;QW 3 pg_(:Zr—uRp*@X B
is zero, then I, sends FY to Fgt'.

(3) The filtration is the smallest with
properties (1) and (2).




Proposition. Under | Conjectures |,
FYCH"(X) =0 for v >> 0.

Theorem 1 (Under | Conjectures |)
There is a natural surjective map

ICH" (S) — CH'(S).

Theorem 2 ( Without ijecfares)

aH
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C L[ IH(S) = H (S1]
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Under conjectures,
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Conjectures

Grothendieck’s Standard conjecture
(= semi-simplicity of the category of
pure homological motives).

Bloch-Beilinson-Murre: Existence of
Chow-Kiinneth decomposition (with

properties...)

(= h(X) = @ hi(X) in the
category of Chow motives.)

Beilinson-Soulé: vanishing of motivic
cohomology with negative degree.




Topological theory:

D?®(S): derived category of sheaves
with cohomology constructible

sheaves;
Foramap f: S — 5, f*,f*,f!,fg;_
Poincaré-Verdier dualﬁ:y formulas;

Forp: X — S’,
H(X,Z) = Hom(Zg, Rp.Zx|1]).

perverse t-structure. In particular,
perverse cohomology functors

PHY : DY(S) — Perv(S).




Motivic theory:

D(S): trian'gulated category of
motives over S:

For amap f, f*, fe, [ S5
Forp: X — S, H; (X, Z(r)) =
Hom(ZS(O‘), Rp.Zx(r)[t]).

Poincaré-Verdier duality formulas;

perverse t-structure|.

Realization functor

o : D(S) = D(S).




Theorem. (assume ch = 0 for
simplicity) There is a triangulated
category D(S) (called the category
of mixed motives over S) with
properties: |

(1) There is a functor h :
(Quasi-Projective /S)°PP — D(S)

There are Tate objects Zg(r).

~ (2) Natural isomorphism |
Hom(Zs(0),h(X/S)&L(r)[2r—n]) =
CH"(X,n) .

In particular,

Hom(Zs(0), h(X/S) ® Zs(r)[27]) =
- CH"(X) .

(4) There are functors ®, f*, f., I
fi among the categories D(S5),

10




satisfying the correct properties (such
as Verdier duality).

(5) (k C.C) There is the realization |
functor |

p: D(S) — DY(S(C))

such that p o h is the cohomology
functor for varietites.

From now, write D(S) for D(S)o.

" Theorem. (Under the conjectures of
Grothendieck, Bloch-Beilinson-Murre,
and Beilinson-Soulé)

(1) There is a Whitney stratification
{S.} of S, local systems V* on

So — Sat1, and a non-canonical

" direct sum decomposition

h(X/8) = @ e (X/S) in D(S)
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such that p(h* (X/S)) =
ICs.(Vi)[—i + dim Sa].

(Work with Corti)

(2) There is a t-structure on D(S)q
such that p is compatible with it and
the perverse t-structure on D?(S).
(As a consequence, there is an
abelian subcategory MM(S), and
functors

PR : D(S) — MM(S).)

The category MM(S) is abelian | »
and the induced functor

MM(S) — Perv(S) is exact and
faithful.
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