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Introduction.
X : a projective smooth variety over a finite field k = F,
p = ch(k)

((X,s) : Hasse-Weil zeta function of X

= 11 (1-N(z)%)™,

z€Xp
where X := the set of closed points on X, and N(z) := f(k(x)).
Then we have the determinant presentation (d := dim(X), £ # p):
_1 1+1

¢(X,s) = H det(1 — F*-q™%; Hg(Xz, Qo)

(F* : geometric Frobenius operator)

_ P}(g™*)- PXg®)- P (g®)
PY(q*) - PP(a~*)- - P{*"*(q~*) - P}*(q™*)

with P{(T) := det(1 — F*T; H..(X%, Qo).

e ((X,s) is a rational function in ¢ with Q-coefficients,
because we have Q,(T) N Q((T)) = Q(T).
e The reciprocal roots of P{(T) are algebraic integers whose com-

plex absolute values are ¢/2. Hence P}(T) is independent of

¢ # p and belongs to Z[T]. (Deligne)



Theorem 1. (Artin-Tate/Milne/Bayer-Neukirch/Schneider)

Let n be an integer. Assume the semi-simplicity of F* on
HE' (X5, Qo) forall £#p, and HZ(X).

Let p, be the (positive) integer such that ((X,s) - (1 — ¢g"%)~n

tends to a non-zero constant as s — n. Then the limit

lim  ((X,s)-(1—¢"°)"

S—n

is written in terms of the cohomology groups

H;(X,Z(n)) = aglé Hfét(X7 Zf(n))

withi=1,2,...,2d + 1, and a certain requlator term.
(H%. (X, Zy(n))'s will be explained below.)
Problem:
o Construct {H% (X, Z(n))}in for arithmetic schemes X .
o Find zeta-value formulae for arithmetic schemes.
Results:
X : regular arithmetic scheme (with some assumption),
e Definition of the coefficient T,(n)x € D’(X&,Z/p"Z) playing
the role of Z/p"Z(n).
e Duality for H:, (X, %,(n)x) (in case X is proper).



81 Reveiw on étale cohomology groups over a field

e étale topology = algebraic analogue of analytic topology
on complex manifolds

- Example. For a variety X over C and a torsion sheaf F on Xy,

Ha (X, F) ~ Hou(X(C), Flxcpen)-

e étale over a field K =  finite separable over k

Example. (1) For a sheaf F on Spec(k)¢,
Hi(Spec(k), F) = Haa(Gr, F(K*7)).

(2) For a variety X over k and a sheaf F on Xg,

Gy, naturally acts on Hg (X, F|x;) and 3 spectral sequence
E3Y = Gal(Gk’ et(Xkale—)) - H]é)jq(Xv f)

(Hochshild-Serre spectral sequence)



Definition 2. Let n be an integer.
(1) X  scheme
m  positive integer invertible on X
Um  étale sheaf of mth roots of unity on X

We define:

E)
Vv
o

Ty
Hom(pu@(, Z./mZ) (n <0).

(2) k perfect field of characteristic p > 0

Z/mZ(n) =

X smooth variety over k

WeS¥% 1o logarithmic part of W, Q% on Xy (Musie)

Note: @ W, Q0% ), :=0, if n<0 or dim(X)<n.
o W%, is a flat Z/p"Z-sheaf and
0= Win1 Q% 10g = Wikl 1o = Wi 1o — 0 (exact).
® Wil 1og = x 1og 1= = Im(dlog : (O%)®" — Q.T)L(/k)'

Then we define
Z/prZ(TL) = W‘Q&,log[_ny
(3) In the situation of (2), the group H (X, Z(n)) is defined as

lim Hg (X, Z/mZ(n)) x lim H, (X, Z/p"Z(n)).

(m,p)_—_l ’I">].



Remark. For a projective smooth variety X over a finite field k,
~ the group H% (X, Z(n)) is finite for i # 2n,2n + 1, and the group
H2"( X, Z(n))tors is finite. The group HZ (X, Z(n))iors is finite as

well under the semi-simplicity assumption in Theorem 1.

In what follows, we restrict our attentions to finite coefficient cases

and review duality facts for varieties over finite fields.



X . smooth variety over a finite field k
d = dim(X)
Theorem 3. (Poincaré-Pontryagin duality)
Let m be a positive integer prime to ch(k). Then:
| (1) 3 canonical trace map H2Y(X, u®4) ~ Z/mZ.

(2) For a constructible Z/mZ-sheaf F on X4, the pairing
HU(X, F) X Bxtyh)o(F,up') — Z/mZ

is a non-degenerate pairing of finite Z/mZ-modules, for Vi.

Here, F constructible := 3 finite partition X = U; Z;
by locally closed subschemes such that

F|z, is locally constant with finite stalks

Corollary 4. For any integers n and i, the pairing

HI(X, p8") x HEH(X, &) — Z/mZ

m

is a non-degenerate pairing of finite Z/mZ-modules.

Proof. We have

EXt;(,Z/mZ(M;gr)Lna /’L%zd) = EXt;(,Z/mZ(Z/mZ’ :U’S?zd_n)

~ Hi (X, S, .

m



Theorem 5. (Milne duality)
~ Let r be a positive integer. Suppose X to be proper. Then:
(1) 3 canonical trace map HE(X, W Q% 10g) > Z/D" L.
(2) For any integers n and i, the pairing
Hét(X7anX,log) X Hgt—i_l_i(vagg(_,lgg) - Z/pTZ
is a non-degenerate pairing of finite Z/p" Z-modules.

Key point: Construction of the trace map

(then reduced to the case r = 1 and the Serre duality
by the theory of Cartier operators).

Theorem 6. (Moser)

(1) 3 canonical trace map H¥1(X, W Q% 10g) ~ Z/D"Z.
(2) For a constructible Z/p"Z-sheaf F on Xg, the pairing

HU(X, F) X Extyza(F, Wely 1) — Z/p"Z
is a non-degenerate pairing of finite Z/p" Z-modules, for i.

Note:

e Theorem 5 (2) does not immediately imply Theorem 6.

e Theorem 6 recovers Theorem 5 (2) only in case n = 0.



Combining Theorem 3—Theorem 6, we obtain:

Fact 7.
Let m be a positive integer. Then:
(1) 7 canonical trace map H?*Y(X,Z/mZ(d)) ~ Z/mZ.
(2) For a constructible Z/mZ-sheaf F on Xg, the pairing
HY(X,F) x Extyp)%(F, Z/mZ(d)) — Z/mZ
is a non-degenerate pairing of finite Z/mZ-modules, for Vi.
(3) In case X is proper, for any integers n and i, the pairing
H (X, Z/mZ(n) x HEH(X, Z/mE(d - n)) — Z/m

is a non-degenerate pairing of finite Z/mZ-modules.

Remark. For a map f : X — X' of smooth varieties over k,

3 a canonical pull-back map

[*Z/mZ(n)x — Z/mZ(n)x.
It is an isomorphism in the following cases (but not, otherwise):
e f is étale,
e (m,ch(k)) =1,
on <0,

e max{dim(X),dim(X")} < n.
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§2 Construction of p-adic étale Tate twists

p : prime number, r : positive integer

A . algebraic integer ring or p-adic integer ring

X . integral regular scheme flat of finite type over Spec(A),
satisfying;

(%) X is smooth or a semistable family over Spec(A)
around the fibers of characteristic p.
For n > 0, we want K € D% Xg,Z/p"Z) satisfying (T1)—(T4)
(=variant of Beilinson-Lichtenbaum axioms for ‘Z(n)’ on X¢):
T1: 7 ¢ : Kly ~ p8", where V := X[1/p].
T2: K is concentrated in [0, n].
T3: For a locally closed reqular subscheme i : Z — X of

characteristic p, we have a Gysin isomorphism:
Gysy : W Q515 [—n — ] = T<pnicRIK (¢ := codimx(Z))
in D"(Zg, Z/p"Z), where W,Q55 =0 if n < c.

T4: A compatibility property between Gysin maps and

boundary maps of Galois cohomology groups.
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Precise statement of T4:

Consider points y and x on X satisfying

ch(zr)=p, z€{y} and codimy(z)= codimx(y)+ 1.

Put ¢ := codimyx(x). (Note that ch(y) =0 or p.)

Then the following diagram commutes up to a sign depending

only on (ch(y),c):

val
HE Y (y, Z/p"Z(n — c+ 1)) <5 H“(x, Z/p"Z(n — ©))
Gys?yJ l(}ysgc

5100

Hn+c_1(speC(OX,y)7 K:) - Hg:gtc(spec(OX,x)) IC)7

Y.t

0¥ . boundary map of Galois cohomology groups (Kato)

§°¢ - boundary map of a localization sequence
iz : 1z — Spec(Oxy)
iy Yy — Spec(Oxy)
Gys;, Gysin map coming from (T3)
Gysin map coming from (T3), if ch(y) = p,
Gys?y : {Gysin map coming from (T1) and

Deligne’s cycle class, if ch(y)=0.
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Theorem 1. For a fized n >0, > a pair of
K € DX, Z/p'Z) and
t: Ky ~ py"

that satisfies T2-T4 as above.

Definition. (originally due to Schneider in the smooth case)
For n > 0, fix a pair (K, t) as in Theorem 1,

and define T,(n)x = K (€ D*( X4, Z/p"Z)).
For n < 0, define %, (n)x := 5 Hom (,uf,’?(_n), Z/pTZ).

Remark:

o For n > d := dim(X), t induces T, (n)x =~ Rj,us"

o If X — Spec(A) is smooth around Y (:= union of the fibers of
characteristic p) and p > n + 2, then ¥,(n) x|y is isomorphic to
the syntomic complex ‘S,(n)’ of Fontaine-Messing (by a result of
Kurihara).

e T.(n)x is not a log syntomic complex of Kato-Tsuji for 1 < n <
dim(X), because the latter object is rather 7<,Rj.ug".

e For the étale sheafification Z(n)§ of the cycle complex defining
higher Chow groups, one can hope Z(n)§ ®“ Z/p"Z ~ %,.(n)x.
However, to prove this, we need to show T2 and T3 for the left
hand side.
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Theorem II. (Product and Contravariant functoriality)

(1) For integers m and n, > a morphism
T (m)x @ T(n)x — T.(m+n)x.
in D™ (X, Z/p"Z) extending the natural isomorphism
" @ ppt —— py " on V= X[1/p].
(2) For a map f : X — X' of Spec(A)-schemes satisfying (x), >
a morphism
res! : f*T(n)xr — Tr(n)x.

in D™ (X, Z/p"Z) extending the natural isomorphism

where g denotes V — V' := X'[1/p].

Remark. The morphism res/ is an isomorphism in the following
cases (but not, otherwise):

o f is étale,

e (m,ch(k)) =1,

on <0,

e max{dim(X), dim(X")} < n.
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§3 Duality for arithmetic schemes
A algebraic integer ring
Theorem. (Artin-Verdier duality)
(1) ? canonical trace map H3(Spec(A),Gy) ~ Q/Z.
(2) For a constructible sheaf F on Spec(A)s, the pairing
H'(Spec(A), F) x Extg;c(A)(f, Gn) — Q/Z
is a non-degenerate pairing of finite abelian groups, for Vi.
Remark.

e This duality is deduced from the Tate duality theorems for global
fields and local fields.

e Generalized to ‘Z-constructible’ sheaves. (Deninger)
e Generalized to two-dimensional arithmetic schemes, replacing Gy,

with a modified version of Lichtenbaum complex Z(2). (Spief)
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Corollary. (Duality outside of characteristic p)
Let V' be an integral reqular scheme which is flat separated of
finite type over Spec(A[1/p]). Put d:= dim(V). Then:
(1) ? canonical trace map HZH(V, u$%) ~ Z/p"Z.
(2) For a constructible Z/p"Z-sheaf F on Vg, the pairing

BV, ) x B s — 2/

is a non-degenerate pairing of finite Z/p"Z-modules, for Vi.
Proof. e The case d = 1: By the Kummer sequence
ppr — Gm — G — 1],

reduced to the Artin-Verdier duality.

e The general case: f:V — Spec(A[l/p]) structure map.

We have a canonical isomorphism:
trf : p$¥2(d — 1)] = Rf'py in DY (Vy,Z/p"Z)

(Poincaré duality + absolute purity (Thomason-Gabber)).

Hence by Deligne’s duality

Rf*RHomV,Z/pTZ(fa Rf!,LLpr) = RHomSpec(A[l/p]),Z/pTZ(Rflfa :Upr)’

reduced to the 1-dimensional case. N
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A remains to be global. Let X — Spec(A) be as in §2.

Suppose X to be separated, and put d := dim(X).

Theorem III. (Jannsen - Saito - S)
(1) 3 canonical trace map H?*(X,%,.(d)x) ~Z/p"Z.
(2) For a constructible Z./p"Z-sheaf F on X, the pairing
H(X, F) x ExtXm(F T(d)x) — Z/p'Z
is a non-degenerate pairing of finite Z /p" Z-modules, for V.
Proof. e The case d = 1: By the Kummer sequence
%, (i — G — G — T (1l
reduced to the Artin-Verdier duality.
e The general case: Glue the relative trace map for X[1/p] —
Spec(A[1/p]) with those of fibers of characteristic p, and prove
the isomorphism in DY (X, Z/p"Z):

tl“f : Tr(d)x[Q(d - 1)] — Rf!%(l)spec(A).

Then by the same argument as the previous corollary, reduced

to the case X = Spec(A). O



17

Theorem IV. (S)
Suppose that X is proper over Spec(A). Then for any integers n
and i, the pairing (coming from Theorems I1 and III (1))

H(X,%,(n)x) x H¥ (X T (d—n)x) — Z/P'Z
is a non-degenerate pairing of finite Z/p" Z-modules.

Proof. V := X[1/p], Y := union of fibers of characteristic p.

The case n < 0: the previous corollary.

The case n > 0: By the exact sequences
T HZ(XJ'M%) - HZC(X’ Tr(n)X) - H(iét(Y’ T7”(77')X|Y) —
< = Hyp (X, %0 (d = n)x) — He (X, Tp(n)x) — HE(V, pg® ™) — -+

with ¢/ := 2d + 1 — i and by the previous corollary, reduced to the

following theorem:
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Theorem V. (S5)
Suppose that A is local and that X is proper over Spec(A).
(1) ? canonical trace map}H%‘fgtl(X, T (d)x) ~ Z/p"Z.

(2) For any integers n > 0 and i, the pairing
Hy (X, %r(n)x) x HY¥E (X, % (d —n)x) — Z/p'Z

is a non-degenerate pairing of finite Z/p"Z-modules.

Proof. (smooth case, for simplicity)

The case n > d : Tate duality for K := Frac(4) and
Poincaré duality for Vg = X ®4 K

The case n = 0 : Milne duality for Y

The case 0 < n < d: Reduced to the case r =1 and (, € A.

Let ¢ : Y — X be the canonical map.

By the Bloch-Kato theorem on RY? j*uff)q, the cohomology

sheaves of Z/pZ(n) and R.'Z/pZ(d — n) are extensions of
Oy,  diy, Y.log:

A key step is to show that the induced pairing on those pieces

are the same as the wedge product of differential forms up to

a non-zero constant (explicit formula). O
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84 Consequences of duality results

Let p, A and X be as in Theorems IV or V. Put d := dim(X).
Corollary.

Suppose that A is local. Put V := X[1/p| = X ®4 Frac(A).
Define the ‘unramified part’ H:.(V, u$") as

Ker (Hi,(V, u8") — HyA(X, %, (n)x))
Then under the non-degenerate pairing

HL (V,p3") x HEY(V,u3 ™) — Z/p'Z,

the subgroups Hi(V, u$™) and H2~(V, u$*") are exact annihi-
lators of each other.

Corollary. (Lichtenbaum)

Suppose that A is local and d = 2. (i.e., V is a curve.)

Then 3 canonical non-degenerate pairing of finite groups:

Pic(V)/p" x p»Br(V) — Z/p"Z.

Proof. Follows from the previous corollary and the equality

PiC(V)/pr = H121r(V, /lp’") (C Hgt(va /Jp”) ). [



20

Corollary. (Tate/Cassels/Saito)
Suppose that A is global, d =2 and p > 3.

(i.e., X is an arithmetic surface.)

Define  Br(X)pcotor := Br(X){p}/(Br(X){p})piv (finite group).

Then 3 canonical non-degenerate alternating pairing

< ) > : Br(X)p-Cotor X BT(X)p—cotor E— Qp/Zp-

In particular, the order of Br(X)pcotor S @ square number.

Proof. Decompose the non-degenerate pairing (Theorem IV)

HE(X, Tq,z,(1) x HG(X,Fz,(1)) — H(X, Tg,z,(2))

[g
Qp/Zy

and compute signs of cup products
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§5 Euler-Poincaré characteristics
Let A, X and p be as in Theorem IV.

Problem.

o For fized i and n, is dimg, Hy (X, Tq,(n)x) independent of p?

Concerning this problem, we have the following weaker result:

Theorem VI. Put

™8

X(X? TQp(n)) = (_1)i ‘ dim@p Hz’zt(Xv Cg@p(n)X%

XD(X/]RaR(n)) = ZZ:() (-1)2 - dimp HZD(X/R,R(TL)),

0

1

where Hp(X g, R(n)) denotes the real Deligne cohomology of
X(C/Z =X ®zC:

Hp(X/k, R(n)) := Hi, (Xc/z(C)™, R(n)p)*E/R),
Then we have
X(X, Zq,(n)) = xp(X/r, R(n)).

In particular, x(X, Tq,(n)) is independent of p for which p-adic

étale Tate twists are defined.





