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Today’s Goal

(1) What is finite dimensional motive
cood for?

(2) Motives of hypersurfaces and 1-
dimensional motives

rk 1 vector bundles (i.e., line bundles)
are invertible. Also, 1-dimensional vec-
tor space K is trivial (in the sense
K ®V ~V for any V). Analogy for

motives”?

(3) Some remark on Schur finite motives



X: smooth projective variety over C

Pure motive is a pair (X, «), with
a: X X

an idempotent correspondence.

For any Weil cohomology theory H, we
define

H* (M) :== a*(H*(X)) C H*(X)



An additive functor F'is called conservative if
F(M)=0 < M =0.

Conjecture The (singular) cohomology functor
1S conservative:

H?k
{Pure Chow Motives} — {Vector Spaces/Q}
M = (X, a) - H*(M,Q)

If H*(M,Q) = 0, then M = 0.

The information of motives must be detected
by their cohomology groups.




Prop. The conjecture implies Bloch’s con-
jecture.

(proof) X: Surface with p, = ¢ = 0
(We may just assume that the cycle map
CH" Xg — H*(X,Q) is surjective.)

By Kiinneth, one can write the diagonal as
Ax] =) a;x i € H(X x X,Q)
{ X; — (1(@3)

algebraic cycles

Ior cl(3;)



M = (Xj Ax] =Y a x @)
is a motive, with H*(M) = 0.
Conjecture implies M = 0, namely
[Ax] — Z@g X B@ = CH$(X X X)
Then CH"X is generated by 53-_”8

(finitely generated!), hence repre-
sentable.




A Motive M is finite dimensional if

M = (X, «) can be written as
M = M g M2 s.t. for N > 0,

AN MEver =0, Sym’t MO =
h¢

A

N N |1 X// o
AN M=|X N Z Sgn(a)>:<\ ><
o0eSyN 0 X

X, aX

N+ N X// A
Sym M = ( XV, ) : :
O"EeNx\ 8% X



Finite dimensionality Conjecture
Any Chow motive (X, «) is finite di-
mensional.

Facts (i) Motives of curves are finite
dimensional (Shermenev).

(ii) Product of finite dimensional mo-
tives are finite dimensional. (K)
(iii)Submotives and quotient motives of

finite dimensional motives are finite di-
mensional. (K)




Theorem If the finite dimensionality
conjecture holds, then H™ is conserva-
t1ve.

(Proof)

Case 1: When M = (X,«) is oddly
l-dimensional (i.e., A*M = 0) and
H*(M) =0
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Intersect with

XL X

push—forward to
X X
X X
X X




Case 2: When M = (X,«) is oddly
(or evenly) finite dimensional, and
H*(M) =0

0dd casezg// 07 ))S IH%@rsect v;éth
% =0 X o X
X X
X7 a X X X
X—a1X

push—forward to XxX

X

Calculation shows |

(N-1) =0

X X
X X
A X



General case: M = Meve™ @ M4 with
H *(]\j ) =

Mevenr and M299 are finite dimensional
Wlth H* (]\ m;en) — M (Ajr_}dd) — ()

By the previous case,
NEven — ]\fft}dd — ()




Def. If AM? # 0 and ATTM = 0
then dim M := d. If Sym“M = 0 and
Sym“ T M = 0 then dim M := e. When
M = Mev*™ & M define dim M :=
dim Mev¢™ + dim M°9.

Cor. It M is finite dimensional, then
dim M = dimg H* (M, Q).

(Proof) Immediate from the conservativity of

H* and N
H*(Sym"™ M%)
H* (/\Nj\fjeven)

/\Nan (Affgdd)
/\NH* (Ajeven)




How to attack finite dimensionality?

Avoub: “Almost” enough to prove the
finite dimensionality for the motives of
hypersurfaces.

We will come back to this later.



X c Pl hypersurface of degree d,
1 .
h € CH X: hyperplane section.

]\’I . — X prim

| n | |
= (X; Ax| p Z h' X h,n‘E)
1=0

then H*(M) = H"™(M)




Assume the conservativity of H* and

let M = X ,rim.
If n =dim X is odd, then for N > 0.
H*(Sym” M) = 0, hence Sym" M = 0.
If n = dim X is even, then

H*(AYM) = 0,hence AN M = 0.

Also  AfPM  or Sym'PM is 1-
dimensional.

Hope: One dimensional motives carry

more geometric information!



Characterization of 1-dim. motives
Prop. (1) Nonzero motive (X, «) is
isomorphic to (P, [Ap]) (up to dimen-
sion twist) if and only if &« = [ x v &
CH" (X x X) for some 3,7 € CH" X.
(2) Motive M = (X, ) is 1-dimensional
it and only if M is invertible. In this
case, M is evenly finite dimensional.

(3) Assuming the Hodge conjecture, M
is 1-dimensional if and only if M ~



(Proof) (1) If (X,a)~ (P,|Ap]) then
az—XI—PI—X—}u’x Y
Conversely, if « = [ X 7, then 3 :

()(*p Od') — (Pﬁ AP]) and A (Pﬁ AP]) —

(X, ) are inverse to each other.




(2) If M is 1-dimensional, then H* (M)
has a l-dimensional Hodge structure,
hence M is even.

If (X, «) is 1-dimensional

XY X Xia X
X X — X X
X% X X%X

I, p—

exchange exchange

X, ¢) Xr%X X X
@ — )(l X — X Oéa X E(Pa[AP])

(X, ') | X—H X=X
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2
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Conversely if (P, [Ap|) ~ M ® N, tak-
ing (_)®* both sides,

(P, [Ap])

M®* g N®?

(Sym*M & A*M) @ (Sym*N & A%N)
(Sym*M ® Sym“N) & (Sym*M @ A*N)
B(A°M @ Sym*N) & (A°M @ A*N)

3 out of 4 direct summands are 0.



Say, if A2M @ Sym*N = A2M @ A2N =
0, then

A*M @ N®?
~ A’M @ (Sym°N & A*N)
= 0
hence A°M ~ (A°M@QNE*)QM®* = 0.




(3) If M = (X,«a) is 1-dimensional.
then dim H*(M) = 1, and is gener-
ated by a Hodge cycle cl(/). Similarly:.
as MY := (X.,'a) is 1l-dimensional,
H*(MV) is generated by cl(v), then
M~ (X,v x ).




AP preven or - Sym™PAMY are  1-
dimensional 110tive5? and are called
determinant of M€V (or M4%).
Assuming the Hodge conjecture.
ALOP _1]\{ cven or Sym P Ao4d are the
dual motives of M (or M°%%).




PROBLEM Let X C P"*! be a hyper-
surface, M := X ;. assuming finite
dimensionality and Hodge conjecture,

(n even)  AY™PM o
(n odd) Sym'”M [ (X ?(’(@X@))

where ¢ = dimH* (M), ¢ € Q, a €
CHne/Q (Xﬁ)

(1) Find such « (future research plan).

(2) Does such « imply the finite dimen-
sionality of M7



If n =dim X is even,
A (N M)—= N*¢ M

so M is evenly finite dimensional.

But if n = dim X is odd, A*(Sym°M) =
0 does not imply Sym?M = 0.

For M = (P,[Ap]), A2(Sym°M) = 0
but SymN M # 0 for any N > 0.



Schur Finite Motives

(Carlo Mazza, P. Deligne)

Each Young tableau A determines the
Young symmetralizer

=Y ero) - o] € U,
For M = (X, «), define

S}\(AJ) — (XH?ZC)\(O') HW;:O'(?:)&)
o =1

M is Schur finite if S\M = 0 for some
A.




Yo

—— |

ing Tableau

11246

3|7

O

11921-+n jSAM:SYHlnM
1 n
jSAM:/\ M

n

Schur Finite conjecture
For any M, S\M = 0 for some .



Fact If M = Mever ay \fodd

dim Meve"™ =
dim Medd = ¢
e+1 ~.
S M =0 <= A D )

d+1

Finite dimensional motives are Schur finite.

Avoub proves that if the motives of hyper-
surfaces are Schur finite, then all the motives
are Schur finite.

Guletskil “proves” that Schur finite implies
Conservativity of cohomology functor.



A?(Sym™ M) = P SHM

0< k<N
k : odd
N
A= N (Littlewood)

kj

M with A?(Sym™ M) = 0 is Schur finite. By
Guletskii, conservativity of cohomology tunc-
tor for such motives follows.



Question Let M be a Schur finite element of
a tensor category. What can you say about
the set {A|S\M = 0}7

Theorem In a tensor category where M®"™ =
0 implies M = 0 (e.g., the motive of pure
Chow motives), if M is Schur finite, then there
exists a Young diagram A such that S, M = 0
it and only if A C pu.



(Proof) If D A and p has m boxes, A has
¢ boxes, then SyM @ M@= contains S WM
as a direct summand. So S\M = 0 implies
S, M = 0.

Enough to show that it S, M =0 and S, M =
0, then for A := unNv, S5 M = 0. We are
reduced to the following lemma.

Lemma Each direct summand of (S\M)®"
either containes p or v for N > 0.






(Proof of Lemma) Assume NOT. For
each n > 0, there is a direct summand
S. M of (S\M)®"™ which misses the
box p[n] € p and vin| € v. We may
assume that p[n| (resp. v|n|) are fixed
for all n. To avoid these boxes, 7, are
confined to the yellow area.

l\ -\M [n]

v |n|




Claim When we tensor S)M by
Littlewood-Richardson rule, at least
one new box is outside the orange area.

There are only finitely many boxes in
the yellow area outside the orange area.
So assuming the claim, S, M flows out

of the yellow area for n > 0.



Littlewood-Richardson Rule Write
A= (A1,..., %) as below.

A1=(4,3,1,1)

A1 boxes

Ao boxes

A3 boxes
A 4 boxes




To tensor S\M to S.M, First add A\
boxes with number 1 to enlarge the

Young diagram, and add A9 boxes with
number 2 to further enlarge the Young
diagram, and so on.

i -

SOEHY



Rule:

(1) Same numbered boxes are not in the
same column.

(2) Start counting the number of boxes
from upper right corner, to the left, and
then down. While counting, if 7 < 7.
then ¢-numbered boxes are always no
less than 5 numbered boxes.




Let p|n] and v|n| as below. p|n|isin the
k-th row, and v|n| is in the /-th column,
then A\, > ¢. By Rule (1), one of the k-
numbered box is more right than the
¢ — 1-st column. By Rule (2), all the k-
numbered boxes are below & — 1st row.
We are done.




Application: If A2(8y111N M) = 0, then
S)\]\ff — (0 with

(N+1,1) (N is even)
(N, 1) (NN is odd)

In the case of pure motives, by the theo-
rem of Guletskii, the minimal vanishing
\ is a rectangle, so either \*M = 0 or
Sym™ T M = 0.

\ —

Question Characterize the tensor cat-
egory where the minimal vanishing A is
rectangle.






