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The appearances and the change of the frictional force of a system with two hard spheres in a two-
dimensional rectangular box are discussed. With controlling the pressure or the supply of energy from
the wall, the solid-like state, the solid-liquid temporal coexistence state, and the liquid-like state are
observed. The frictional force and the fluidity of the system are measured under the shear. By varying the
shear, a marked change of frictional forces is observed with similar characteristics to those of the static
and dynamic frictions of a solid-on-solid system. Moreover, the relationship between the above frictional
force and the shear is found to show strong temperature dependency. The hysteresis loop in the friction-
velocity relation on granular layers [S. Nasuno et al.: Phys. Rev. Lett. 79 (1997) 949] is discussed on the
base of these results.
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The existence of static friction and dynamic friction and
the change between them are universal phenomena com-
monly observed at the surfaces of macro scale objects,1–12)

and are important subjects of fundamental physics. They
have been experientially believed to satisfy Coulomb–
Amontons’s laws: I) The magnitude of the frictional force
depends not on the contact area between two objects but on
the magnitude of the normal load between them. II) The
maximum static friction coefficient is larger than the
dynamic one, and the dynamic one is constant, independent
of the sliding velocity. The mechanism and characteristic
features of frictions and lubrication have been studied using
several microscopic models which consist of a large number
of atoms.4) From the microscopic point of view, the change
between the above two types of frictions is expected to have
a close relationship with the melting and freezing at a
surface region. The liquid-solid phase transition in this case
is caused by external driving forces such as shear forces,
which means that this transition occurs under non-equili-
brium states. In numerical simulations of systems containing
101{104 hard- or soft-core particles, the liquid-solid phase
transition with a van der Waals loop was observed.13–20)

Similar phenomena were also observed in the system with
two hard spheres in a rectangular box.21) This system
showed not only behavior like a solid-liquid phase transition
but also behavior like a glass transition with the appearance
of �- and �- like relaxation and the disappearance of the van
der Waals loop. In this paper, we discuss the appearance of
some types of friction and the change between them through
a simple model similar to that introduced in the previous
paper,21) but with a few modifications.

The system under consideration consists of two-dimen-
sional hard sphere particles with unit mass and unit radius
which are confined in a two-dimensional rectangular box
(Fig. 1). The right-hand wall with unit mass of the box can
move in the horizontal direction. The position of the right-
hand wall is XðtÞ ðXðtÞ > 2Þ and the constant force �f is
applied to this wall in the horizontal direction. This force
corresponds to a normal load in the general treatment of
frictions. The left-hand wall is set at the origin of the

horizontal axis and is in contact with the energy source. The
bottom of the box is set at zero height in the vertical
direction, and the position of the top of the box (the box
height) is Y (Y > 4). All walls are rigid, and interactions
between two particles, as well as those between a particle
and a wall without an energy source, occur only through
hard-core collisions. These collisions are implemented in the
following manner: the tangential velocities to the collision
plane are preserved, while the normal component of relative
velocity �vn becomes ��vn. A particle hitting the left-hand
wall in contact with the energy source with the velocity
ðvh; vvÞ bounces back with the velocity ðVh;VvÞ (Vh > 0).
Here, subscripts h and v indicate, respectively, the horizontal
and vertical directions. The velocity ðVh;VvÞ is chosen
randomly from the probability distributions PhðVhÞ and
PvðVvÞ:22)

PhðVhÞ ¼ T�1Vh exp �
V2
h

2T
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Fig. 1. Illustration of two-particle system in a box with a moving wall

(right) and energy sources (left).
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PvðVvÞ ¼ ð2�TÞ�
1
2 exp �

ðVv � UÞ2

2T

� �
; ð2Þ

where T is the temperature of the energy source. (We give
the Boltzmann constant as 1.) In the case of U 6¼ 0,
asymmetric force works on the system from the energy
source in the vertical direction. We consider only the case of
Y > 4, which means that the two particles can exchange
their positions in the horizontal direction. When XðtÞ > 4,
these spheres can exchange their positions in the vertical
direction. In contrast, these particles cannot exchange their
positions in the vertical direction when XðtÞ < 4. In the
previous paper, we fixed XðtÞ ¼ X and defined the state with
X > 4 as the liquid-like state and that with X < 4 as the
solid-like state.21) In this paper, however, because we treat
the probability distributions of XðtÞ, we slightly modify the
definitions of these states as follows: the solid-like state is
defined as the state in which the probability distribution of
XðtÞ has a peak at XðtÞ < 4, and the liquid-like state is
defined as the state in which the distribution has a peak at
XðtÞ > 4.

Before discussing frictions, we note that transitions
between the liquid-like and solid-like states are observed
in a small system under equilibrium and non-equilibrium
conditions. First, we discuss the case of U ¼ 0 that
corresponds to the case in which a heat bath is connected
to the left-hand wall. Figure 2 shows the probability
distribution of the position of the right-hand wall XðtÞ for
some values of f with (a) Y ¼ 4:5, (b) Y ¼ 5:0, and (c)
Y ¼ 5:5 at the same temperature T (¼ 0:1). Independently of
Y , each distribution has only one peak at XðtÞ < 4 for large f

(solid-like state), or XðtÞ > 4 for small f (liquid-like state).
For mid-range f , however, each distribution has two peaks
for the case of Y � 5:0. One at XðtÞ < 4 and the other at
XðtÞ > 4 [Fig. 2(a)]. Here, the system passes between the
liquid-like and solid-like states. Thus, the transition between
the solid-like and liquid-like states appears. This transition is
regarded as a trace of the liquid-solid phase transition in a
system with an infinite number of particles.13–20) These two
peaks become blunt with the increase of Y , and the
probability distribution around XðtÞ ¼ 4:0 becomes almost

flat for Y � 5:0 [Fig. 2(b)]. In contrast, in the case of
Y � 5:0, each distribution always has only one peak for all
values of f when Y > 5:0 [Fig. 2(c)]. The appearance and
the disappearance of such transitions are considered to be
strongly related to those of Van der Waals loop observed
when the width of the box is fixed.21) However, the height
without a transition is Y > Y� � 5:0, which is smaller than
the height of the disappearance of the van der Waals loop
Y 0� � 6:0 in our previous paper.21) Our value Y� is similar to
another critical height Y 0

c � 5:0 found for the previous
model, where �- and �- like relaxations appear for
Y 0 
 Y 0

c.
21) If we fix f and change the value � ¼ 1=T , we

observe qualitatively the same results as given above.
Next, we discuss the case with U > 0. In this case, the

system is in a non-equilibrium state because of the
asymmetric force acting on particles in the vertical direction
by the shear at the left-hand wall. Figure 3 shows the
probability distribution of the position of the right-hand wall
XðtÞ for U and the constant value f (¼ 1) with (a) Y ¼ 4:5

under low temperature (T ¼ 0:1), (b) Y ¼ 4:5 under high
temperature (T ¼ 0:4), (c) Y ¼ 5:5 under low temperature
(T ¼ 0:1), and (d) Y ¼ 5:5 under high temperature (T ¼ 0:4)
conditions. Here, we set T with which the probability
distribution of XðtÞ has only one peak at XðtÞ < 4 (the solid-
like state is realized) for the case of U ¼ 0. The transition
between the solid-like and liquid-like states with the
temporal coexistence of the liquid-like and solid-like states
is realized for Y � 5:0 by varying U [Figs. 3(a) and 3(b)]. In
contrast with the case of U ¼ 0 discussed previously, such a
transition is observed also for the case with Y > 5:0. In these
situations, the two particles are compressed near the top wall
of the box by the asymmetric force with U > 0. This means
that the region in which the particles spend almost all of
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Fig. 2. Probability distribution of the position of the right-hand wall XðtÞ
(PD) for several values of f when (a) Y ¼ 4:5 (middle f ¼ 0:1725), (b)
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Fig. 3. Probability distribution of the position of the right-hand wall XðtÞ
(PD) for several values of U and f ¼ 1 with (a) Y ¼ 4:5 with T ¼ 0:1
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their time becomes smaller along the vertical direction.
Then, the Y-dependent characteristics of these transitions
become blunt. With the increase of T and Y , these two peaks
become smoother and the top of the probability distribution
of XðtÞ for mid-range U comes close to being flat [Fig. 3(d)].

Next, we focus on the characteristic features of frictions
which emerge in the above system. We define the fluidity m

of the system as the average frequency of the change of the
sign of 	y, where 	y is the relative position between two
particles in the vertical direction. The solid-like state is
realized when m � 0, and the liquid-like state is realized
when m is large. From the shear characterized by the
velocity U, the force Fex ¼ limt!1

1
t
ð
P

colðVv � vvÞÞ acts on
particles at the left-hand wall in average. Here,

P
col is the

sum of individual collisions between the left-hand wall and
particles. This value also gives the frictional force R between
the particles and the left-hand wall. Figure 4 gives the
relation between (a) U and m, and (b) U and R (or Fex) for
several values of T for the constant values f ¼ 1 and
Y ¼ 5:0. Here, the force f (¼ 1) corresponds to the normal
load of this system. Thus, in this case, the relations between
U and R are equivalent to those between U and the effective
friction coefficient 
 ¼ R

f
. For small U, m � 0 and R / U

are realized, while m / U and R ¼ constant hold for large
U. Here, the width of the box becomes larger as m becomes
larger. Then, the frequency of collisions between a particle
and the left-hand wall in contact with the energy source
decreases. Hence, similarly to the dynamic friction of solid-
on-solid systems which satisfy Coulomb–Amontons’s fric-
tion laws,1–3) R becomes almost constant for the increase of
U when m becomes large. Moreover, R for each U becomes
large with decreasing T . For small T , each U–R curve has
one peak, and a marked change in R appears which is similar
to the change between the static and dynamic frictions in the
solid-on-solid system.1–3) On the other hand, this peak
disappears for large T . Figure 5(a) indicates the relations
between m and R with increasing U for several values of T
for the constant values f ¼ 1 and Y ¼ 5:0. In Fig. 5(a), for
small T , R has a maximum value in the neighborhood of
m ¼ 0, and decreases monotonically and approaches a
constant value with increasing m. These obtained profiles
of m–R relations at m � 0 and large m are qualitatively
similar to those of the velocity-friction relations of solid-on-
solid systems.1–3) For large T , R increases monotonically
and becomes almost constant with increasing m, in contrast
to the previous case. Next, we focus on the case with fixed U

and varying f . Figure 5(b) shows the relations between f and

 for several values of T for U ¼ 1. In this case, the liquid-
like state with large m and the solid-like state with m � 0 are
realized for, respectively, small f and large f . In Fig. 5(b), 

has two plateau values at small f and at large f . This means
that the frictional force R is almost proportional to the
normal load f at small f and at large f like solid-on-solid
frictions.1–3) Moreover, 
 of m � 0 states is larger than that
of the large m states, and for mid-range f , 
 for each T

increases with increasing m. With the decrease of T , 


increases sharply. These properties were observed indepen-
dent of Y .

We discuss the relation between the velocity of a plate on
granular layers and the friction between the plate and the
granular layers.6–10) Through a recent and remarkable
experiment, Nasuno et al. found that the relation between
the plate velocity and the frictional force forms a hysteresis
loop;6,7) the frictional force is multi-valued, and is smaller
for decreasing velocity to 0 than for increasing velocity from
0. It is interesting to note that the multi-valued frictional
force is observed in the U-R relations in Fig. 4(b), in which
R also depends on the temperature of the contacting heat
bath. Therefore, we assume that U in Fig. 4(b) plays a
similar role to the plate velocity, and R corresponds to the
friction on granular layers. Based on the temperature
dependency of R, we discuss a possible mechanism of
history dependencies of velocity-friction relations on
granular layers. Let us introduce a granular temperature Tg
of the surface of granular layers as a half of the mean square
of velocity fluctuation of each granular particle, and assume
that Tg plays a role similar to the temperature of the energy
source in our system. Initially, the plate and each particle in
the granular layers do not move, and then Tg ¼ 0. Hence,
immediately after the start of the slippage of the plate, Tg is
expected to be small. As the plate movement becomes faster,
however, Tg is expected to become larger because the plate
excites particles in the granular layer. Then, considering the
temperature dependency of R shown in Fig. 4(b), the
frictional force immediately after the slippage is larger than
that in the previous situation for the same slip velocity.
Because of the friction, in the final stage, the plate stops and
Tg becomes 0 again. In this granular system, Tg is expected
to vary with time, which repeats as the plate is pushed
continuously. This repetition and the temperature depen-
dency of the frictional force explain the appearance of the
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hysteresis loop in the granular matter.
In this paper, we discussed the appearance and the change

of frictions of a system with two particles in a box. First, in
this simple system, we observed the liquid-like and solid-
like states, and the transition between them. Next, we
discussed the appearance of the frictional force of the system
in which particles are excited by the shear in the vertical
direction. In the simulation, we observed a marked change of
the frictional forces similar to the change between the static
and dynamic frictions observed in a solid-on-solid system.
We found that the relation between the shear and the
frictional forces strongly depends on the temperature of the
heat bath. Taking these characteristics into consideration, we
discussed the origin of the hysteresis loop in granular
friction. Discovery of the temperature dependency of these
characteristics of frictions is an important result of our
simulation. Detailed numerical studies of the present
problem are important for future work, as is analytical study
of the dynamics of frictional forces on a granular layer.
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