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Liquid-solid phase transition of a system with two particles in a rectangular box
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We study the statistical properties of two hard spheres in a two-dimensional rectangular box. In this system,
a relation similar to the van der Waals equation is obtained between the width of the box and the pressure
working on the sidewalls. The autocorrelation function of each particle’s position is calculated numerically.
This calculation shows that, near the critical width, the time at which the correlation becomes zero gets longer
as the height of the box increases. Moreover, fast and slow relaxation processes suchasiBeelaxations
in supercooled liquids are observed when the height of the box is sufficiently large. These relaxation processes
are discussed with reference to the probability distribution of the relative positions of the two particles.
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The liquid-solid phase transition is a very familiar phe- ticles can exchange their positions in the horizontal direction.
nomenon. This transition in a system with so many degreeblote that in this paper the state with>4 is regarded as the
of freedom has been studied through many kinds of analytiliquid state and the state with<<4 is regarded as the solid
cal and numerical modeld]. Numerically, the liquid-solid  state.
phase transition is studied in a system containing 16—10 Figures 2a) and 2b) are typical relationships between the
hard or soft core particles by Monte Carlo and moleculawidth a and the pressur®, on the sidewalls for heightls
dynamics simulation§2—6]. The motions of individual par- =4.3-6.7. HereP, is defined as the time average of the
ticles (molecule$ are different in the liquid phase and the impulses caused by the bouncing of particles on the side-
solid phase: In the liquid phase, particles can exchange pavalls per unit length per unit time. In these figures, a region
sitions with each other, and each particle can move albf ain which the volume compressibility is negative appears
around the system. On the other hand, in the solid phaséor smallb around the critical widtka* =4.0. These curves
particles cannot exchange positions, and they move only iare similar to the van der Waals lo¢p] or the loop of the
restricted small areas. Alder transition[3,4,6] which includes the liquid-solid coex-

Now we consider a rectangular box containing two hardistence region. This negative volume compressibility seems
spheres with the same diametkrThe height of the box is to indicate the appearance of a phase transition around the
larger than @&. When the width of the box is larger thaml2  critical width a* =4.0 that distinguishes the solid state from
these spheres can exchange positidfig. 1(a)]. However, the liquid state. Ifo becomes larger than a critical valb&
these particles cannot exchange their positions when the 6.0, however, this curvature is reduced, and the compress-
width of the box is smaller than®[Fig. 1(b)]. Thus we ibility becomes positive for alb. In this case, we cannot
regard these as the simplest forms of, respectively, the liquidbserve the distinction between the liquid and solid states.
state and the solid state. Then, a problem arises: In suchRigures 2c) and 2d) are the typical relationships between
simple system near the critical widtk=@Qd) of the box, can  the widtha and the pressure on the upper and lower wajjs
we find characteristic phenomena like the Alder transitionfor heightsb=4.3—-6.7. HereP,, is defined as the time av-
[3,4,6] of a system with many hard spheres? In this paper, werage of the impulses caused by the bouncing of particles on
focus on statistical and dynamical properties of the spherethe upper and lower walls per unit length per unit time. Un-
near the critical width of the box to understand this problemlike the relation ofP, anda, P, decrease monotonically with

The system under consideration consists of two-increase ofa. Such anisotropy seems to be one of the char-
dimensional hard sphere particles with unit mass and unit
radius which are confined in a two-dimensional rectangular  (a) a (b)
box. Here, the width and the height of the box are, respec-
tively, a andb, and all the walls are rigidFig. 1). Interac- l l

_>a<_

tions between two particles or between a particle and a wall

occur only through hard core collisions. These collisions are

implemented in the following manner: the tangential veloci- b b

ties to the collision plane are preserved, while the normal

component of the relative velocitv,, changes to—Av,,.

The total energy of the system is given as 1. Because this

system consists of rigid spheres and rigid walls, the qualita-

tive behaviors are independent of the total energy. We set

b>4 for most of our discussion which means these two par- g, 1. lllustration of two-particle system in rectangular b
Width of box is larger than the sum of two diametéiquid state,
and(b) width of box is smaller than the sum of two diametésslid
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FIG. 4. Typical trajectories of particlé®) b=4.7, (b) b=5.7,
and(c) b=6.7 witha=4.1.

=({x(0)x(t))/{x(0)x(0)) in the solid state §=3.8) and in
liquid states 8=4.1,a=4.5, anda=5.0 withb=5.5). Here,
X(t) is the position of a particle. In the liquid state, the re-
FIG. 2. Relationships between the widdhand the pressurB,  |axation process becomes slower as the width comes closer
with (a) b=4.3,4.5,4.7,4.9(b) b=5.1,5.5,5.9,6.3,6.7 in descending tg the critical value. In the solid state£ 3.8), the correla-
order, and that between the widéhand the pressur®, with (c) tion function has a finite value far— because two par-
b=4.3,4.54.7,4.9d) b=5.1,5.5,5.9,6.3,6.7. ticles cannot exchange their positions. Figufe) 3hows au-
tocorrelation functions fob=4.3,5.1,5.9,6.7 near the critical
acteristic features of this system, which does not appear in width a* (a=4.1). These curves indicate that each relax-
system with many hard spheres. If we focus only onate,  ation process contains both fast and slow processes for a
relation, however, this system can be regarded as one of thigtle above the critical width. These fast and slow relaxations
simplest models to imitate the phenomena of the liquid-solictan be fitted with functions, respectivety,? (8~0.75) and
phase transition. Her@ and P, correspond, respectively, to exp(—(t/7)%) (a~0.67, r=const). On increasingb, the
the volume and pressure of a system with many particles. form of C(t) changes as followgi) The time at which the
Now, we consider the counterpart bfabove in a system correlation becomes zero gets longér Whenb is larger
with many hard spheres or in more general systems withhan a critical valueb** ~5.0, the fast relaxation and the
many degrees of freedom. FigureaBshows typical autocor-  slow relaxation are clearly separated by the appearance of
relation functions for the position of each particle(t)  plateau. These relaxations are similar to fhand « relax-
ations of the density fluctuations in a supercooled lid7iH
A system that includes nonuniform molecules tends to be-
come a supercooled liquid when it is cooled or compressed
[7]. Moreover, the liquid-solid coexistence region disappears
in a system with many hard spheres when the size polydis-
persity of the spheres is larger than a critical vdléie From
these facts, we conclude that the present two-particle system
imitates the phase transition in a system that consists of
many nonuniform elements. Here, the quantityorresponds
to the dispersion of particles characters like the size polydis-
persity in a system with many particles. In order to discuss
the mechanism producing the above simulation results, we
focus on the statistical properties of each particle’s trajectory
for eachb near the widtha*.
Figures 4a), 4(b), and 4c) are typical trajectories of the
centers of particles for, respectively=4.7, b=5.7, andb
=6.7 witha=4.1. If the volume of the box is large enough
- and we can ignore the particle volume, these trajectories fill
0.1 10 ¢ 10000 the rectangular region that is enclosed by the poifits (
FIG. 3. Autocorrelation function of each particle’s position —d]/2[b—d]/2), ([a—d]/2,—[b—d]/2), (—[a—d]/2[b

(b)
1.0

C@®

0.0

C(t); (@ a=3.8,4.1,4550 with b=55 and (b) b —d]/2), and (~[a—d]/2,—[b—d]/2) [Fig. 4(c)]. Here,d
=4.3,5.1,5.9,6.7 witha=4.1. Fitting lines areC(t)=t %" and is the diameter of each particle, which is set as 2 in our
C(t)=exp(— (t/ 7). discussion. This means particles wander all around the box
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FIG. 5. (a) a-P, relations of the rectangular Sinai billiard with
b=4.5,5.1, and 5.7, antb) a-P, relation of two particles in a
square box.

FIG. 6. Probability distributionga) P, of vertical component
of relative position vectoby, and(b) P4 of horizontal component
of relative position vectox between two particles wita=4.1.

. . b=4.3,4.7,5.1,5.5, and 5.9 from the bottgnear 5x=0.0 in (b)].
as in ideal gas systems. When the size of the box becomes ¢ (b)]

small, however, the finite volume effect of the particles be-discuss these situations, we consider @ (@)X (b—d)

comes evident. In particular, if the relation rectangular Sinai billiard which includes a hard sphere with
diameterd (d=2). Using the equipartition rule, we can cal-
(a—d)?+(b—d)*<(2d)? (1)  culate thea-P, relation of the Sinai billiard analytically as in

the correlated cell modgB]. For each particle in the Sinai
is satisfied, a region appears around the central part of thilliard, the entropyS is obtained by using the phase space
box that the particles’ centers cannot enter. WHeA2  volumeS=In[A,(a,b)A,] and the free energl is given by
+24/3, the above equation is satisfied aroanda* =4 and F=U-S, (The Boltzmann constarkg and temperaturd
the trajectory of the centers of the particles is shown in Figare set as 1.Here, A,(a,b) and A, are the phase space
4(a). For a<a* =4 the trajectory of the centers of the par- volumes of, respectively, the real space part and the velocity
ticles is given like Fig. &) for 2+2\3<b<b*=6. In  space part, and the internal enetdys constant because this
these cases, the trajectory of the center of a particle is similasystem consists of hard walls and a hard sphere.

to what is observed in a Sinai billiaf@®]. Thus, in order to A (a,b) is given by
a
(a—d)(b—d)—z d’> (a>4) (2)
A= d g2
(a—d)(b—d)—(a—d)zcos == 0 (a<4), (3)

where sig=(a—d)/d andd=2. Using the above relations Finally, we discuss the mechanism of the appearance of
with P,b=—dF/da, the a-P, relation of the system fob  the plateau irC(t), the autocorrelation function of each par-
<6 is obtained, and we can observe a liquid-solid phaséicle’s position, near the widt=a* by considering statis-
transition as in Fig. &). In this case, the widta=a* =4 is tical properties of the particle trajectories. Now, we define
a singular point and this point gives the maximal pressuré®; and P, as the probability distributions ofx and dy.
independent ofb. On the other hand, however, tleP, Here, 6x is the horizontal component anrgy is the vertical
relations in the simulation resuli§igs. 2a) and 2b)] have  component of the relative position vector between the cen-
an inflection point near the critical width=a, =4, and the ters of two particles. FiguresS® and Gb) are, respectively,
form of each curve is smooth. In addition, we consider ady-P;  relations and &x-Ps  relations for b
square box system in which andb are varied witha=b. =4.3,4.7,5.1,5.5,5.9 wita=4.1. In Fig. &a), the maximum
This system satisfies<2+2./3 arounda~a*. Following  points of P, are always far from the poindy=0. In Fig.

the calculation for the rectangular Sinai billiard above, the6(b), however, the position of the maximum point Bfs,
a-P, relation of the 6—d) X (a—d) square Sinai billiard depends orb. Whenb is small, the maximum points d? s,

can be obtained analytically. The profile of theP, relation  are far from the poin®x=0. This means that two particles
for the square Sinai billiard obtained in this calculation istend to face each other on a diagonal line of the box. Because
almost the one as the result for the rectangular billiard. Howof this tendency, it is rather easy for these two particles to
ever, it is remarkable tha®, (=P,) decreases monotoni- exchange their positions in both vertical and horizontal di-
cally with increasinga(=Db) in the simulation of two par- rections. Hence, the time at whicd(t) becomes 0 is rela-
ticles in a square bojFig. 5(b)] [10]. tively short. On the other hand, only one maximum point of
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P, appears abx=0 whenb is larger than the critical value These relaxation processes are discussed by considering the
b** ~5.0. In this case, the height of the box is large enougtform of the probability distribution of the relative positions
for the particles to change positions almost freely but only in0f two particles. As a conclusion, this system is considered
the horizontal direction. This is considered to be the origin ofto be one of the simplest systems that imitates the liquid-
the fast relaxation in the simulation. This situation alsosolid phase transition of a system with many nonuniform
means that statistically two particles tend to line up verti-elements. Still, in the relation between the width of the box
cally. In this case, the exchange of two particles’ positions irand the pressure at the sidewalls, some discrepancies appear
the vertical direction is strongly hindered. This is the originbetween the analytical and simulation results. Thus further
of the plateau irC(t), after which the slow relaxation starts. consideration is required of dynamical properties like the
In this paper, the liquid-solid phase transition and the longong time correlation, which forbids equipartition. These top-
time correlation of two hard spheres confined in a two-ics seem to have a close relation with the slow dynamics in
dimensional rectangular box are studied. Between the widtamilton dynamical systemig1]. In addition, the pressure
of the box and the pressure at the sidewalls, a relation likgn the walls is anisotropic in our system, while the pressure
the van der Waals equation is obtained. However, the ranggs 5 system with many particles is usually uniform. This also
of the box width in which the volume compressibility is i5 5 problem to be solved. Moreover, the understanding of

negative goes to zero when the height of this box pass€fe glass transition or other nonequilibrium systefag]
through a critical value. The autocorrelation function of eaChthrough our simple model is a future issue

particle’s position is calculated near the critical width. As the
height of the box increases, the time at which this correlation The author is grateful to H. Nishimori, N. Ito, S. Sasa, H.
becomes zero gets longer. Moreover, a fast relaxation and ldayakawa, M. Sano, and K. Sekimoto for useful discussions.
slow relaxation are clearly separated by the appearance of Ehis research was supported in part by the Ibaraki University
plateau when the height of this box is sufficiently large.SVBL and Grant-in-Aid No. 10376 from JSPS.
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